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1 Introduction
Throughout this paper, we denote Na = {a, a + , a + , . . .} and N

b
a = {a, a + , . . . , b} for

a, b ∈R with b – a ∈N. Moreover, for any Banach-valued function u on Na, we make the
convention that

∑k
s=k

u(s) = θ if k, k ∈ Na with k > k, where θ is the zero element of a
given Banach space.

In this paper, we consider the following discrete fractional mixed type sum-difference
equation boundary value problem in Banach space E:

⎧
⎨

⎩

�βu(t) + f (t + β – , u(t + β – ), (Tu)(t), (Su)(t)) = θ , t ∈N,

u(β – ) = θ , �β–u(∞) = u∞,
(.)

where β ∈ (, ], �β denotes the discrete Riemann-Liouville fractional difference of order
β , f : Nβ– ×E×E×E → E is a continuous function, θ is the zero element of E, �β–u(∞) =
limt→+∞ �β–u(t) = u∞ ∈ E, and

(Tu)(t) =
t∑

s=

k(t, s)u(s + β – ), (Su)(t) =
∞∑

s=

h(t, s)u(s + β – ),

where k : D →R, D = {(t, s) ∈N ×N : s ≤ t}, h : N ×N →R.
In the last years, discrete fractional calculus and fractional difference equations with

various boundary conditions have been studied more intensively. For details, see [–];
we particularly should note that the recent monograph of Goodrich and Peterson [] is an
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extremely useful textbook for readers to obtain the fundamental background in discrete
fractional calculus. However, as far as we know, most of the recent papers, mainly based
on the Krasnosel’skii fixed point theorem, are concerning about the existence of positive
solutions for discrete fractional boundary value problems on a finite interval, and few pa-
pers can be found in the literature for discrete boundary value problems on an infinite
interval [].

Lv and Feng [] initially introduced some basic conceptions and fundamental results on
discrete fractional calculus for any Banach-valued function and also, using of the contrac-
tion mapping principle, investigated the existence and uniqueness of solutions for a class
of fractional mixed type sum-difference equation boundary value problems on discrete
infinite intervals in Banach spaces. This is the first attempt to study the discrete fractional
difference equation boundary value problems in abstract spaces.

It is well known that the measure of noncompactness is a very powerful tool to deal with
differential equations [–], difference equations [–], integration equations [],
and differential inclusions [, ]. So, in this paper, we l employ noncompact measures
and Darbo’s fixed point theorem to establish some conditions for the existence of solutions
to problem (.). We point out that the main result is even new and efficient for integer
order case of β = .

The outline for the remainder of this paper is as follows. In Section , we recall some
useful preliminaries. In Section , we establish the existence result of problem (.), and
finally we present in Section  an example illustrating the abstract theory.

2 Preliminaries
In this section, we begin by presenting here some necessary definitions for discrete frac-
tional calculus, and more preliminary facts can be found, for example, in [, , , ].

Definition . For any t and ν , the falling factorial function is defined as

tν =
�(t + )

�(t +  – ν)
,

provided that the right-hand side is well defined. We make the convention that if t +  – ν

is a pole of the gamma function and t +  is not a pole, then tν = .

Definition . The νth discrete fractional sum of a function f : Na → E for ν >  is de-
fined by

�–ν
a f (t) =


�(ν)

t–ν∑

s=a
(t – s – )ν–f (s), t ∈Na+ν .

Also, we define the trivial sum �–
a f (t) = f (t), t ∈Na.

Definition . The νth discrete Riemann-Liouville fractional difference of a function f :
Na → E for ν >  is defined by

�ν
af (t) = �n�–(n–ν)

a f (t), t ∈Na+n–ν ,

where n is the smallest integer greater than or equal to ν , and �n is the nth-order forward
difference operator. If ν = n ∈N, then �n

af (t) = �nf (t).
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We denote by C(Nb
a, E) the Banach space of all functions � : Nb

a → E with the usual
supremum norm ‖�‖ = sup{‖� (t)‖ : t ∈ N

b
a}. Define the space

X =
{

u : Nβ– → E
∣
∣
∣ sup

t∈Nβ–

‖u(t)‖
 + tβ– < +∞

}

equipped with the norm

‖u‖X = sup
t∈Nβ–

‖u(t)‖
 + tβ– .

Furthermore, by means of the linear functional analysis theory we can easily verify that
(X,‖ · ‖X) is a Banach space. It is worth reminding that here we use α, αC , and αX to denote
the Kuratowski noncompactness measure of bounded sets in Banach spaces E, C(Nb

a, E),
and X, respectively. For more details on the Kuratowski noncompactness measure, we
refer the reader to [, ]. We state the following properties of the Kuratowski measure
of noncompactness and the Darbo’s fixed point theorem, which are needed for the sequel
discussion.

Lemma . ([]) Let A ⊆ C(Nb
a, E) be bounded. Then

(i) αC(A) = α(A(Nb
a));

(ii) α(A(Nb
a)) = supt∈Nb

a
α(A(t)),

where A(t) = {� (t) : � ∈ A} and A(Nb
a) =

⋃
t∈Nb

a
A(t).

Lemma . ([]) Let D be a bounded, closed, and convex subset of a Banach space E. If
an operator A : D → D is a strict set contraction, then A has a fixed point in D.

Remark . A bounded and continuous operator A : D → E is called a strict set contrac-
tion if there is a constant λ ∈ [, ) such that α(AS) ≤ λα(S) for any bounded set S ⊂ D.

3 Main result
In this section, we establish the existence of solutions for problem (.) by using Darbo’s
fixed point theorem. For convenience and shortness of our presentation, for any u ∈ X, we
denote

gu(t) = f
(
t + β – , u(t + β – ), (Tu)(t), (Su)(t)

)
, t ∈N,

for further discussion and list the following conditions:
(C)

sup
t∈N

t∑

s=

∣
∣k(t, s)

∣
∣ < +∞, sup

t∈N

∞∑

s=

|h(t, s)|[ + (s + β – )β–]
 + (t + β – )β– < +∞;

(C) There exist nonnegative numbers qi, i ∈ N

 , and functions p, p : Nβ– → [,∞)

with p∗
 =

∑∞
t=β– p(t)( + tβ–) < �(β) and p∗

 =
∑∞

t=β– p(t) < +∞ such that

∥
∥f (t, u, v, w)

∥
∥ ≤ p(t)

(
q‖u‖ + q‖v‖ + q‖w‖) + p(t)

for (t, u, v, w) ∈Nβ– × E × E × E;
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(C) For any positive number r ∈ Nβ–, f (t, u, v, w) is uniformly continuous on N
r
β– ×

BE(θ , r) × BE(θ , r) × BE(θ , r), where BE(θ , r) = {x ∈ E : ‖x‖ ≤ r};
(C) There exist functions li : Nβ– → [, +∞), i ∈N


 , such that

α
(
f (t, V, V, V)

) ≤ l(t)α(V) + l(t)α(V) + l(t)α(V), t ∈Nβ–,

for all bounded sets Vi ⊂ E, i ∈N

 , and

∞∑

t=β–

(
 + tβ–)[l(t) + k∗l(t) + h∗l(t)

]
< �(β).

Moreover, we set

k∗ = sup
t∈N

t∑

s=

∣
∣k(t, s)

∣
∣ and h∗ = sup

t∈N

∞∑

s=

|h(t, s)|[ + (s + β – )β–]
 + (t + β – )β–

when (C) holds.
Next, we state and prove the following lemmas, which are necessary for the proof of the

main result.

Lemma . Assume that (C) and (C) hold. Then, for any u ∈ X,

∞∑

t=

∥
∥gu(t)

∥
∥ ≤ p∗


(
q + qk∗ + qh∗)‖u‖X + p∗

. (.)

Proof For any u ∈ X, t ∈ N, using (C), (C), and the monotonicity of tβ– for t ∈ Nβ–

produces

∥
∥gu(t)

∥
∥ =

∥
∥f

(
t + β – , u(t + β – ), (Tu)(t), (Su)(t)

)∥
∥

≤ p(t + β – )
(
q

∥
∥u(t + β – )

∥
∥ + q

∥
∥(Tu)(t)

∥
∥ + q

∥
∥(Su)(t)

∥
∥
)

+ p(t + β – )

≤ p(t + β – )
[
 + (t + β – )β–]

{

q + q

t∑

s=

|k(t, s)|[ + (s + β – )β–]
 + (t + β – )β–

+ q

∞∑

s=

|h(t, s)|[ + (s + β – )β–]
 + (t + β – )β–

}

‖u‖X + p(t + β – )

≤ p(t + β – )
[
 + (t + β – )β–](q + qk∗ + qh∗)‖u‖X + p(t + β – ). (.)

By summing both sides of (.) we get (.). So, this proof is completed. �

Lemma . Let h : N → E be given, and β ∈ (, ]. The unique solution of

⎧
⎨

⎩

�βu(t) + h(t) = θ , t ∈N,

u(β – ) = θ , �β–u(∞) = u∞,
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is

u(t) =
∞∑

s=

G(t, s)h(s) +
u∞
�(β)

tβ–, t ∈Nβ–,

where

G(t, s) =


�(β)

⎧
⎨

⎩

tβ– – (t – s – )β–, s ∈N
t–β
 ,

tβ–, s ∈Nt–β+.

Remark . The proof of Lemma . is similar to that of Lemma . in []. Hence, we
omit it here. Moreover, in view of the expression of G(t, s), we can easily verify that G(t, s) ≥
 and G(t,s)

+tβ– < 
�(β) for (t, s) ∈Nβ– ×N.

For any u ∈ X, define the operator F by

(Fu)(t) =
∞∑

s=

G(t, s)gu(s) +
u∞
�(β)

tβ–, t ∈Nβ–,

and due to Lemma . and Remark ., we have

‖(Fu)(t)‖
 + tα– ≤

∞∑

s=

G(t, s)
 + tβ–

∥
∥gu(s)

∥
∥ +

‖u∞‖tβ–

�(β)( + tβ–)

≤ 
�(β)

{
p∗


(
q + qk∗ + qh∗)‖u‖X + p∗

 + ‖u∞‖},

which implies that F : X → X is well defined and bounded. Furthermore, from Lemma .
we know that the existence of solutions for problem (.) is equivalent to that of fixed
points of F in X.

Lemma . Suppose that (C), (C), and (C) are satisfied. Then the operator F : X → X
is continuous.

Proof Let {un}∞n= ⊂ X and u ∈ X be such that ‖un – u‖X →  as n → ∞. Then, {un}∞n= is
a bounded set of X, that is, there exists M >  such that ‖un‖X ≤ M for n ∈ N. By taking
limit we also have that ‖u‖X ≤ M.

In view of (C), for any ε > , there exists a positive integer L such that

∞∑

t=L+β

p(t)
(
 + tβ–) <

�(β)
M(q + qk∗ + qh∗)

ε, (.)

∞∑

t=L+β

p(t) <
�(β)


ε. (.)

On the other hand, condition (C) yields that there exists N >  such that for any n > N
and t ∈N

L
,

∥
∥gun (t) – gu(t)

∥
∥ ≤ �(β)

(L + )
ε. (.)
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Therefore, for t ∈ N
L+β–
β– and n > N , by (C), (C), (.)-(.), and Remark . we obtain

that

‖(Fun)(t) – (Fu)(t)‖
 + tβ–

≤
∞∑

s=

G(t, s)
 + tβ–

∥
∥gun (s) – gu(s)

∥
∥

<


�(β)

{ L∑

s=

∥
∥gun (s) – gu(s)

∥
∥ +

∞∑

s=L+

∥
∥gun (s) – gu(s)

∥
∥

}

≤ 
�(β)

L∑

s=

∥
∥gun (s) – gu(s)

∥
∥ +


�(β)

∞∑

s=L+

{∥
∥gun (s)

∥
∥ +

∥
∥gu(s)

∥
∥
}

≤ ε


+


�(β)

∞∑

s=L+

{∥
∥f

(
s + β – , un(s + β – ), (Tun)(s), (Sun)(s)

)∥
∥

+
∥
∥f

(
s + β – , u(s + β – ), (Tu)(s), (Su)(s)

)∥
∥
}

≤ ε


+


�(β)

∞∑

s=L+

{
p(s + β – )

(
q

∥
∥un(s + β – )

∥
∥ + q

∥
∥(Tun)(s)

∥
∥ + q

∥
∥(Sun)(s)

∥
∥
)

+ p(s + β – )
(
q

∥
∥u(s + β – )

∥
∥ + q

∥
∥(Tu)(s)

∥
∥ + q

∥
∥(Su)(s)

∥
∥
)

+ p(s + β – )
}

≤ ε


+


�(β)

∞∑

s=L+β

p(s) +


�(β)

∞∑

s=L+

p(s + β – )
[
 + (s + β – )β–]

×
{

q + q

s∑

τ=

|k(s, τ )|[ + (τ + β – )β–]
 + (s + β – )β– + q

∞∑

τ=

|h(s, τ )|[ + (τ + β – )β–]
 + (s + β – )β–

}

× (‖un‖X + ‖u‖X
)

<
ε


+

ε


+

M(q + qk∗ + qh∗)
�(β)

∞∑

s=L+β

p(s)
(
 + sβ–)

<
ε


+

ε


+

ε


= ε.

Meanwhile, for t ∈NL+β and n > N , applying (.)-(.) again, we can easily verify that

‖(Fun)(t) – (Fu)(t)‖
 + tβ– < ε.

Then, we conclude that ‖Fun – Fu‖X ≤ ε for n > N . So F is continuous, and the proof is
completed. �

Lemma . Let B be a bounded subset of X. If (C) and (C) hold, then for any ε > , there
exists a positive number N ∈Nβ– such that ‖ (Fu)(t)

+t
β–


– (Fu)(t)

+t
β–


‖ < ε for each u ∈ B and any

t, t ∈ NN .

Proof In view of Lemma . and the boundedness of B, there exists M >  such that

∞∑

t=

∥
∥gu(t)

∥
∥ ≤ M for any u ∈ B. (.)
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Note that
∥
∥
∥
∥

(Fu)(t)

 + t
β–


–
(Fu)(t)

 + t
β–


∥
∥
∥
∥

≤ 
�(β)

∥
∥
∥
∥
∥

u∞ +
∞∑

s=

gu(s)

∥
∥
∥
∥
∥

∣
∣
∣
∣

t
β–


 + t
β–


–
t
β–


 + t
β–


∣
∣
∣
∣

+


�(β)

∥
∥
∥
∥
∥

t–β∑

s=

(t – s – )β–

 + t
β–


gu(s) –
t–β∑

s=

(t – s – )β–

 + t
β–


gu(s)

∥
∥
∥
∥
∥

. (.)

Observing (.) together with limt→+∞ tβ–

+tβ– = , we only need to show that for any ε > ,
there exists sufficiently large positive number N ∈ Nβ– such that, for any t, t ∈NN ,

∥
∥
∥
∥
∥

t–β∑

s=

(t – s – )β–

 + t
β–


gu(s) –
t–β∑

s=

(t – s – )β–

 + t
β–


gu(s)

∥
∥
∥
∥
∥

< ε.

Relation (.) yields that there exists a positive number L ∈N such that

∞∑

t=L+

∥
∥gu(t)

∥
∥ ≤ ε


uniformly with respect to u ∈ B. (.)

On the other hand, from the monotonicity of ιβ– we can declare that limt→+∞ (t–L–)β–

+tβ– = .
In fact, for any t ∈NL+β+, L ∈N, we have

(t – L – )β–

tβ– =
�(t – L)�(t – β + )

�(t + )�(t – β +  – L)

=
(t +  – β)L

tL

=
∏L–

j= (t – j – β + )
∏L–

j= (t – j)

=
L–∏

j=

(

 +
 – β

t – j

)

,

which implies that

lim
t→+∞

(t – L – )β–

 + tβ– = lim
t→+∞

(t–L–)β–

tβ–


tβ– + 

=


 + 
= .

So, there exists N ∈ NL+β+ such that for any t, t ∈NN and s ∈ N
L
,

∣
∣
∣
∣
(t – s – )β–

 + t
β–


–
(t – s – )β–

 + t
β–


∣
∣
∣
∣

≤
(

 –
(t – s – )β–

 + t
β–


)

+
(

 –
(t – s – )β–

 + t
β–


)
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≤
(

 –
(t – L – )β–

 + t
β–


)

+
(

 –
(t – L – )β–

 + t
β–


)

<
ε

M
. (.)

Now taking t, t ∈NN , by (.) and (.) we get

∥
∥
∥
∥
∥

t–β∑

s=

(t – s – )β–

 + t
β–


gu(s) –
t–β∑

s=

(t – s – )β–

 + t
β–


gu(s)

∥
∥
∥
∥
∥

≤
L∑

s=

∣
∣
∣
∣
(t – s – )β–

 + t
β–


–
(t – s – )β–

 + t
β–


∣
∣
∣
∣
∥
∥gu(s)

∥
∥

+
t–β∑

s=L+

(t – s – )β–

 + t
β–


∥
∥gu(s)

∥
∥ +

t–β∑

s=L+

(t – s – )β–

 + t
β–


∥
∥gu(s)

∥
∥

<
ε

M

∞∑

s=

∥
∥gu(s)

∥
∥ + 

∞∑

s=L+

∥
∥gu(s)

∥
∥

≤ ε.

Therefore, the proof is completed. �

Lemma . Let B be a bounded subset of X. If (C) and (C) hold, then

αX(FB) = sup
t∈Nβ–

α

(
(FB)(t)
 + tβ–

)

.

Proof First, we claim that αX(FB) ≤ supt∈Nβ– α( (FB)(t)
+tβ– ).

In view of Lemma ., we know that for any ε > , there exists a positive number N ∈
Nβ– such that, for t, t ∈NN ,

∥
∥
∥
∥

(Fu)(t)

 + t
β–


–
(Fu)(t)

 + t
β–


∥
∥
∥
∥ < ε uniformly with respect to u ∈ B. (.)

Denote by FB|
N

N
β–

the restriction of FB on N
N
β–. By Lemma . we obtain

αX(FB|
N

N
β–

) = sup
t∈NN

β–

α

(
(FB)(t)
 + tβ–

)

≤ sup
t∈Nβ–

α

(
(FB)(t)
 + tβ–

)

.

So, there exists a partition of B such that B =
⋃n

i= Bi, FB|
N

N
β–

=
⋃n

i= FBi|NN
β–

and

diamX(FBi|NN
β–

) < sup
t∈Nβ–

α

(
(FB)(t)
 + tβ–

)

+ ε, i ∈N
n
 , (.)

where diamX(·) denotes the diameter of a bounded subset of X. Moreover, for all
Fu,Fu ∈FBi, i ∈N

n
 , and t ∈NN , (.) and (.) imply that
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∥
∥
∥
∥

(Fu)(t)
 + tβ– –

(Fu)(t)
 + tβ–

∥
∥
∥
∥

≤
∥
∥
∥
∥

(Fu)(t)
 + tβ– –

(Fu)(N)
 + Nβ–

∥
∥
∥
∥ +

∥
∥
∥
∥

(Fu)(N)
 + Nβ– –

(Fu)(N)
 + Nβ–

∥
∥
∥
∥ +

∥
∥
∥
∥

(Fu)(N)
 + Nβ– –

(Fu)(t)
 + tβ–

∥
∥
∥
∥

< ε + sup
t∈Nβ–

α

(
(FB)(t)
 + tβ–

)

+ ε + ε

= sup
t∈Nβ–

α

(
(FB)(t)
 + tβ–

)

+ ε. (.)

Hence, it follows from (.) and (.) that

diamX(FBi) ≤ sup
t∈Nβ–

α

(
(FB)(t)
 + tβ–

)

+ ε.

Since FB =
⋃n

i= FBi, we get that αX(FB) ≤ supt∈Nβ– α( (FB)(t)
+tβ– ) + ε, which by the arbi-

trariness of ε implies that

αX(FB) ≤ sup
t∈Nβ–

α

(
(FB)(t)
 + tβ–

)

.

Next, we show that supt∈Nβ– α( (FB)(t)
+tα– ) ≤ αX(FB). For any given ε > , there exists a parti-

tion FB =
⋃n

i= FBi such that diamX(FBi) < αX(FB) + ε. Therefore, for any t ∈ Nβ– and
u, u ∈ Bi, we obtain

∥
∥
∥
∥

(Fu)(t)
 + tβ– –

(Fu)(t)
 + tβ–

∥
∥
∥
∥ ≤

∥
∥
∥
∥Fu – Fu

∥
∥
∥
∥

X
< αX(FB) + ε.

In accordance with (FB)(t) =
⋃n

i= FBi(t), we get α( (FB)(t)
+tβ– ) ≤ αX(FB) + ε. Because ε is

arbitrary, we have

sup
t∈Nβ–

α

(
(FB)(t)
 + tβ–

)

≤ αX(FB).

Consequently, the proof of this lemma is complete. �

With all auxiliary results in hand, now we state the main result.

Theorem . If (C)-(C) hold, then problem (.) has at least one solution u in X.

Proof Choose

R >
‖u∞‖ + p∗


�(β) – p∗

 (q + qk∗ + qh∗)

and let

B =
{

u ∈ X : ‖u‖X ≤ R
}

.
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Then, for any u ∈ B, by Lemma . and Remark . we have

‖(Fu)(t)‖
 + tα– ≤

∞∑

s=

G(t, s)
 + tβ–

∥
∥gu(s)

∥
∥ +

‖u∞‖tβ–

�(β)( + tβ–)

≤ 
�(β)

{
p∗


(
q + qk∗ + qh∗)‖u‖X + p∗

 + ‖u∞‖} ≤ R,

which implies that F : B → B.
Set D = co(FB). Obviously, D is a bounded, convex, and closed subset of B. In the sequel,

we show that the operator F : D → D is a strict contraction.
Observing that FD ⊂ FB ⊂ D, together with Lemma ., we know that F : D → D is

bounded and continuous. Finally, we show that there exists a constant λ ∈ [, ) such that
αX(FV ) ≤ λαX(V ) for any V ⊂ D. Moreover, in view of Lemma ., we only need to verify

sup
t∈Nβ–

α

(
(FV )(t)
 + tβ–

)

≤ λαX(V ). (.)

For a positive integer n > t – β , define

(Fnu)(t) =


�(β)

t–β∑

s=

[
tβ– – (t – s – )β–]gu(s) +


�(β)

n∑

s=t–β+

tβ–gu(s) +
u∞
�(β)

tβ–.

Then from (C) and (C), for any u ∈ V , we have

∥
∥
∥
∥

(Fnu)(t)
 + tβ– –

(Fu)(t)
 + tβ–

∥
∥
∥
∥

≤ 
�(β)

∞∑

s=n+

∥
∥gu(s)

∥
∥

≤ 
�(β)

∞∑

s=n+

{
p(s + β + )

[
 + (s + β – )β–](q + qk∗ + qh∗)R + p(s + β – )

}
,

which implies that

dH

(
(FnV )(t)
 + tβ– ,

(FV )(t)
 + tβ–

)

→  as n → ∞, t ∈ Nβ–,

where dH(·, ·) denotes the Hausdorff metric in space E. So, by the properties of noncom-
pactness measure we obtain

lim
n→∞α

(
(FnV )(t)
 + tβ–

)

= α

(
(FV )(t)
 + tβ–

)

, t ∈ Nβ–. (.)

Now we estimate

α

(
(FnV )(t)
 + tβ–

)

(n > t – β).
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In view of (C) and (C), we know that {gu(t) : u ∈ V } is bounded. Relying on Lemma .,
Lemma ., and (C), we have

α

(
(FnV )(t)
 + tβ–

)

≤ 
�(β)

α

({ t–β∑

s=

gu(s) : u ∈ V

})

+


�(β)
α

({ n∑

s=t–β+

gu(s) : u ∈ V

})

≤ 
�(β)

n∑

s=

α
(
f
(
s + β – , V (s + β – ), (TV )(s), (SV )(s)

))

≤ 
�(β)

n∑

s=

[
l(s + β – )α

(
V (s + β – )

)
+ l(s + β – )α

(
(TV )(s)

)

+ l(s + β – )α
(
(SV )(s)

)]

≤ 
�(β)

n∑

s=

[
 + (s + β – )β–]

{

l(s + β – )

+ l(s + β – )
s∑

τ=

|k(s, τ )|[ + (τ + β – )β–]
[ + (s + β – )β–]

+ l(s + β – )
∞∑

τ=

|h(s, τ )|[ + (τ + β – )β–]
[ + (s + β – )β–]

}

αX(V )

≤ 
�(β)

n+β–∑

s=β–

[
 + sβ–][l(s) + l(s)k∗ + l(s)h∗]αX(V ).

By (.) we immediately get

α

(
(FV )(t)
 + tβ–

)

≤ λαX(V ) with λ =


�(β)

n+β–∑

s=β–

[
 + sβ–][l(s) + l(s)k∗ + l(s)h∗].

So (.) holds with λ ∈ [, ), and from Lemma . we immediately obtain that problem
(.) has at least one solution in D. Hence, the proof is completed. �

4 An example
Example . Consider the following infinite system of scalar discrete fractional difference
equations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�/un(t) + –(t+)

n[+(t+/)/] sin[un(t + /)] + –t

n[+(t+/)/]

× { + un+(t + /) +
∑t

s=


(t+s+) un(s + /)

+
∑∞

s=
cos(ts)

(s+)[+(s+/)/]
un+(s + /)}/ = , t ∈N,

un(–/) = , �/un(∞) = 
n! , n ∈ N.

(.)

Conclusion System (.) has at least one solution {un(t)}∞n= such that un(t) →  as n → ∞
for t ∈N–/.

Proof Let E = c = {u = (u, u, . . . , un, . . .) : un → }. Evidently, (E,‖ · ‖) is a Banach space
with the norm ‖u‖ = supn |un| for any u ∈ E. Then infinite system (.) can be regarded as
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a boundary value problem of the form (.) in the Banach space E. In this case, β = /,
θ = (, , . . . , , . . .) ∈ E, u∞ = (, /!, . . . , /n!, . . .) ∈ E,

k(t, s) =


(t + s + ) , h(t, s) =
cos(ts)

(s + )[ + (s + /)/]
,

and f = (f, f, . . . , fn, . . .) with

fn(t, u, v, w) =
–t–/

n( + t/) sin un +
–t+/

n( + t/)
( + un+ + vn + wn+)/, (.)

where t ∈ N/ and u = (u, u, . . . , un, . . .), v = (v, v, . . . , vn, . . .), w = (w, w, . . . , wn, . . .) ∈ E.
From the expression of fn we easily to see that f : N/ × E × E × E → E is continuous.
Furthermore, we can easily verify that

k∗ = sup
t∈N

t∑

s=


(t + s + ) = sup

t∈N


(t + )

=



< ∞,

h∗ = sup
t∈N


 + (t + /)/

∞∑

s=

| cos(ts)|[ + (s + /)/]
[ + (s + /)/](s + )

≤ sup
t∈N


 + (t + /)/

∞∑

s=


(s + )

≤ 
 + �(/)

<



< ∞.

So, condition (C) is satisfied. On the other hand, using the simple inequality

( + z)γ ≤  + γ z for z ∈ [, +∞),γ ∈ (, ),

we see from (.) that

∣
∣fn(t, u, v, w)

∣
∣ ≤ –t–/

n( + t/) | sin un| +
–t+/

n( + t/)
(
 + ‖u‖ + ‖v‖ + ‖w‖)/

≤ –t–/

n( + t/)
(‖u‖ + ‖v‖ + ‖w‖) +

–t+/

n( + t/)
+

–t–/

n( + t/) , n ∈N,

and, therefore,

∥
∥f (t, u, v, w)

∥
∥ ≤ p(t)

(‖u‖ + ‖v‖ + ‖w‖) + p(t),

where

p(t) =
–t–/

( + t/)
, p(t) =

–t+/

( + t/)
+

–t–/

( + t/) , q = q = q = ,

which implies

p∗
 = / < �(/), p∗

 < /.
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So condition (C) is satisfied. We can also verify that (C) holds by (.). Finally, we check
condition (C). Let f = f () + f (), where

f ()
n (t, u, v, w) =

–t–/

n( + t/) sin un,

f ()
n (t, u, v, w) =

–t+/

n( + t/)
( + un+ + vn + wn+)/.

Then we obtain that for any bounded sets Vi ⊂ E, i ∈ N

 , α(f (t, V, V, V)) = , t ∈ N/.

In fact, since Vi, i ∈ N

 , are bounded, there exists r >  such that Vi ⊂ BE(θ , r), i ∈ N


 . Let

{u(m)}∞m= ∈ V, {v(m)}∞m= ∈ V, {w(m)}∞m= ∈ V. Then for any fixed t ∈ N/, we have

∣
∣f ()

n
(
t, u(m), v(m), w(m))∣∣ ≤ r

n[ + �(/)]
+


n[ + �(/)]

, n, m ∈N. (.)

Therefore, {f ()
n (t, u(m), v(m), w(m))} is bounded, and so, by the diagonal method we can

choose a subsequence {mk} ⊂ {m} such that

f ()
n

(
t, u(mk ), v(mk ), w(mk )) → zn as k → ∞, n ∈N. (.)

Now, (.) and (.) imply

|zn| ≤ r
n[ + �(/)]

+


n[ + �(/)]
, n, m ∈N. (.)

So z = (z, z, . . . , zn, . . .) ∈ c = E, and it is easy to see from (.)-(.) that

∥
∥f ()(t, u(mk ), v(mk ), w(mk )) – z

∥
∥ = sup

n

∣
∣f ()

n
(
t, u(mk ), v(mk ), w(mk )) – zn

∣
∣ →  as k → ∞.

Thus, we have proved that f (t, V, V, V) is relatively compact in E and

α
(
f (t, V, V, V)

)
= . (.)

On the other hand, for any t ∈N/, u, u ∈ V, v, v ∈ V, w, w ∈ V, we have

∣
∣f ()

n (t, u, v, w) – f ()
n (t, u, v, w)

∣
∣ ≤ –t–/

( + t/) |un – un|,

and, therefore,

α
(
f ()(t, V, V, V)

) ≤ –t–/

( + t/) α(V). (.)

From (.) and (.) we have

α
(
f (t, V, V, V)

) ≤ α
(
f ()(t, V, V, V)

) ≤ –t–/

( + t/) α(V).

In view of
∑∞

t=/
–t–/

(+t/)
< / < �(/), we get that condition (C) holds with l(t) = –t–/

(+t/)

and l(t) = l(t) = . So by Theorem . our conclusion follows. �
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