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Abstract
In this paper, we prove a weak convergence theorem and a strong convergence
theorem for split common fixed point problem involving a quasi-strict pseudo
contractive mapping and an asymptotical nonexpansive mapping in the setting of
two Banach spaces. Our results are new and seem to be the first outside Hilbert
spaces.
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1 Introduction
Let H and H be two real Hilbert spaces, C and Q be nonempty closed convex subsets of
H and H, respectively, and A : H → H be a bounded linear operator. The split feasibility
problem (SFP) is formulated as to find a point q ∈ H such that

q ∈ C and Aq ∈ Q. (.)

It is easy to see that q ∈ C solves equation (.) if and only if it solves the following fixed
point equation:

q = PC
(
I – γ A∗(I – PQ)A

)
q, x ∈ C, (.)

where PC (resp. PQ) is the (orthogonal) projection from H (resp. H) onto C (resp. Q),
γ > , and A∗ is the adjoint of A.

Let S : C → C and T : Q → Q be two mappings. The so-called split common fixed point
problem (SCFP) for mappings S and T is to find a point q ∈ C such that

q ∈ F(S) and Aq ∈ F(T), (.)
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where F(S) and F(T) denote the sets of fixed points of S and T , respectively. We use � to
denote the set of solutions of SCFP for mappings S and T , that is,

� =
{

q ∈ F(S) : Aq ∈ F(T)
}

. (.)

The SFP in finite-dimensional Hilbert spaces was first introduced by Censor and Elfving
[] for modeling inverse problems which arise from phase retrievals and in medical im-
age reconstruction []. The split common fixed point problems in Hilbert spaces were
introduced by Moudafi [] in . Since then, various algorithms have been invented to
solve SFP and SCFP [–]. In , Cui and Wang [] investigated the split common
fixed point problems of τ -quasi-strict pseudocontractive mappings in the setting of two
Hilbert spaces.

In , Takahashi [], Takahashi and Yao [] first attempted to introduce and consider
the split feasibility problem and split common null point problem in the setting of a Banach
space. By using hybrid methods and Halpern-type methods and under suitable conditions,
some strong and weak convergence theorems for such kinds of problems are obtained. The
results presented in [] and [] seem to be the first outside Hilbert spaces.

Motivated and inspired by the research going on in the direction of split feasibility prob-
lems and split common fixed point problems, we have the purpose in this article to con-
sider and study the split common fixed point problem for a τ -quasi-strict pseudocon-
tractive mapping and asymptotical nonexpansive mappings in the setting of two Banach
spaces. We construct an iterative scheme to approximate a solution for such kind of split
common fixed point problem in the setting of two Banach spaces. Our results are new and
seem to be the first outside Hilbert spaces on this problem.

2 Preliminaries
Throughout this paper, we assume that E is a real Banach space with the dual E∗ and C is
a nonempty closed convex subset of E. Let T be a mapping. We denote by F(T) the set of
fixed points of T . We denote by ‘→’ and ‘⇀’ strong convergence and weak convergence,
respectively.

In the sequel, we denote by J : E → E∗ the normalized duality mapping defined by

Jx =
{

x∗ ∈ E∗ :
〈
x, x∗〉 = ‖x‖ =

∥∥x∗∥∥}, ∀x ∈ E,

where 〈·, ·〉 is the generalized duality pairing between E and E∗.
A Banach space E is said to be strictly convex if ‖x+y‖

 <  for all x, y ∈ U = {z ∈ E : ‖z‖ = }
with x 	= y. The modulus of convexity of E is defined by

δE(ε) = inf

{
 –

∥
∥∥∥




(x + y)
∥
∥∥∥ : ‖x‖,‖y‖ ≤ ,‖x – y‖ ≥ ε

}

for all ε ∈ [, ]. E is said to be uniformly convex if δE() =  and δE(ε) >  for all  < ε ≤ .
Let ρE : [,∞) → [,∞) be the modulus of smoothness of E defined by

ρE(t) = sup

{


(‖x + y‖ + ‖x – y‖) –  : x ∈ U ,‖y‖ ≤ t

}
.
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A Banach space E is said to be uniformly smooth if ρE(t)
t →  as t → . Let q >  be a fixed

number. Then a Banach space E is said to be q-uniformly smooth if there exists a constant
c >  such that ρE(t) ≤ ctq for all t > . It is well known that every q-uniformly smooth
Banach space is uniformly smooth.

Lemma . Let E be a uniformly convex Banach space. Then, for any given number r > ,
there exists a continuous strictly increasing function g : [,∞) → [,∞), g() =  such that

∥
∥tx + ( – t)y

∥
∥ ≤ t‖x‖ + ( – t)‖y‖ – t( – t)g

(‖x – y‖)

for all x, y ∈ E with ‖x‖ ≤ r and ‖y‖ ≤ r, t ∈ [, ].

Lemma . If E is a -uniformly smooth Banach space with the best smoothness constants
k > , then the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 〈y, Jx〉 + ‖ky‖, ∀x, y ∈ E.

Definition . Let T : C → C be an operator. Then
(i) T is said to be {kn}-asymptotically nonexpansive if there exists a sequence

{kn} ⊂ [,∞) with kn →  such that

∥∥Tnx – Tny
∥∥ ≤ kn‖x – y‖, ∀n ≥ , x, y ∈ C;

(ii) T is said to be τ -strict pseudocontractive if there exists a constant τ ∈ [, ) such
that

‖Tx – Ty‖ ≤ ‖x – y‖ + τ
∥∥(I – T)x – (I – T)y

∥∥, ∀x, y ∈ C; (.)

(iii) T is said to be τ -quasi-strict pseudocontractive if F(T) 	= ∅ and there exists a
constant τ ∈ [, ) such that

‖Tx – p‖ ≤ ‖x – p‖ + τ
∥∥(I – T)x

∥∥, ∀p ∈ F(T), x ∈ C. (.)

Example of {kn}-asymptotically nonexpansive mapping Let C be a unit ball in a real
Hilbert l, and let T : C → C be a mapping defined by

T : (x, x, . . .) → (
, x

 , ax, ax, . . .
)
, (.)

where {ai} is a sequence in (, ) such that
∏∞

i= αi = 
 .

It is proved in Goebel and Kirk [] that
(i) ‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C;

(ii) ‖Tnx – Tny‖ ≤ 
∏n

i= aj‖x – y‖, ∀n ≥  and x, y ∈ C.

Denote by k



 = , k



n = 
∏n

i= ai, n ≥ , then

lim
n→∞ kn = lim

n→∞

(


n∏

i=

ai

)

= .
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Therefore ∀x, y ∈ C, n ≥ , we have

∥∥Tnx – Tny
∥∥ ≤ kn‖x – y‖.

This implies that T is a {kn}-asymptotically nonexpansive mapping.

Example of τ -strict pseudocontractive mapping Now, we give an example of a τ -strict
pseudocontractive mapping.

Let X = l with the norm ‖ · ‖ defined by

‖x‖ =

√√√
√

∞∑

i=

x
i , ∀x = (x, x, . . . , xn, . . .) ∈ X,

and C = {x = (x, x, . . . , xn, . . .) ∈ l : xi ∈ R, i = , , . . .} be an orthogonal subspace of X (i.e.,
we assume that the set C satisfies the condition that for any x, y ∈ C, we have 〈x, y〉 = ). It is
obvious that C is a nonempty closed convex subset of X. For each x = (x, x, . . . , xn, . . .) ∈ C,
we define a mapping T : C → C by

Tx =

{
(x, x, . . . , xn, . . .) if

∏∞
i= xi < ,

(–x, –x, . . . , –xn, . . .) if
∏∞

i= xi ≥ .
(.)

Next we prove that T is a τ -strict pseudocontractive mapping and F(T) 	= ∅, therefore it
is a τ -quasi-strict pseudocontractive mapping.

In fact, for any x, y ∈ C, we have the following.
Case . If

∏∞
i= xi <  and

∏∞
i= yi < , then we have Tx = x, Ty = y, and so inequality (.)

holds.
Case . If

∏∞
i= xi <  and

∏∞
i= yi ≥ , then we have that Tx = x, Ty = –y. This implies that

⎧
⎪⎨

⎪⎩

‖Tx – Ty‖ = ‖x – (–)y‖ = ‖x‖ + ‖y‖,
‖x – y‖ = (‖x‖ + ‖y‖),
‖x – Tx – (y – Ty)‖ = [ – (–)]‖y‖.

Therefore inequality (.) holds.
Case . If

∏∞
i= xi ≥  and

∏∞
i= yi ≥ , then we have Tx = (–)x, Ty = (–)y. Hence we

have
⎧
⎪⎨

⎪⎩

‖Tx – Ty‖ = ‖(–)x – (–)y‖ = ‖x – y‖ = ‖x‖ + ‖y‖,
‖x – y‖ = (‖x‖ + ‖y‖),
‖x – Tx – (y – Ty)‖ = [ – (–)]‖x – y‖ = [ – (–)](‖x‖ + ‖y‖).

Thus inequality (.) still holds. Therefore the mapping defined by (.) is a τ -strict pseu-
docontractive mapping. Since θ = (, , , . . . , , , . . .) ∈ C and T(θ ) = θ , the set F(T) of
fixed points of T in C is nonempty. Therefore T is also a τ -quasi-strict pseudocontractive
mapping.

Definition .
() Let T : C → C be a mapping with F(T) 	= ∅. Then T is said to be demiclosed at zero

if for any {xn} ⊂ C with xn ⇀ x and ‖xn – Txn‖ → , x = Tx.
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() Let E be a Banach space. E is said to have the Opial property if for any sequence {xn}
in E with xn ⇀ x∗, for any y ∈ E with y 	= x∗, we have

lim inf
n→∞

∥
∥xn – x∗∥∥ < lim inf

n→∞ ‖xn – y‖.

Definition . A mapping T : C → C is said to be semi-compact if for any bounded se-
quence {xn} ⊂ C such that ‖xn – Txn‖ →  (n → ∞), there exists a subsequence {xnj} of
{xn} such that {xnj} converges strongly to x∗ ∈ C.

Lemma . Let {an}, {bn} and {δn} be sequences of nonnegative real numbers satisfying

an+ ≤ ( + δn)an + bn, ∀n ≥ .

If
∑∞

n= δn < ∞ and
∑∞

n= bn < ∞, then the limit limn→∞ an exists.

3 Main results
Throughout this section, we assume that:

() E is a real uniformly convex and -uniformly smooth Banach space having the
Opial property and the best smoothness constant k satisfying  < k < √

 .
() E is a real Banach space.
() A : E → E is a bounded linear operator and A∗ is the adjoint of A.
() S : E → E is an {ln}-asymptotical nonexpansive mapping with {ln} ⊂ (,∞) and

ln → . T : E → E is a τ -quasi-strict pseudocontractive mapping with F(S) 	= ∅ and
F(T) 	= ∅, and T is demiclosed at zero.

Remark It follows from condition () that E is a real smooth, strictly convex and reflexive
Banach space. Therefore, as is well known, the normalized duality mapping J : E → E∗



is single-valued, one-to-one and onto. And J–
 : E∗

 → E is also single-valued, one-to-one
and onto.

We are now in a position to introduce and study the following split common fixed
point problem (SCFP) for an asymptotical nonexpansive mapping S and a τ -quasi-
pseudocontractive mapping T in the setting of two Banach spaces, i.e., to find

p ∈ F(S) such that Ap ∈ F(T), (.)

where F(S) and F(T) are the sets of fixed points of S and T , respectively. In the sequel we
use � to denote the set of solutions of (SCFP) (.) for mappings S and T , that is,

� =
{

p ∈ F(S) : Ap ∈ F(T)
}

. (.)

Theorem . Let E, E, A, S, T and {ln} be the same as above. For each x ∈ E, let {xn}
be the sequence generated by

{
zn = xn + γ J–

 A∗J(T – I)Axn,
xn+ = ( – αn)zn + αnSnzn, ∀n ≥ ,

(.)

where {αn} is a sequence in (, ) with lim infn→∞ αn( – αn) > , γ is a positive constant
satisfying  < γ < min{ –k

‖A‖ , –τ

‖A‖ }, {ln} is a sequence in [, +∞) with L = supn≥{ln} and
∑∞

n=(ln – ) < ∞.
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(I) If � = {p ∈ F(S) : Ap ∈ F(T)} 	= ∅ (the set of solutions of (SCFP) (.)), then the
sequence {xn} converges weakly to a point x∗ ∈ �.

(II) In addition, if � = {p ∈ F(S) : Ap ∈ F(T)} 	= ∅ and S is semi-compact, then {xn}
converges strongly to a point x∗ ∈ �.

Proof Now we prove conclusion (I).
We divide the proof into four steps.
Step . We first show that the limit limn→∞ ‖xn – p‖ exists for each p ∈ �.
For any given p ∈ �, we have p ∈ F(S) and Ap ∈ F(T). It follows from (.) and Lemma .

that

‖zn – p‖

=
∥∥(xn – p) + γ J–

 A∗J(T – I)Axn
∥∥

≤ ∥∥γ J–
 A∗J(T – I)Axn

∥∥ + γ
〈
xn – p, A∗J(T – I)Axn

〉
+ k‖xn – p‖

≤ γ ‖A‖∥∥(T – I)Axn
∥∥ + γ

〈
Axn – Ap, J(T – I)Axn

〉
+ k‖xn – p‖

= γ ‖A‖∥∥(T – I)Axn
∥
∥ + k‖xn – p‖

+ γ
〈
Axn – TAxn + TAxn – Ap, J(T – I)Axn

〉

= γ ‖A‖∥∥(T – I)Axn
∥
∥ + k‖xn – p‖

– γ
∥
∥(T – I)Axn

∥
∥ + γ

〈
TAxn – Ap, J(T – I)Axn

〉

≤ (
γ ‖A‖ – γ

)∥∥(T – I)Axn
∥
∥ + k‖xn – p‖

+ γ
(‖TAxn – Ap‖ +

∥∥(T – I)Axn
∥∥)

≤ k‖xn – p‖ – γ
(
 – γ ‖A‖)∥∥(T – I)Axn

∥∥

+ γ ‖Axn – Ap‖ + γ τ
∥∥(T – I)Axn

∥∥ (by (.))

≤ (
k + γ ‖A‖)‖xn – p‖ – γ

(
 – τ – γ ‖A‖)∥∥(T – I)Axn

∥∥

≤ ‖xn – p‖ – γ
(
 – τ – γ ‖A‖)∥∥(T – I)Axn

∥∥. (.)

It follows from (.), (.) and Lemma . that

‖xn+ – p‖

=
∥
∥( – αn)(zn – p) + αn

(
Snzn – p

)∥∥

≤ ( – αn)‖zn – p‖ + αn
∥
∥Snzn – p

∥
∥ – αn( – αn)g

(∥∥zn – Snzn
∥
∥)

≤ ( – αn)‖zn – p‖ + αnln‖zn – p‖ – αn( – αn)g
(∥∥zn – Snzn

∥
∥)

=
[
 + αn(ln – )

]‖zn – p‖ – αn( – αn)g
(∥∥zn – Snzn

∥
∥)

≤ [
 + αn(ln – )

]‖xn – p‖ – γ
(
 – τ – γ ‖A‖)∥∥(T – I)Axn

∥
∥

– αn( – αn)g
(∥∥zn – Snzn

∥
∥)

≤ [
 + αn(ln – )

]‖xn – p‖. (.)
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From the condition
∑∞

n=(ln – ) < ∞ and Lemma . we know that limn→∞ ‖xn – p‖ exists.
This implies that the sequence {xn} is bounded.

Step . We prove that limn→∞ ‖xn+ – xn‖ =  and limn→∞ ‖zn+ – zn‖ = .
From (.) we have

γ
(
 – τ – γ ‖A‖)∥∥(T – I)Axn

∥∥ + αn( – αn)g
(∥∥zn – Snzn

∥∥)

≤ [
 + αn(ln – )

]‖xn – p‖ – ‖xn+ – p‖. (.)

Letting n → ∞ in the above inequality, we obtain

lim
n→∞

∥∥(T – I)Axn
∥∥ =  (.)

and

lim
n→∞ g

(∥∥zn – Snzn
∥∥)

= .

By virtue of Lemma . and the property of g , we know that the sequences {zn} and {Snzn}
are bounded and

lim
n→∞

∥∥zn – Snzn
∥∥ = . (.)

It follows from (.) that

‖xn+ – xn‖ =
∥∥( – αn)zn + αnSnzn – xn

∥∥

=
∥
∥(zn – xn) + αn

(
Snzn – zn

)∥∥

≤ ∥∥γ J–
 A∗J(T – I)Axn

∥∥ + αn
∥∥Snzn – zn

∥∥

≤ γ ‖A‖∥∥(T – I)Axn
∥
∥ + αn

∥
∥Snzn – zn

∥
∥. (.)

From (.) and (.) we have that

lim
n→∞‖xn+ – xn‖ = . (.)

Similarly,

‖zn+ – zn‖ =
∥∥xn+ + γ J–

 A∗J(T – I)Axn+ – xn – γ J–
 A∗J(T – I)Axn

∥∥

≤ ‖xn+ – xn‖ +
∥
∥γ J–

 A∗J(T – I)Axn+
∥
∥ +

∥
∥γ J–

 A∗J(T – I)Axn
∥
∥

≤ ‖xn+ – xn‖ + γ ‖A‖∥∥(T – I)Axn+
∥∥ + γ ‖A‖∥∥(T – I)Axn

∥∥. (.)

In view of (.), (.) and (.), we get

lim
n→∞‖zn+ – zn‖ = . (.)

In addition, since

‖xn – zn‖ =
∥∥J(xn – zn)

∥∥ =
∥∥γ A∗J(T – I)Axn

∥∥

≤ γ ‖A‖∥∥(T – I)Axn
∥∥, (.)
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from (.) we obtain

lim
n→∞‖xn – zn‖ = . (.)

Step . We prove that limn→∞ ‖zn – Szn‖ = .
By the assumption that S is an asymptotical nonexpansive mapping and L = supn≥{ln},

it follows from (.) and (.) that

‖zn – Szn‖
≤ ∥∥zn – Snzn

∥∥ +
∥∥Snzn – Szn

∥∥

≤ ∥∥zn – Snzn
∥∥ + L

∥∥Sn–zn – zn
∥∥

≤ ∥
∥zn – Snzn

∥
∥ + L

(∥∥Sn–zn – Sn–zn–
∥
∥ +

∥
∥Sn–zn– – zn–

∥
∥ + ‖zn– – zn‖

)

≤ ∥
∥zn – Snzn

∥
∥ + L(L + )‖zn – zn–‖ + L

∥
∥Sn–zn– – zn–

∥
∥

→  (n → ∞),

i.e.,

lim
n→∞‖zn – Szn‖ = . (.)

Step . We prove that {xn} converges weakly to x∗ ∈ �.
Since E is uniformly convex, it is reflexive. By the boundedness of {xn}, there exists

a subsequence {xni} of {xn} such that xni ⇀ x∗. By virtue of (.), this implies that the
subsequence {zni} of {zn} converges weakly to x∗, too. From (.) we obtain

‖zni – Szni‖ →  (ni → ∞). (.)

S is an asymptotical nonexpansive mapping, it is demiclosed at zero. Hence x∗ ∈ F(S).
On the other hand, since A is a bounded linear operator, we know that {Axni} converges

weakly to Ax∗. From (.) we have

‖Axni – TAxni‖ →  (ni → ∞). (.)

Since T is demiclosed at zero, we have Ax∗ ∈ F(T). This together with x∗ ∈ F(S) shows
that x∗ ∈ �.

Now we prove that {xn} converges weakly to x∗ ∈ �.
In fact, if there exists another subsequence {xnj} of {xn} such that {xnj} converges weakly

to y∗ ∈ �, by virtue of Step  and the assumption that E has the Opial property, we have

lim inf
ni→∞

∥
∥xni – x∗∥∥ < lim inf

ni→∞
∥
∥xni – y∗∥∥ = lim

n→∞
∥
∥xn – y∗∥∥

= lim inf
nj→∞

∥
∥xnj – y∗∥∥ < lim inf

nj→∞
∥
∥xnj – x∗∥∥

= lim
n→∞

∥
∥xn – x∗∥∥ = lim inf

ni→∞
∥
∥xni – x∗∥∥.

This is a contradiction. Therefore {xn} converges weakly to x∗ ∈ �. The proof of conclusion
(I) is completed.
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Next, we prove conclusion (II).
Since limn→∞ ‖zn – Szn‖ =  and S is semi-compact, there exists a subsequence {znk }

of {zn} such that {znk } converges strongly to μ∗ ∈ E. By using (.), we know that the
subsequence {xnk } of {xn} converges strongly to μ∗, too. Due to {xn} converging weakly to
x∗, we have μ∗ = x∗. Since limn→∞ ‖xn – x∗‖ exists and limnk→∞ ‖xnk – x∗‖ = , we know
that {xn} converges strongly to x∗ ∈ �. This completes the proof of conclusion (II). �

4 Application to hierarchical variational inequality problem in Banach spaces
In this section we shall utilize the results presented in Section  to study the hierarchical
variational inequality problem in Banach spaces.

Let E be a strictly convex and real reflexive Banach space and K be a nonempty closed
and convex subset of E. Then, for any x ∈ E, there exists a unique element z ∈ K such that
‖x – z‖ ≤ ‖x – y‖, ∀y ∈ K . Putting z = PK x, we call PK the metric projection of E onto K .

Lemma . [] Let E be a smooth, strictly convex and reflexive Banach space, and K be a
nonempty, closed and convex subset of E. Let x ∈ E and z ∈ K . Then the following conditions
are equivalent:

(i) z = PK x;
(ii) 〈z – y, J(x – z)〉 ≥ , ∀y ∈ K ,

where J is the normalized duality mapping on E.

Definition . Let E be a smooth, strictly convex and reflexive Banach space, and K be a
nonempty, closed and convex subset of E. Let S : K → K be a nonlinear mapping with F(S)
being a nonempty closed and convex subset of K and V : K → K be a nonlinear mapping.
The so-called hierarchical variational inequality problem for a mapping S with respect to
a mapping V in Banach spaces is to find x∗ ∈ F(S) such that

〈
x∗ – x, J

(
Vx∗ – x∗)〉 ≥ , ∀x ∈ F(S). (.)

By Lemma ., the hierarchical variational inequality problem in Banach space (.) is
equivalent to the following fixed point equation:

x∗ = PF(S)V
(
x∗). (.)

Letting C = F(S) and Q = F(PF(S)V ) (the fixed point set of PF(S)V ) and A = I (the identity
mapping on E), then the hierarchical variational inequality problem (.) for a mapping S
with respect to a mapping V in Banach space is equivalent to the following split common
fixed point problem in Banach space:

to find x∗ ∈ C such that x∗ ∈ Q. (.)

Therefore the set of solutions � of hierarchical variational inequality problem (.) is just
the set of solutions of split common fixed point problem (.).

Hence from Theorem . we have the following.

Theorem . Let E be a real uniformly convex and -uniformly smooth Banach space
having the Opial property and the best smoothness constant k satisfying  < k < √

 . Let
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S : E → E be an {ln}-asymptotical nonexpansive mapping with F(S) 	= ∅. Let V : E → E be
a mapping such that the mapping T := PF(S)V is a τ -quasi-strict pseudocontractive map-
ping with F(T) 	= ∅ and T is demiclosed at zero. For each x ∈ E, let {xn} be the sequence
generated by

{
zn = xn + γ (T – I)xn,
xn+ = ( – αn)zn + αnSnzn, ∀n ≥ ,

(.)

where {αn} is a sequence in (, ) with lim infn→∞ αn( – αn) > , γ is a positive constant
satisfying  < γ < min{( – k), ( – τ )}, {ln} is a sequence in [, +∞) with L = supn≥{ln}
and

∑∞
n=(ln – ) < ∞.

(I) If � (the set of solutions of hierarchical variational inequality problem (.)) is
nonempty, then the sequence {xn} converges weakly to a point x∗ ∈ �.

(II) In addition, if � is nonempty and S is semi-compact, then {xn} converges strongly to
a point x∗ ∈ �.

Proof Taking E = E = E, A = I , T = PF (S) ◦ V in Theorem ., and noting that in this case
J = J = J (where J is the normalized duality mapping on E), therefore the conclusion of
Theorem . can be obtained from Theorem . immediately. �

5 A numerical example
Throughout this section we assume that E = E is a real Hilbert space l, B is the unit
ball in l, and D = {x = (x, x, . . . , xn, . . .) ∈ l : xi ∈ R, i = , , . . .} is an orthogonal subspace
of l (i.e., ∀x, y ∈ C, we have 〈x, y〉 = ). Define C := B ∩ D. It is easy to know that C is a
nonempty closed and convex subset of l. Let S : C → C be a mapping defined by

S : (x, x, . . .) → (
, x

 , ax, ax, . . .
)
, (x, x, . . .) ∈ C, (.)

where {ai} is a sequence in (, ) such that
∏∞

i= αi = 
 . Let T : C → C be a mapping defined

by

Tx =

{
(x, x, . . . , xn, . . .) if

∏∞
i= xi < ,

(–x, –x, . . . , –xn, . . .) if
∏∞

i= xi ≥ 
(.)

for each x = (x, x, . . . , xn, . . .) ∈ C. In (.) and (.), we have proved that S : C → C is
{ln}-asymptotically nonexpansive with l = , ln = 

∏n
i= ai, n ≥  and F(S) = {}, while

T : C → C is a τ -quasi-strict pseudocontractive mapping with F(T) = {}. Hence from
Theorem . we can obtain the following.

Theorem . Let E = E = l, C = B ∩ D be the same as above. Let S : C → C be the
{ln}-asymptotically nonexpansive mapping and T : C → C be the τ -quasi-strict pseudo-
contractive mapping defined by (.) and (.), respectively. Let A : C → C be a bounded
linear operator and A∗ be the adjoint of A. For each x ∈ C, let {xn} be the sequence gener-
ated by

{
zn = PC(xn + γ A∗(T – I)Axn),
xn+ = ( – αn)zn + αnSnzn, ∀n ≥ ,

(.)
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where PC is the projection from l onto C, {αn} is a sequence in (, ) with lim infn→∞ αn( –
αn) > , and γ is a positive constant satisfying  < γ < –τ

‖A‖ . If
∑∞

n=(ln – ) < ∞, then the
conclusions of Theorem . hold.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details
1College of Mathematics, Yibin University, Yibin, Sichuan 644007, China. 2Center for General Education, China Medical
University, Taichung, 40402, Taiwan. 3College of Statistics and Mathematics, Yunnan University of Finance and Economics,
Kunming, Yunnan 650221, China.

Acknowledgements
This work was supported by the Scientific Research Fund of Sichuan Provincial Department of Science and Technology
(No. 2015JY0165) and the Scientific Research Project of Yibin University (No. 2013YY06) and the National Natural Science
Foundation of China (No. 11361070).

Received: 14 June 2015 Accepted: 18 September 2015

References
1. Censor, Y, Elfving, T: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8,

221-239 (1994)
2. Byrne, C: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18, 441-453

(2002)
3. Moudafi, A: The split common fixed point problem for demi-contractive mappings. Inverse Probl. 26, 055007 (2010)
4. Zhao, J, Yang, Q: Several solution methods for the split feasibility problem. Inverse Probl. 21(5), 1791-1799 (2005)
5. Qu, B, Xiu, N: A note on the CQ algorithm for the split feasibility problem. Inverse Probl. 21(5), 1655-1665 (2005)
6. Censor, Y, Elfving, T, Kopf, N, Bortfeld, T: The multiple-sets split feasibility problem and its applications. Inverse Probl.

21, 2071-2084 (2005)
7. Xu, H-K: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Probl. 26(10),

105018 (2010)
8. Yang, L, Chang, SS, Cho, YJ, Kim, JK: Multiple-set split feasibility problems for total asymptotically strict

pseudocontractions mappings. Fixed Point Theory Appl. 2011, 77 (2011)
9. Moudafi, A: A note on the split common fixed point problem for quasi-nonexpansive operators. Nonlinear Anal. 74,

4083-4087 (2011)
10. Chang, SS, Cho, YJ, Kim, JK, Zhang, W, Yang, L: Multiple-set split feasibility problems for asymptotically strict

pseudocontractions. Abstr. Appl. Anal. 2012, Article ID 491760 (2012). doi:10.1155/2012/491760
11. Chang, SS, Wang, L, Tang, YK, Yang, L: The split common fixed point problem for total asymptotically strictly

pseudocontractive mappings. J. Appl. Math. 2012, Article ID 385638 (2012). doi:10.1155/2012/385638
12. Quan, J, Chang, SS, Zhang, X: Multiple-set split feasibility problems for k-strictly pseudononspreading mapping in

Hilbert spaces. Abstr. Appl. Anal. 2013, Article ID 342545 (2013). doi:10.1155/2013/342545
13. Kim, JK, Chang, SS, Cho, YJ, Sim, JY: Weak and strong convergence theorems of solution to split feasibility problem for

nonspreading type mapping in Hilbert spaces. Fixed Point Theory Appl. 2014, 11 (2014).
doi:10.1186/1687-1812-2014-11

14. Tang, JF, Chang, SS: Strong convergence theorem of two-step iterative algorithm for split feasibility problems.
J. Inequal. Appl. 2014, 280 (2014)

15. Tang, JF, Chang, SS, Yuan, F: A strong convergence theorem for equilibrium problems and split feasibility problems in
Hilbert space. Fixed Point Theory Appl. 2014, 36 (2014)

16. Zhang, XF, Wang, L, Ma, ZL, Duan, W: The strong convergence theorems for split common fixed point problems of
asymptotically nonexpansive mappings in Hilbert spaces. J. Inequal. Appl. 2015, 1 (2015)

17. Cui, HH, Wang, FH: Iterative methods for the split common fixed point problem in Hilbert spaces. Fixed Point Theory
Appl. 2014, 78 (2014). doi:10.1186/1687-1812-2014-78

18. Takahashi, W: Iterative methods for split feasibility problems and split common null point problems in Banach spaces.
In: The 9th International Conference on Nonlinear Analysis and Convex Analysis, Chiang Rai, Thailand, 21-25 January
(2015)

19. Takahashi, W, Yao, J-C: Strong convergence theorems by hybrid methods for the split common null point problem in
Banach spaces. Fixed Point Theory Appl. 2015, 87 (2015)

20. Goebel, K, Kirk, WA: A fixed point theorem for asymptotically nonexpansive mappings. Proc. Am. Math. Soc. 35,
171-174 (1972)

21. Takahashi, W: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)

http://dx.doi.org/10.1155/2012/491760
http://dx.doi.org/10.1155/2012/385638
http://dx.doi.org/10.1155/2013/342545
http://dx.doi.org/10.1186/1687-1812-2014-11
http://dx.doi.org/10.1186/1687-1812-2014-78

	On the split common ﬁxed point problem for strict pseudocontractive and asymptotically nonexpansive mappings in Banach spaces
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Main results
	Application to hierarchical variational inequality problem in Banach spaces
	A numerical example
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


