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Abstract
Using inequality techniques and fixed point theories, several new and more general
existence and multiplicity results are derived in terms of different values of λ > 0 and
μ > 0 for a fourth order impulsive integral boundary value problem with
one-dimensionalm-Laplacian and deviating arguments. We discuss our problems
under two cases when the deviating arguments are delayed and advanced. Moreover,
the nonexistence of a positive solution is also studied. In this paper, our results cover
fourth order boundary value problems without deviating arguments and impulsive
effect and are compared with some recent results by Jankowski.
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1 Introduction
Functional differential equations with impulse effect occur in many applications, such as
population dynamics, biology, biotechnology, industrial robotic, pharmacokinetics, opti-
mal control, etc., and can be expressed by functional differential equations with impulses,
see [–]. Functional differential equations with impulses are characterized by sudden
changing of their state and by the fact that the processes under consideration depend on
their prehistory at each moment of time. Therefore, the study of impulsive functional dif-
ferential equations has gained prominence and it is a rapidly growing field, see Zhang and
Feng [], Nieto and Rodríguez-López [], Yan and Shen [], Li and Shen [], Yang and
Shen [], YS Liu [], YJ Liu [], He and Yu [] and Ding et al. [] and the references
therein. We note that the difficulties dealing with such problems are that they have deviat-
ing arguments and their states are discontinuous. Therefore, the results of impulsive func-
tional differential equations, especially for higher order impulsive functional differential
equations, are fewer than those of differential equations without impulses and deviating
arguments.

Moreover, owing to its importance in modeling the stationary states of the deflection
of an elastic beam, fourth order boundary value problems have attracted much attention
from many authors; for example, see Sun and Wang [], Yao [], O’Regan [], Yang [],
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Zhang [], Gupta [], Agarwal [], Bonanno and Bella [] and Han and Xu []. In
particular, we would like to mention some results of Zhang and Liu [] and Feng []. In
[], Zhang and Liu studied the following fourth order four-point boundary value problem
without impulsive effect:

⎧
⎪⎨

⎪⎩

(φp(x′′(t)))′′ = w(t)f (t, x(t)), t ∈ [, ],
x() = , x() = ax(ξ ),
x′′() = , x′′() = bx′′(η),

where  < ξ ,η < ,  ≤ a < b < . By using the upper and lower solution method, fixed
point theorems and the properties of Green’s function G(t, s) and H(t, s), the authors give
sufficient conditions for the existence of one positive solution.

Recently, Feng [] studied a fourth order boundary value problem with impulses and
integral boundary conditions

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(φp(y′′(t)))′′ = f (t, y(t)), t ∈ J , t �= tk , k = , , . . . , n,
�y′|t=tk = –Ik(y(tk)), k = , , . . . , n,
y() = y() =

∫ 
 g(s)y(s) ds,

φp(y′′()) = φp(y′′()) =
∫ 

 h(s)φp(y′′(s)) ds.

Using a suitably constructed cone and fixed point theory for cones, the existence of mul-
tiple positive solutions was established. Furthermore, upper and lower bounds for these
positive solutions were given.

However, to the best of our knowledge, no paper has considered the existence, multi-
plicity and nonexistence of positive solutions for fourth order impulsive differential equa-
tions with one-dimensional m-Laplacian, multiple parameters and deviating arguments
till now; for example, see [–] and the references therein.

In this paper, we investigate a fourth order impulsive integral boundary value problem
with one-dimensional m-Laplacian and deviating arguments

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(φm(y′′(t)))′′ = λω(t)f (t, y(α(t))), t ∈ J , t �= tk , k = , , . . . , n,
�y′|t=tk = –μIk(tk , y(tk)), k = , , . . . , n,
ay() – by′() =

∫ 
 g(s)y(s) ds,

ay() + by′() =
∫ 

 g(s)y(s) ds,
φp(y′′()) = φp(y′′()) =

∫ 
 h(t)φp(y′′(t)) dt,

(.)

where λ >  and μ >  are two parameters, a, b > , J = [, ], φm(s) is an m-Laplace op-
erator, i.e., φm(s) = |s|m–s, m > , (φm)– = φm∗ , 

m + 
m∗ = , tk (k = , , . . . , n) (where n is

a fixed positive integer) are fixed points with  = t < t < t < · · · < tk < · · · < tn < tn+ = ,
�y′|t=tk = y′(t+

k ) – x′(t–
k ), where y′(t+

k ) and y′(t–
k ) represent the right-hand limit and the left-

hand limit of y′(t) at t = tk , respectively. In addition, ω, f , Ik , g and h satisfy

(H) ω ∈ Lp[, ] for some  ≤ p ≤ +∞, and there exists η >  such that ω(t) ≥ η a.e. on J ;
(H) f : J × R+ → R+ is continuous with f (t, y) >  for all t ∈ J and y > ,α ∈ C(J , J) with

R+ = [, +∞);
(H) Ik : J × R+ → R+ is continuous with Ik(t, y) >  (k = , , . . . , n) for all t and y > ;
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(H) g, h ∈ L[, ] are nonnegative and ξ ∈ [, a), ν ∈ [, ), where

ξ =
∫ 


g(t) dt, ν =

∫ 


h(t) dt. (.)

Some special cases of (.) have been investigated. For example, Jankowski [] consid-
ered problem (.) with λ = , Ik =  and ω ∈ C[, ], not ω ∈ Lp[, ] for some  ≤ p ≤ +∞.
By using a fixed point theorem for cones due to Avery and Peterson, the author proved
the existence results of positive solutions for problem (.).

Motivated by the results mentioned above, in this paper we study the existence, multi-
plicity and nonexistence of positive solutions for problem (.) by using different meth-
ods from that of the proof of Theorem . and Theorem . in [] to overcome difficul-
ties arising from the appearances of α(t) �≡ t and ω(t) is Lp-integrable. The arguments are
based upon a fixed point theorem due to Krasnoselskii which deals with fixed points of a
cone-preserving operator defined on an ordered Banach space.

The organization of this paper is as follows. In Section , we present the expression
and properties of Green’s function associated with problem (.). In Section , we present
some definitions and lemmas which are needed throughout this paper. In Section , we
use a fixed point theorem to obtain the existence, multiplicity and nonexistence of positive
solutions for problem (.) with advanced argument α. In Section , we formulate sufficient
conditions under which delayed problem (.) has positive solutions. In particular, our
results in these sections are new when α(t) ≡ t on t ∈ J . Finally, in Section , we offer
some remarks and comments of the associated problem (.).

2 Expression and properties of Green’s function
We shall reduce problem (.) to an integral equation. To this goal, firstly by means of the
transformation

φm
(
y′′(t)

)
= –x(t), (.)

we convert problem (.) into

{
x′′(t) + λω(t)f (t, y(α(t))) = , t ∈ J ,
x() = x() =

∫ 
 h(t)x(t) dt

(.)

and

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y′′(t) = –φm∗ (x(t)), t ∈ J , t �= tk ,
�y′|t=tk = –μIk(tk , y(tk)), k = , , . . . , n,
ay() – by′() =

∫ 
 g(s)y(s) ds,

ay() + by′() =
∫ 

 g(s)y(s) ds.

(.)

Theorem . If (H), (H) and (H) hold, then problem (.) has a unique solution x given
by

x(t) = λ

∫ 


H(t, s)ω(s)f

(
s, y

(
α(s)

))
ds, (.)
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where

H(t, s) = G(t, s) +


 – ν

∫ 


G(s, τ )h(τ ) dτ , (.)

G(t, s) =

{
t( – s),  ≤ t ≤ s ≤ ,
s( – t),  ≤ s ≤ t ≤ .

(.)

Proof The proof of Theorem . is similar to that of Lemma . in []. �

Write e(t) = t( – t). Then from (.) and (.) we can prove that H(t, s) and G(t, s) have
the following properties.

Theorem . Let G and H be given as in Theorem .. If (H) holds, then

H(t, s) > , G(t, s) > , ∀t, s ∈ (, ), (.)

H(t, s) ≥ , G(t, s) ≥ , ∀t, s ∈ J , (.)

e(t)e(s) ≤ G(t, s) ≤ G(t, t) = t( – t) = e(t) ≤ ē = max
t∈J

e(t) =



, ∀t, s ∈ J , (.)

ρe(s) ≤ H(t, s) ≤ γ s( – s) = γ e(s) ≤ 


γ , ∀t, s ∈ J , (.)

where

γ =


 – ν
, ρ =

∫ 
 e(τ )h(τ ) dτ

 – ν
. (.)

Theorem . If (H), (H) and (H) hold, then problem (.) has a unique solution y ex-
pressed in the form

y(t) =
∫ 


H(t, s)φm∗

(
x(s)

)
ds + μ

n∑

k=

H(t, tk)Ik
(
tk , y(tk)

)
, (.)

where

H(t, s) = G(t, s) +


a – ξ

∫ 


G(s, τ )g(τ ) dτ , (.)

G(t, s) =

d

{
(b + as)(b + a( – t)), if  ≤ s ≤ t ≤ ,
(b + at)(b + a( – s)), if  ≤ t ≤ s ≤ 

(.)

and

d = a(b + a).

Proof The proof of Theorem . is similar to that of Lemma . in []. �

From (.) and (.) we can prove that H(t, s) and G(t, s) have the following proper-
ties.
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Theorem . Let ζ ∈ (, t), G and H be given as in Theorem .. If (H) holds, then we
have


d

b ≤ G(t, s) ≤ G(s, s) ≤ 
d

(b + a), ∀t, s ∈ J , (.)

ρ ≤ H(t, s) ≤ a
a – ξ

G(s, s) ≤ ρ, ∀t, s ∈ J , (.)

G(t, s) ≥ δG(s, s) ≥ bδ

d
, H(t, s) ≥ δa

a – ξ
G(s, s) ≥ δρ, ∀t ∈ [ζ , ], s ∈ J , (.)

where

δ =
b

a + b
, ρ =

bγ

a + b
, ρ =

γ(b + a)

a + b
, γ =


a – ξ

. (.)

Proof It follows from the definition of G(t, s) and H(t, s) that (.) and (.) hold. Now,
we show that (.) also holds.

In fact, for t ∈ [ζ , ] and s ∈ J , we have that

G(t, s)
G(s, s)

=
b + a( – t)
b + a( – s)

≥ b
b + a

for s ≤ t,

G(t, s)
G(s, s)

=
b + at
b + as

≥ b + aζ

b + a
for t ≤ s.

This and (.) show that

H(t, s) ≥ δG(s, s)
[

 +


a – ξ

∫ 


g(τ ) dτ

]

≥ aδ

a – ξ
G(s, s), t ∈ [ζ , ], s ∈ J .

This together with (.) and (.) finishes the proof of (.). �

From Theorem . and Theorem ., we have the following result.

Theorem . Assume that (H)-(H) hold. Then problem (.) has a unique solution y
given by

y(t) =
∫ 


H(t, s)φm∗

(

λ

∫ 


H(s, τ )ω(τ )f

(
τ , y

(
α(τ )

))
dτ

)

ds

+ μ

n∑

k=

H(t, tk)Ik
(
tk , y(tk)

)
.

3 Preliminaries for the case α(t) ≥ t on J
We begin by introducing the notations

f  = lim sup
y→+

max
t∈J

f (t, y)
φm(y)

, f ∞ = lim sup
y→∞

max
t∈J

f (t, y)
φm(y)

,

f = lim inf
y→+

min
t∈J

f (t, y)
φm(y)

, f∞ = lim inf
y→∞ min

t∈J

f (t, y)
φm(y)

,
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I(k) = lim sup
y→+

max
t∈J

Ik(t, y)
y

, I∞(k) = lim sup
y→∞

max
t∈J

Ik(t, y)
y

,

I(k) = lim inf
y→+

min
t∈J

Ik(t, y)
y

, I∞(k) = lim inf
y→∞ min

t∈J

Ik(t, y)
y

, k = , , . . . , n.

We will also need the functions

f ∗(u) = max
{

max
t∈J

f (t, y), y ∈ [, u]
}

, I∗
k (u) = max

{
max

t∈J
Ik(t, y), y ∈ [, u]

}
,

and let

f ∗
 = lim

u→+

f ∗(u)
φm(u)

, f ∗
∞ = lim

u→∞
f ∗(u)
φm(u)

,

I∗
(k) = lim

u→+

I∗
k (u)
u

, I∗
∞(k) = lim

u→∞
I∗

k (u)
u

,

where k = , , . . . , n.
Our first lemma gives some relationships between the functions f and f ∗ and I∗

k and Ik .

Lemma . (See []) Assume that (H) holds. Then

f ∗
 = f , f ∗

∞ = f ∞, I∗
(k) = I(k), I∗

∞(k) = I∞(k),

where k = , , . . . , n.

Proof The proof of Lemma . is similar to that of Lemma . in []. �

The following fixed point theorem of a cone is crucial in the proofs of our results.

Lemma . (See []) Let P be a cone in a real Banach space E. Assume that � and �

are bounded open sets in E with  ∈ �, �̄ ⊂ �. If

A : P ∩ (�̄\�) → P

is completely continuous such that either
(i) ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂� and ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂�, or

(ii) ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂� and ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂�,
then A has at least one fixed point in P ∩ (�̄\�).

Let J ′ = J\{t, t, . . . , tm}, and

PC[, ] =
{

y ∈ C[, ] : y′|(tk ,tk+) ∈ C(tk , tk+), y′(t–
k
)
, y′(t+

k
)

exist, k = , , . . . , m
}

.

Then PC[, ] is a real Banach space with the norm

‖y‖PC = max
{‖y‖∞,

∥
∥y′∥∥∞

}
, (.)

where ‖y‖∞ = supt∈J |y(t)|, ‖y′‖∞ = supt∈J |y′(t)|.
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A function y ∈ PC[, ] ∩ C(J ′) with ϕp(y′′) ∈ C(, ) is called a solution of problem
(.) if it satisfies (.).

Define a cone in PC[, ] by

K =
{

y ∈ PC[, ] : y(t) ≥  on J and min
t∈[ζ ,]

y(t) ≥ δ
ρ

ρ
‖y‖PC

}

, (.)

where δ, ρ and ρ are defined in (.) and (.), respectively. For r > , let

�r =
{

y ∈ K : ‖y‖PC < r
}

. (.)

Define an operator Tμ
λ : K → PC[, ] by

(
Tμ

λ y
)
(t) =

∫ 


H(t, s)φm∗

(

λ

∫ 


H(s, τ )ω(τ )f

(
τ , y

(
α(τ )

))
dτ

)

ds

+ μ

n∑

k=

H(t, tk)Ik
(
tk , y(tk)

)
. (.)

It follows from (.) and Theorem . that the following lemma holds.

Lemma . Assume that (H)-(H) hold. Then y ∈ K is a positive fixed point of Tμ
λ if and

only if y is a positive solution of problem (.).

Lemma . Suppose that (H)-(H) hold. Then Tμ
λ (K) ⊂ K and Tμ

λ : K → K is completely
continuous.

Proof For all u ∈ K , then Tλu ≥  on J and it follows from (.) and (.) that

(
Tμ

λ y
)
(t) =

∫ 


H(t, s)φm∗

(

λ

∫ 


H(s, τ )ω(τ )f

(
τ , y

(
α(τ )

))
dτ

)

ds

+ μ

n∑

k=

H(t, tk)Ik
(
tk , y(tk)

)

≤ ρ

(∫ 


φm∗

(

λ

∫ 


H(s, τ )ω(τ )f

(
τ , y

(
α(τ )

))
dτ

)

ds + μ

n∑

k=

Ik
(
tk , y(tk)

)
)

,

t ∈ J , (.)

∣
∣
(
Tμ

λ y
)′(t)

∣
∣ ≤

∫ 



∣
∣H ′

t(t, s)
∣
∣φm∗

(

λ

∫ 


H(s, τ )ω(τ )f

(
τ , y(τ )

)
dτ

)

ds

+ μ

m∑

k=

∣
∣H ′

t(t, tk)
∣
∣Ik

(
tk , y(tk)

)

≤ ρ

(∫ 


φm∗

(

λ

∫ 


H(s, τ )ω(τ )f

(
τ , y

(
α(τ )

))
dτ

)

ds + μ

n∑

k=

Ik
(
tk , y(tk)

)
)

,

t ∈ J , (.)
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where ρ = 
d a(a + b),

H ′
t(t, s) = G′

t(t, s) =

d

{
–a(b + as), if  ≤ s ≤ t ≤ ,
a(b + a( – s)), if  ≤ t ≤ s ≤ 

and

max
t,s∈J ,t �=s

∣
∣H ′

t(t, s)
∣
∣ = max

t,s∈J ,t �=s

∣
∣G′

t(t, s)
∣
∣ =


d

a(b + a).

It follows from (.) and (.) that

∥
∥Tμ

λ y
∥
∥

PC ≤ ρ

(∫ 


φm∗

(

λ

∫ 


H(s, τ )ω(τ )f

(
τ , y

(
α(τ )

))
dτ

)

ds

+ μ

n∑

k=

Ik
(
tk , y(tk)

)
)

, (.)

where

ρ = max{ρ,ρ}. (.)

Noticing (.), (.) and (.), we have

min
t∈[ζ ,]

(
Tμ

λ y
)
(t)

= min
t∈[ζ ,]

(∫ 


H(t, s)φm∗

(

λ

∫ 


H(s, τ )ω(τ )f

(
τ , y

(
α(τ )

))
dτ

)

ds

+ μ

n∑

k=

H(t, tk)Ik
(
tk , y(tk)

)
)

≥ δρ

(∫ 


φm∗

(

λ

∫ 


H(s, τ )ω(τ )f

(
τ , y

(
α(τ )

))
dτ

)

ds + μ

n∑

k=

Ik
(
tk , y(tk)

)
)

= δ
ρ

ρ
ρ

(∫ 


φm∗

(

λ

∫ 


H(s, τ )ω(τ )f

(
τ , y

(
α(τ )

))
dτ

)

ds + μ

n∑

k=

Ik
(
tk , y(tk)

)
)

≥ δ
ρ

ρ

∥
∥Tμ

λ y
∥
∥

PC .

Thus, Tμ
λ (K) ⊂ K .

Finally, similar to the proof of Lemma . in [], one can prove that Tμ
λ : K → K is

completely continuous. This gives the proof of Lemma .. �

To obtain some of the norm inequalities in Lemma . and Lemma ., we employ
Hölder’s inequality.

Lemma . (Hölder) Let f ∈ Lp[a, b] with p > , g ∈ Lq[a, b] with q > , and 
p + 

q = . Then
fg ∈ L[a, b] and

‖fg‖ ≤ ‖f ‖p‖g‖q.
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Let f ∈ L[a, b], g ∈ L∞[a, b]. Then fg ∈ L[a, b] and

‖fg‖ ≤ ‖f ‖‖g‖∞.

Next, we consider the following cases for ω ∈ Lp[, ]: p > , p = , p = ∞. Case p >  is
treated in Lemma . and Lemma ..

Lemma . Assume that (H)-(H) hold, α(t) ≥ t on J and let r >  be given. If there exist
ε >  and ε >  such that f ∗(r) ≤ εφm(r) and I∗

k (r) ≤ εr (k = , , . . . , n), then

∥
∥Tμ

λ y
∥
∥

PC ≤ ρ
(
φm∗

(
λγ ε‖e‖q‖ω‖p

)
+ μnε

)‖y‖PC , y ∈ ∂�r . (.)

Proof By the definition of f ∗(r) and I∗
k , if f ∗(r) ≤ εφm(r) and I∗

k (r) ≤ εr (k = , , . . . , n),
then

f (t, y) ≤ εφm(r), Ik(t, y) ≤ εr for t ∈ J and  ≤ y ≤ r.

Since  ≤ t ≤ α(t) ≤  on J , it follows from  ≤ y(t) ≤ r on J that  ≤ y(α(t)) ≤ r.
Therefore, we have f (t, y(α(t))) ≤ εφm(r) for t ∈ J , and it follows from (.) that

∥
∥Tμ

λ y
∥
∥

PC ≤ ρ

(∫ 


φm∗

(

λ

∫ 


H(s, τ )ω(τ )f

(
τ , y

(
α(τ )

))
dτ

)

ds + μ

n∑

k=

Ik
(
tk , y(tk)

)
)

≤ ρ

(

φm∗
(

λ

∫ 


γ e(τ )ω(τ )f

(
τ , y

(
α(τ )

))
dτ

)

+ μ

n∑

k=

Ik
(
tk , y(tk)

)
)

≤ ρ

(

φm∗
(

λγ

∫ 


e(τ )ω(τ )εφm(r) dτ

)

+ μ

n∑

k=

εr

)

= ρ

(

φm∗
(

λγ εφm(r)
∫ 


e(τ )ω(τ ) dτ

)

+ μ

n∑

k=

εr

)

≤ ρ
(
φm∗

(
λγ εφm(r)‖e‖q‖ω‖p

)
+ μnεr

)

= ρ
(
φm∗

(
λγ ε‖e‖q‖ω‖p

)
+ μnεr

)‖y‖PC , ∀y ∈ ∂�r .

This completes the proof. �

The following result deals with the case p = .

Corollary . Assume that (H)-(H) hold, α(t) ≥ t on J and let r >  be given. If there
exist ε >  and ε >  such that f ∗(r) ≤ εφm(r) and I∗

k (r) ≤ εr (k = , , . . . , n), then

∥
∥Tμ

λ y
∥
∥

PC ≤ ρ
(
φm∗

(
λγ ε‖e‖∞‖ω‖

)
+ μnεr

)‖y‖PC , y ∈ ∂�r .

Proof By Lemma ., let ‖e‖∞‖ω‖ replace ‖e‖q‖ω‖p and repeat the argument above. �

Finally we consider the case of p = ∞.
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Corollary . Assume that (H)-(H) hold, α(t) ≥ t on J and let r >  be given. If there
exist ε >  and ε >  such that f ∗(r) ≤ εφm(r) and I∗

k (r) ≤ εr (k = , , . . . , n), then

∥
∥Tμ

λ y
∥
∥

PC ≤ ρ
(
φm∗

(
λγ ε‖e‖‖ω‖∞

)
+ μnεr

)‖y‖PC , y ∈ ∂�r .

Proof By Lemma ., let ‖e‖‖ω‖∞ replace ‖e‖q‖ω‖p and repeat the argument above. �

Lemma . Assume that (H)-(H) hold, α(t) ≥ t on J and let l >  and l be given. If
f (t, y) ≥ lφm(y) and Ik(t, y) ≥ ly (k = , , . . . , n) for t ∈ J and y ∈ K , then

∥
∥Tμ

λ y
∥
∥

PC ≥ δ
ρ


ρ

(
(lλρη)m∗–β + μnl

)‖y‖PC , (.)

where β = φm∗ (
∫ 
ζ

e(τ ) dτ ).

Proof By the definition of K , if y ∈ K , then we have

y(t) ≥  on J and min
t∈[ζ ,]

y(t) ≥ δ
ρ

ρ
‖y‖PC .

Since  ≤ t ≤ α(t) ≤  on J , it follows from y(t) ≥  on J that y(α(t)) ≥ .
Similarly, since ζ ≤ t ≤ α(t) ≤  on [ζ , ], it follows from mint∈[ζ ,] y(t) ≥ δ

ρ
ρ

‖y‖PC that

min
t∈[ζ ,]

y
(
α(t)

) ≥ δ
ρ

ρ
‖y‖PC .

Therefore, f (t, y(α(t))) ≥ lφm(y) for t ∈ J , and it follows from the definition of Tμ
λ and

(.) that

∥
∥Tμ

λ y
∥
∥

PC ≥ ρφm∗
(

λ

∫ 


ρe(τ )ω(τ )f

(
τ , y

(
α(τ )

))
dτ

)

+ μρ

n∑

k=

Ik
(
tk , y(tk)

)

≥ ρ(λρη)m∗–φm∗
(∫ 


e(τ )f

(
τ , y

(
α(τ )

))
dτ

)

+ μρ

n∑

k=

Ik
(
tk , y(tk)

)

≥ ρ(λρη)m∗–φm∗
(∫ 


e(τ )lφm

(
y
(
α(τ )

))
dτ

)

+ μρ

n∑

k=

ly(tk)

≥ ρ(lλρη)m∗–φm∗
(∫ 

ζ

e(τ )φm
(
y
(
α(τ )

))
dτ

)

+ μρl

n∑

k=

y(tk)

≥ ρ(lλρη)m∗–φm∗
(∫ 

ζ

e(τ )φm

(

δ
ρ

ρ
‖y‖PC

)

dτ

)

+ μρl

n∑

k=

δ
ρ

ρ
‖y‖PC

= δ
ρ


ρ

(
(lλρη)m∗–β + μnl

)‖y‖PC .

This completes the proof. �

Lemma . Assume that (H)-(H) hold and α(t) ≥ t on J . If y ∈ ∂�r , r > , then

∥
∥Tμ

λ y
∥
∥

PC ≤ ρ
(
φm∗

(
λγ Mr‖e‖q‖ω‖p

)
+ μnM∗), (.)
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where

Mr = max
t∈J ,≤y≤r

{
f (t, y)

}
> , M∗ = max

{
M∗

k , k = , , . . . , n
}

> ,

M∗
k = max

t∈J ,≤y≤r

{
Ik(t, y)

}
, k = , , . . . , n.

Proof If y ∈ ∂�r , then  ≤ y(t) ≤ r for t ∈ J .
Since  ≤ t ≤ α(t) ≤  on J , it follows from  ≤ y ≤ r that

 ≤ y
(
α(t)

) ≤ r.

Therefore, from f (t, y) ≤ Mr for t ∈ J and y ∈ ∂�r , we have

f
(
t, y

(
α(t)

)) ≤ Mr .

So, for y ∈ ∂�r , we have

∥
∥Tμ

λ y
∥
∥

PC ≤ ρ

(∫ 


φm∗

(

λ

∫ 


H(s, τ )ω(τ )f

(
τ , y

(
α(τ )

))
dτ

)

ds + μ

n∑

k=

Ik
(
tk , y(tk)

)
)

≤ ρ

(

φm∗
(

λ

∫ 


γ e(τ )ω(τ )f

(
τ , y

(
α(τ )

))
dτ

)

+ μ

n∑

k=

Ik
(
tk , y(tk)

)
)

≤ ρ

(

φm∗
(

λγ

∫ 


e(τ )ω(τ )Mr dτ

)

+ μ

n∑

k=

M∗
)

= ρ

(

φm∗
(

λγ Mr

∫ 


e(τ )ω(τ ) dτ

)

+ μnM∗
)

≤ ρ
(
φm∗

(
λγ Mr‖e‖q‖ω‖p

)
+ μnM∗).

This gives the proof. �

Corollary . When p = , assume that (H)-(H) hold and α(t) ≥ t on J . If y ∈ ∂�r , r > ,
then

∥
∥Tμ

λ y
∥
∥

PC ≤ ρ
(
φm∗

(
λγ Mr‖e‖∞‖ω‖

)
+ μnM∗).

Proof By Lemma ., let ‖e‖∞‖ω‖ replace ‖e‖q‖ω‖p and repeat the argument above. �

Corollary . When p = ∞, assume that (H)-(H) hold and α(t) ≥ t on J . If y ∈ ∂�r ,
r > , then

∥
∥Tμ

λ y
∥
∥

PC ≤ ρ
(
φm∗

(
λγ Mr‖e‖‖ω‖∞

)
+ μnM∗).

Proof By Lemma ., let ‖e‖‖ω∞‖ replace ‖e‖q‖ωp‖ and repeat the argument above. �

Lemma . Assume that (H)-(H) hold and α(t) ≥ t on J . If y ∈ ∂�r , r > , then

∥
∥Tμ

λ y
∥
∥

PC ≥ ρ(σrλρη)m∗–β + μρnσ ∗
r , (.)
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where

σr = min
t∈J ,≤y≤r

{
f (t, y)

}
> , σ ∗ = min{mk , k = , , . . . , n} > ,

σk = min
t∈J ,≤y≤r

{
Ik(t, y)

}
, k = , , . . . , n.

Proof If y ∈ ∂�r , then  ≤ y(t) ≤ r for t ∈ J .
Since  ≤ t ≤ α(t) ≤  on J , it follows from  ≤ y(t) ≤ r for t ∈ J that

 ≤ y
(
α(t)

) ≤ r.

Therefore, from f (t, y) ≥ σr for t ∈ J and  ≤ y ≤ r, we have

f
(
t, y

(
α(t)

)) ≥ σr .

So, for y ∈ ∂�r , we have

∥
∥Tμ

λ y
∥
∥

PC ≥ ρφm∗
(

λ

∫ 


ρe(τ )ω(τ )f

(
τ , y

(
α(τ )

))
dτ

)

+ μρ

n∑

k=

Ik
(
tk , y(tk)

)

≥ ρ(λρη)m∗–φm∗
(∫ 


e(τ )f

(
τ , y

(
α(τ )

))
dτ

)

+ μρ

n∑

k=

Ik
(
tk , y(tk)

)

≥ ρ(λρη)m∗–φm∗
(∫ 


e(τ )σr dτ

)

+ μρ

n∑

k=

σ ∗
r

≥ ρ(σrλρη)m∗–φm∗
(∫ 

ζ

e(τ ) dτ

)

+ μρnσ ∗
r

= ρ(σrλρη)m∗–β + μρnσ ∗
r .

This finishes the proof. �

4 Main results for the case α(t) ≥ t on J
In this section, we apply Lemma . to establish the existence, multiplicity and nonex-
istence of positive solutions for problem (.). We consider the following three cases for
ω ∈ Lp[, ]: p > , p =  and p = ∞. Case p >  is treated in the following theorem.

Theorem . Assume that (H)-(H) hold and α(t) ≥ t on J . Then:
(a) If f  =  and I(k) =  or f ∞ =  and I∞(k) = , then there exist λ >  and μ > 

such that problem (.) has a positive solution for λ > λ and μ > μ.
(b) If f = ∞ and I(k) = ∞ or f∞ = ∞ and I∞(k) = ∞, then there exist λ >  and μ > 

such that problem (.) has a positive solution for  < λ < λ and  < μ < μ.
(c) If f  = f ∞ =  and I(k) = I∞(k) = , then there exist λ >  and μ >  such that

problem (.) has at least two positive solutions for λ > λ and μ > μ.
(d) If f = f∞ = ∞ and I∞(k) = I∞(k) = ∞, then there exist λ >  and μ >  such that

problem (.) has at least two positive solutions for  < λ < λ and  < μ < μ.
(e) If f  < ∞, I(k) < ∞, f ∞ < ∞ and I∞ < ∞, then there exist λ >  and μ >  such

that problem (.) has no positive solution for  < λ < λ and  < μ < μ.



Feng and Qiu Journal of Inequalities and Applications  (2015) 2015:64 Page 13 of 22

(f ) If f > , I(k) > , I∞ >  and f∞ > , then there exist λ >  and μ >  such that
problem (.) has no positive solution for λ > λ and μ > .

Proof Part (a). Choose a number r > . By Lemma ., we have ‖Tμ
λ y‖PC > ‖y‖PC for

y ∈ ∂�r , λ > λ and μ > μ, where

λ =
(


ρβ

r

)m–

(σrρη)– > , μ =


ρnσ ∗
r

r > .

If f  =  and I(k) = , then from Lemma . we have f ∗
 =  and I∗

(k) = , and so we can
choose r ∈ (, r) so that f ∗(r) ≤ εr and I∗

k (r) ≤ εr, where ε >  and ε >  respec-
tively satisfy

ρφm∗
(
λγ ε‖e‖q‖ω‖p

)
< , ρμnε < . (.)

Then Lemma . shows that

∥
∥Tμ

λ y
∥
∥

PC ≤ ρ
(
φm∗

(
λγ ε‖e‖q‖ω‖p

)
+ μnε

)‖y‖PC < ‖y‖PC for y ∈ ∂�r .

If f ∞ =  and I∞(k) = , then from Lemma ., f ∗∞ =  and I∗∞(k) = . Hence, there exists
r ∈ (r,∞) such that f ∗(r) ≤ εr and I∗

k (r) ≤ εr, where ε >  and ε >  satisfies (.).
Thus

∥
∥Tμ

λ y
∥
∥

PC ≤ ρ
(
φm∗

(
λγ ε‖e‖q‖ω‖p

)
+ μnε

)‖y‖PC < ‖y‖PC for y ∈ ∂�r .

Therefore, it follows from Lemma . that Tμ
λ has a fixed point in �̄r\�r or �̄r\�r ,

according to whether f  =  and I(k) =  or f ∞ =  and I∞(k) = , respectively. Conse-
quently, problem (.) has a positive solution for λ > λ and μ > μ.

Part (b). Choose a number r > . By Lemma ., there exists λ >  such that

∥
∥Tμ

λ y
∥
∥

PC < ‖y‖PC for y ∈ ∂�r ,  < λ < λ and  < μ < μ,

where

λ =
(


ρ

)m–(
γ Mr‖e‖q‖ω‖p

)–, μ =


ρnM∗ .

If f = ∞ and I(k) = ∞, there exists r ∈ (, r) such that f (t, y) ≥ lφm(y) and Ik(t, y) ≥ ly
for t ∈ J and  ≤ y ≤ r, where l >  and l >  are chosen so that

δ
ρ


ρ

(lλρη)m∗–β > , δ
ρ


ρ

μnl > . (.)

Obviously,

f (t, y) ≥ lφm(y), Ik(t, y) ≥ ly (k = , , . . . , n) for y ∈ ∂�r and t ∈ J .
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Then, from Lemma ., we can obtain

∥
∥Tμ

λ y
∥
∥

PC ≥ δ
ρ


ρ

(
(lλρη)m∗–β + μnl

)‖y‖PC > ‖y‖PC for y ∈ ∂�r .

If f∞ = ∞ and I∞(k) = ∞, then there exists N̂ >  such that f (t, y) ≥ lφm(y), Ik(t, y) ≥ ly
(k = , , . . . , n) for t ∈ J and y ≥ N̂ , and l >  and l >  satisfy (.).

Let r = max{r, N̂ρ/δρ}. If y ∈ ∂�r , then

min
t∈[ζ ,]

y(t) ≥ δρ

ρ
‖y‖PC ≥ N̂ .

So,

f (t, y) ≥ lφm(y), Ik(t, y) ≥ ly (k = , , . . . , n) for t ∈ J and y ∈ ∂�r .

From Lemma ., we can get

∥
∥Tμ

λ y
∥
∥

PC ≥ δ
ρ


ρ

(
(lλρη)m∗–β + μnl

)‖y‖PC > ‖y‖PC for y ∈ ∂�r .

Therefore, it follows from Lemma . that Tμ
λ has a fixed point in �̄r\�r or �̄r\�r ,

according to whether f = ∞ and I(k) = ∞ or f∞ = ∞ and I∞(k) = ∞, respectively. Con-
sequently, problem (.) has a positive solution for  < λ < λ and  < μ < μ.

Part (c). Choose two numbers  < r < r. By Lemma ., there exist λ >  and μ > 
such that

∥
∥Tμ

λ y
∥
∥

PC > ‖y‖PC for y ∈ ∂�ri , i = , .

Since f  = f ∞ =  and I(k) = I∞(k) = , from the proof of part (a), it follows that we can
choose r ∈ (, r/) and r ∈ (r,∞) such that

∥
∥Tμ

λ y
∥
∥

PC < ‖y‖PC for y ∈ ∂�ri , i = , .

It follows from Lemma . that Tμ
λ has two fixed points y and y such that y ∈ �̄r\�r

and y ∈ �̄r\�r . These are the desired distinct positive solutions of problem (.) for
λ > λ and μ > μ satisfying

r ≤ ‖y‖PC ≤ r < r ≤ ‖y‖PC ≤ r. (.)

Part (d). Choose two numbers  < r < r. By Lemma ., there exist λ >  and μ > 
such that

∥
∥Tμ

λ y
∥
∥

PC < ‖y‖PC for  < λ < λ,  < μ < μ and y ∈ ∂�ri , i = , .

Since f = ∞ and f∞ = ∞ and I∞(k) = I∞(k) = ∞, from the proof of part (b), we know that
we can choose r ∈ (, r/) and r ∈ (r,∞) such that

∥
∥Tμ

λ y
∥
∥

PC > ‖y‖PC for y ∈ ∂�ri , i = , .
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It follows from Lemma . that Tμ
λ has two fixed points y and y such that y ∈ �̄r\�r

and y ∈ �̄r\�r . These are the desired distinct positive solutions of problem (.) for
 < λ < λ and  < μ < μ satisfying (.).

Part (e). Since f  < ∞, I(k) < ∞, f ∞ < ∞ and I∞(k) < ∞, there exist positive numbers
li >  (i = , , , ), h >  and h >  such that h < h and for t ∈ J ,  < y ≤ h, we have

f (t, y) ≤ lφm(y), Ik(t, y) ≤ ly

and for t ∈ J , y ≥ h, we have

f (t, y) ≤ lφm(y), Ik(t, y) ≤ ly.

Let

l = max

{

l, l, max

{
f (t, y)
φm(y)

: t ∈ J , h ≤ y ≤ h

}}

> ,

l∗ = max

{

l, l, max

{
Ik(t, y)

y
: t ∈ J , h ≤ y ≤ h

}}

> .

Thus, we have

f (t, y) ≤ lφm(y), Ik(t, y) ≤ l∗y for t ∈ J and y ∈ [,∞).

Since  ≤ t ≤ α(t) ≤  on J , it follows from  ≤ y(t) ≤ h, y(t) ≥ h and h ≤ y(t) ≤ h on
J that  ≤ y(α(t)) ≤ h, y(α(t)) ≥ h and h ≤ y(α(t)) ≤ h on J , respectively.

Assume that y is a positive solution of problem (.). We will show that this leads to a
contradiction for

 < λ < λ =
(


ρ

)m–(
γ l‖e‖q‖ω‖p

)–

and

 < μ < μ =


ρnl∗
.

Since (Tμ
λ y)(t) = y(t) for t ∈ J , by Lemma . we have that

‖y‖PC =
∥
∥Tμ

λ y
∥
∥

PC ≤ ρ
(
φm∗

(
λγ l‖e‖q‖ω‖p

)
+ μnl∗

)‖y‖PC < ‖y‖PC ,

which is a contradiction.
Part (f ). Since f > , I(k) > , I∞ >  and f∞ > , there exist positive numbers li > 

(i = , , , ), h >  and h >  such that h < h and for t ∈ J ,  ≤ y ≤ h, we have

f (t, y) ≥ lφm(y), Ik(t, y) ≥ ly,

and for t ∈ J , y ≥ h, we have

f (t, y) ≥ lφm(y), Ik(t, y) ≥ ly.
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Let

l∗∗ = min

{

l, l, min

{
f (t, y)
φm(y)

: t ∈ J , h ≤ y ≤ h

}}

> ,

l∗∗∗ = min

{

l, l, min

{
Ik(t, y)

y
: t ∈ J , h ≤ y ≤ h

}}

> .

Then

f (t, y) ≥ l∗∗φm(y), Ik(t, y) ≥ l∗∗∗y for t ∈ J and y ∈ [,∞).

Assume that y is a positive solution of problem (.). We will show that this leads to a
contradiction for

λ > λ =
(

ρ

δρ
 β

)m–(
l∗∗ρη

)–,

μ > μ =
ρ

δρ
 nl∗∗∗ .

Since (Tμ
λ y)(t) = y(t) for t ∈ J , by Lemma . we have that

‖y‖PC =
∥
∥Tμ

λ y
∥
∥

PC ≥ δ
ρ


ρ

((
l∗∗λρη

)m∗–
β + μnl∗∗∗)‖y‖PC > ‖y‖PC ,

which is a contradiction. �

The results of the following theorem deal with the case p = .

Corollary . Assume that (H)-(H) hold and α(t) ≥ t on J . Then:
(a) If f  =  and I(k) =  or f ∞ =  and I∞(k) = , then there exist λ >  and μ > 

such that problem (.) has a positive solution for λ > λ and μ > μ.
(b) If f = ∞ and I(k) = ∞ or f∞ = ∞ and I∞(k) = ∞, then there exist λ >  and μ > 

such that problem (.) has a positive solution for  < λ < λ and  < μ < μ.
(c) If f  = f ∞ =  and I(k) = I∞(k) = , then there exist λ >  and μ >  such that

problem (.) has at least two positive solutions for λ > λ and μ > μ.
(d) If f = f∞ = ∞ and I∞(k) = I∞(k) = ∞, then there exist λ >  and μ >  such that

problem (.) has at least two positive solutions for  < λ < λ and  < μ < μ.
(e) If f  < ∞, I(k) < ∞, f ∞ < ∞ and I∞ < ∞, then there exist λ >  and μ >  such

that problem (.) has no positive solution for  < λ < λ and  < μ < μ.
(f ) If f > , I(k) > , I∞ >  and f∞ > , then there exist λ >  and μ >  such that

problem (.) has no positive solution for λ > λ and μ > .

Proof It follows from the proofs of Corollary . and Corollary . that Corollary .
holds. �

Finally we consider the case of p = ∞.

Corollary . Assume that (H)-(H) hold and α(t) ≥ t on J . Then:
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(a) If f  =  and I(k) =  or f ∞ =  and I∞(k) = , then there exist λ >  and μ > 
such that problem (.) has a positive solution for λ > λ and μ > μ.

(b) If f = ∞ and I(k) = ∞ or f∞ = ∞ and I∞(k) = ∞, then there exist λ >  and μ > 
such that problem (.) has a positive solution for  < λ < λ and  < μ < μ.

(c) If f  = f ∞ =  and I(k) = I∞(k) = , then there exist λ >  and μ >  such that
problem (.) has at least two positive solutions for λ > λ and μ > μ.

(d) If f = f∞ = ∞ and I∞(k) = I∞(k) = ∞, then there exist λ >  and μ >  such that
problem (.) has at least two positive solutions for  < λ < λ and  < μ < μ.

(e) If f  < ∞, I(k) < ∞, f ∞ < ∞ and I∞ < ∞, then there exist λ >  and μ >  such
that problem (.) has no positive solution for  < λ < λ and  < μ < μ.

(f ) If f > , I(k) > , I∞ >  and f∞ > , then there exist λ >  and μ >  such that
problem (.) has no positive solution for λ > λ and μ > .

Proof It follows from the proofs of Corollary . and Corollary . that Corollary .
holds. �

5 Positive solutions of problem (1.1) for the case of α(t) ≤ t on J
Now we deal with problem (.) for the case of α(t) ≤ t on J . Similarly as Theorem . and
Lemmas .-., we can prove the following results.

Lemma . Let ζ ∗ ∈ (tn, ), G and H be given as in Theorem .. If (H) holds, then we
have

G(t, s) ≥ δG(s, s) ≥ bδ

d
, H(t, s) ≥ δa

a – ξ
G(s, s) ≥ δρ, ∀t ∈ [

, ζ ∗], s ∈ J , (.)

where d is defined in Theorem ., δ and ρ are defined in (.).

Proof In fact, for t ∈ [, ζ ∗] and s ∈ J , we have that

G(t, s)
G(s, s)

=
b + a( – t)
b + a( – s)

≥ b + a( – ζ ∗)
b + a

for s ≤ t,

G(t, s)
G(s, s)

=
b + at
b + as

≥ b
b + a

for t ≤ s.

This and (.) show that

H(t, s) ≥ δG(s, s)
[

 +


a – ξ

∫ 


g(τ ) dτ

]

≥ aδ

a – ξ
G(s, s), t ∈ [

, ζ ∗], s ∈ J .

This together with (.) and (.) finishes the proof of (.). �

Let PC[, ] be as defined in Section . We define a cone K∗ in PC[, ] by

K∗ =
{

y ∈ PC[, ]
∣
∣
∣y(t) ≥  on J and min

t∈[,ζ∗]
≥ δ

ρ

ρ
‖y‖PC

}

,

where δ, ρ and ρ are defined in (.) and (.), respectively. It is easy to see that K∗ is a
closed convex cone of PC[, ].
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Define ∗Tμ
λ : K∗ → PC[, ] by

(∗Tμ
λ y

)
(t) =

∫ 


H(t, s)φm∗

(

λ

∫ 


H(s, τ )ω(τ )f

(
τ , y

(
α(τ )

))
dτ

)

ds

+ μ

n∑

k=

H(t, tk)Ik
(
tk , y(tk)

)
. (.)

It is clear that y is a positive solution of problem (.) if and only of y is a fixed point
of ∗Tμ

λ .

Lemma . Assume that (H)-(H) hold. Then y ∈ K∗ is a positive fixed point of ∗Tμ
λ if

and only if y is a positive solution of problem (.).

Lemma . Assume that (H)-(H) hold. Then ∗Tμ
λ (K∗) ⊂ K∗ and ∗Tμ

λ : K∗ → K∗ is com-
pletely continuous.

Let f ∗ and I∗
k be defined as in Section . Similar to the proof of that in Lemmas .-.,

we have the following results. Here, we only consider the case m >  and only give the
proof of Lemma ..

Lemma . Assume that (H)-(H) hold, α(t) ≤ t on J and let r >  be given. If there exist
ε >  and ε >  such that f ∗(r) ≤ εφm(r) and I∗

k (r) ≤ εr (k = , , . . . , n), then

∥
∥∗Tμ

λ y
∥
∥ ≤ ρ

(
φm∗

(
λγ ε‖e‖q‖ω‖p

)
+ μnε

)‖y‖PC , y ∈ ∂�r . (.)

Proof By the definition of f ∗(r) and I∗
k , if f ∗(r) ≤ εφm(r) and I∗

k (r) ≤ εr (k = , , . . . , n),
then

f (t, y) ≤ εφm(r), Ik(t, y) ≤ εr for t ∈ J and  ≤ y ≤ r.

Since  ≤ α(t) ≤ t ≤  on J , it follows from  ≤ y(t) ≤ r on J that  ≤ y(α(t)) ≤ r.
Therefore, we have f (t, y(α(t))) ≤ εφm(r) for t ∈ J , and it follows from (.) and (.)

that

∥
∥∗Tμ

λ y
∥
∥

PC ≤ ρ

(∫ 


φm∗

(

λ

∫ 


H(s, τ )ω(τ )f

(
τ , y

(
α(τ )

))
dτ

)

ds + μ

n∑

k=

Ik
(
tk , y(tk)

)
)

≤ ρ

(

φm∗
(

λ

∫ 


γ e(τ )ω(τ )f

(
τ , y

(
α(τ )

))
dτ

)

+ μ

n∑

k=

Ik
(
tk , y(tk)

)
)

≤ ρ

(

φm∗
(

λγ

∫ 


e(τ )ω(τ )εφm(r) dτ

)

+ μ

n∑

k=

εr

)

= ρ

(

φm∗
(

λγ εφm(r)
∫ 


e(τ )ω(τ ) dτ

)

+ μ

n∑

k=

εr

)

≤ ρ
(
φm∗

(
λγ εφm(r)‖e‖q‖ω‖p

)
+ μnεr

)

= ρ
(
φm∗

(
λγ ε‖e‖q‖ω‖p

)
+ μnεr

)‖y‖PC , ∀y ∈ ∂�r .

This completes the proof. �
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Lemma . Assume that (H)-(H) hold, α(t) ≤ t on J and let l >  and l be given. If
f (t, y) ≥ lφm(y) and Ik(t, y) ≥ ly for t ∈ J and y ∈ K∗, then

∥
∥∗Tμ

λ y
∥
∥

PC ≥ δ
ρ


ρ

(
(lλρη)m∗–β + μnl

)‖y‖PC .

Let �̂r = {y ∈ K∗ : ‖y‖PC < r}.

Lemma . Assume that (H)-(H) hold and α(t) ≤ t on J . If y ∈ ∂�̂r , r > , then

∥
∥∗Tμ

λ y
∥
∥

PC ≤ ρ
(
φm∗

(
λγ Mr‖e‖q‖ω‖p

)
+ μnM∗),

where Mr and M∗ are defined in Lemma ..

Lemma . Assume that (H)-(H) hold and α(t) ≤ t on J . If y ∈ ∂�̂r , r > , then

∥
∥∗Tλu

∥
∥

PC ≥ ρ(σrλρη)m∗–β + μρnσ ∗
r ,

where σr and σ ∗ are defined in Lemma ..

Let f , f ∞, f, f∞, I(k), I∞(k), I(k) and I∞(k) be defined as in Section . Similar to the
proof of Theorem ., we have the following results.

Theorem . Assume that (H)-(H) hold and α(t) ≤ t on J . Then:
(a) If f  =  and I(k) =  or f ∞ =  and I∞(k) = , then there exist λ >  and μ > 

such that problem (.) has a positive solution for λ > λ and μ > μ.
(b) If f = ∞ and I(k) = ∞ or f∞ = ∞ and I∞(k) = ∞, then there exist λ >  and μ > 

such that problem (.) has a positive solution for  < λ < λ and  < μ < μ.
(c) If f  = f ∞ =  and I(k) = I∞(k) = , then there exist λ >  and μ >  such that

problem (.) has at least two positive solutions for λ > λ and μ > μ.
(d) If f = f∞ = ∞ and I∞(k) = I∞(k) = ∞, then there exist λ >  and μ >  such that

problem (.) has at least two positive solutions for  < λ < λ and  < μ < μ.
(e) If f  < ∞, I(k) < ∞, f ∞ < ∞ and I∞ < ∞, then there exist λ >  and μ >  such

that problem (.) has no positive solution for  < λ < λ and  < μ < μ.
(f ) If f > , I(k) > , I∞ >  and f∞ > , then there exist λ >  and μ >  such that

problem (.) has no positive solution for λ > λ and μ > .

6 Remarks and comments
In this section, we offer some remarks and comments of the associated problem (.).

Remark . The idea of deviating arguments for problem (.) is from Jankowski [],
but the method and conclusion are quite different, and Jankowski only considered the
case λ = , μ =  and ω ∈ C[, ], not ω(t) is Lp-integrable.

Remark . Generally, it is difficult to study the existence of positive solutions for nonlin-
ear fourth order boundary value problems with impulsive effects and deviating arguments
(see, e.g., [–] and their references).
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For example, we consider the following problems:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(φm(y′′(t)))′′ = λω(t)f (t, y(α(t))), t ∈ J , t �= tk , k = , , . . . , n,
�y′|t=tk = –μIk(tk , y(tk)), k = , , . . . , n,
y() = , y() =

∫ 
 g(t)y(t) dt,

φp(y′′()) = , φp(y′′()) =
∫ 

 h(t)φp(y′′(t)) dt.

(.)

Here λ >  and μ >  are two parameters, a, b > , J = [, ], φm(s) is an m-Laplace operator,
i.e., φm(s) = |s|m–s, m > , (φm)– = φm∗ , 

m + 
m∗ = , tk (k = , , . . . , n) (where n is a fixed

positive integer) are fixed points with  = t < t < t < · · · < tk < · · · < tn < tn+ = , �y′|t=tk =
y′(t+

k ) – x′(t–
k ), where y′(t+

k ) and y′(t–
k ) represent the right-hand limit and the left-hand limit

of y′(t) at t = tk , respectively.
By means of transformation (.), we can convert problem (.) into

{
x′′(t) + λω(t)f (t, y(α(t))) = , t ∈ J ,
x() = , x() =

∫ 
 h(t)x(t) dt

(.)

and

⎧
⎪⎨

⎪⎩

y′′(t) = –φm∗ (x(t)), t ∈ J , t �= tk ,
�y′|t=tk = –μIk(tk , y(tk)), k = , , . . . , n,
y() = , y() =

∫ 
 g(t)y(t) dt.

(.)

Using a similar proof to that of Theorem . and Theorem ., we can obtain the fol-
lowing results. In addition, if we replace ξ , ν by ξ ∗, ν∗ in (H), respectively, then we obtain
(H∗

), where

ξ ∗ =
∫ 


sg(s) ds, ν∗ =

∫ 


sh(s) ds.

Lemma . If (H), (H∗
) and (H) hold, then problem (.) has a unique solution x ex-

pressed by

x(t) = λ

∫ 


H∗(t, s)f

(
s, y(s)

)
ds, (.)

where

H∗(t, s) = G(t, s) +
t

 –
∫ 

 sh(s) ds

∫ 


G(τ , s)h(τ ) dτ , (.)

G(t, s) is defined in (.).

Lemma . If (H), (H) and (H) hold, then problem (.) has a unique solution y given
by

y(t) =
∫ 


H∗

 (t, s)φm∗
(
x(s)

)
ds +

n∑

k=

H∗
 (t, tk)Ik

(
tk , y(tk)

)
, (.)
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where

H∗
 (t, s) = G(t, s) +

t
 –

∫ 
 sg(s) ds

∫ 


G(s, τ )g(τ ) dτ . (.)

It is not difficult to prove that H∗(t, s) and H∗
 (t, s) have similar properties to those of

H(t, s) and H(t, s). However, there does not exist a positive number δ ∈ (, ) such that

G(t, s) ≥ δG(s, s) for t ∈ [ζ , ], s ∈ J ;

or there does not exist a positive number δ∗ ∈ (, ) such that

G(t, s) ≥ δ∗G(s, s) for t ∈ [
, ζ ∗], s ∈ J ,

where ζ ∈ (, t) and ζ ∗ ∈ (tn, ). This implies that we cannot study the existence of positive
solutions for problem (.) when the deviating arguments are delayed and advanced.

Remark . There are many functions α(t) satisfying α(t) ≥ t or α(t) ≤ t on J . For exam-
ple,

if α(t) = t

n , then α(t) ≥ t on J ;

if α(t) = tn, then α(t) ≤ t on J ,

where n is a positive integral number.
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