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1 Introduction

Let L = —A + V be a Schrodinger operators on R”, n > 3, where the nonnegative po-
tential V' belongs to the reverse Holder class Bs, s > 5. The Riesz transforms and the
fractional integrals associated with L have been studied extensively. In 1995, Shen [1]
proved the L”-boundedness of the operators (-A + V)7, V2(=A + V)7L, V(-=A + V)12,
and V(-A + V)71V. Later, Sugano [2] and Tang-Dong [3] generalized some results of Shen
[1] and obtained the estimates for the operators VBR(-A+V)PL0< By <Bi< g, and their
dual operators. The endpoint properties of Riesz transform and the fractional integral as-
sociated to L have been obtained by Yang, Yang, and Zhou [4]. For further information,
we refer the reader to Jiang [5], Liu [6], Liu and Dong [7], Sugano [8] and the references
therein.

In the study of harmonic analysis and the partial differential equations, the commutators
related to singular integral operators play an important role. Let R; = V(-A + V)72 be
the Riesz transform associated with L. Based on the results of Shen [1], Guo, Li, and Peng
[9] obtained the L”-boundedness of the commutators [b, R; ] provided V' € B,, g > n/2. By
the functional calculus of L, Bui [10] obtained the weighted estimate of commutators of
some singular integrals related to L. We refer to Liu, Huang, and Dong [11], Liu, Wang,
and Dong [12], and Wang and Liu [13] for the latest developments on this topic.

In Section 3, assume that V € B, s > 4. Let Tg = (-A + V)P V# and b € BMO, (p),
where BMO, (p) denotes a function space associated with L. Such spaces were first intro-

© 2016 Li and Wan. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-

L]
@ Sprlnger vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and

indicate if changes were made.


https://core.ac.uk/display/195064797?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1186/s13660-016-1118-9
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-016-1118-9&domain=pdf
mailto:ptli@qdu.edu.cn

Li and Wan Journal of Inequalities and Applications (2016) 2016:172 Page 2 of 27

duced by Bongioanni, Harboure, and Salinas [14] as a generalization of the bounded mean
oscillation space BMO(R"). We investigate the boundedness of the commutator [b, Tj]
on Herz type spaces K;”(R") and K, (R"), respectively. In Section 3.1, with the help
of the I7-boundedness of Tg, we verify that the commutators [b, Tg] are also bounded
on [?(R"). See Theorem 3.8. In Section 3.2, we prove that if the index (8,p, ¢, «) satis-
fies

0<B<n/2, 0<p<oo,
s/(s—B) <q < oo,
-nlg<a<n(l-1/q-28/n),

the operators T and the commutators [b, Ts] are bounded on the homogeneous Herz
spaces KZ; P(R"). A similar result also holds for the non-homogeneous Herz spaces
K;”(R™). See Theorems 3.9 and 3.10 for the details.

By use of a maximal estimate, Bongioanni, Harboure, and Salinas [14] proved that the
commutators [b, R;] are bounded on L”(R"), where b € BMO, (p). See Theorem 1 in [14].
In Section 4, the L”-boundedness of [b,R;] can be further extended to the setting of
Ky (R") and K;*(R"), respectively. Precisely, we obtain the following results. Suppose
that V € B, s > 5, and b € BMO,(p), 0 < 0 < 00. Let % = (% - %)*. If the index (p,q, )
satisfies

0<p<oo,(q) <q<oo,

-nlg<a<n(l-1/q-1/g),
then R, and [b, R;] are bounded on K ¥ (R") and K;* (R"). See Theorems 4.4, 4.5 and 4.7.

Remark 1.1 We point out that the results obtained in Sections 3 and 4 cover many former
results. It is obvious that

K(R") = LI(R),
KZU(R") = LA(R", |x|*9).

Hence our results generalize the L”-boundedness of [b, Ts] and [b, R;] to the boundedness
of Herz type spaces. On the other hand, Theorems 3.9, 3.10, 4.4 and 4.5 imply that [b, T§]
and [b, R, ] are bounded on the Lebesgue spaces L7(R”) with power weighted |x|?.

Remark 1.2 For $=1,2, T1 = (-A+ V) 'V and T, = (-A + V)"V2V12 For b e BMO(R"),
the L”-boundedness of [b, T;], i = 1,2 have been obtained by Guo, Li, and Peng [9], respec-
tively. See Theorem 1 in [9]. In this paper, we assume that b € BMO, (p), which is larger
than BMO(RR"). Hence our results cover those of Guo, Li, and Peng [9]. On the other hand,
the boundedness of [b, T3] on Herz spaces are new even for the case b € BMO(R").

The rest of this paper is organized as follows. In Section 2, we state some notations and
known results which will be used throughout this paper. In Section 3, we prove the com-
mutators [b, Tg] are bounded on L”(IR") and Herz spaces with 5 € BMO, (p), respectively.
Section 4 is devoted to the boundedness of [b, R;] on Herz spaces, where b € BMO, (p).
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Some notations Throughout the paper, the Lebesgue measure of the ball B C R” denote
by |B]. ¢ and C will denote unspecified positive constants, possibly different at each oc-
currence. The constants are independent of the functions. U & V represents that there is
a constant ¢ > 0 such that ¢V < U < ¢V whose right inequality is also written as U < V.
Similarly, if V > cU, we denote V 2> U.

2 Preliminaries

2.1 Auxiliary function and BMO type spaces

In this paper, we consider the Schrodinger differential operator L =—-A + V on R”, n > 3,
where V' is a nonnegative potential belonging to the reverse Holder class By, s > 7, which

is defined as follows.

Definition 2.1 A nonnegative locally L*-integrable function V' on R” is said to belong to

B, s> 1, if there exists C > 0 such that the reverse Holder inequality

1
1 s 1
(—/Vs(x)dx> < (—/V(x)dx)
Bl /5 1Bl /g
holds for every ball B C R”.

Remark 2.2 Assume that V € By, 1 <5 < 00. Then V(y) dy is a doubling measure. Namely,
there exists a constant Cy such that for any » > 0 and y € R”,

f V() dy < Co / V) dy. 2.1)
B(x,2r)

B(x,r)

Lemma 2.3 ([1], Lemma 1.2) Suppose that V' € By, s > 5. There exists a constant C such

that for 0 <r <ry < 00,

1 ro nls=2 1
= vas(—) = [ Vo
r B(x,r) r o = JB(xro)

In order to study the Neumann problem for the Schrédinger operator, Shen [15] intro-

duced the following auxiliary function.

Definition 2.4 For x € R”, the function p is defined by

1
,o(x):sup{r>0: 2[ V(y)dygl}.
r- B(x,r)

We list some properties of the auxiliary function p which will be used in the sequel.

Lemma 2.5 ([1], Lemma 1.4) There exist positive constants C > 0, ¢ > 0, and ly > 0 such
that, for x, y in R",

@ p@)~ p) il -yl < o6

(b) p(x) < CA+|x—yl/px)°p(),

(©) p@{1+ [x=yl/p@)}0" 0D > cp(y).
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Lemma 2.6 ([9], Lemma 2.3) Suppose V € By, s > 5. Then for any Ny > log, Co + 1, where

Cy is the constant in (2.1), there exists a constant Cy, such that for any x € R” and r > 0,

1

_— V() dy < Cyn.r" 2.
L+ rlp(x))No /B(x,,) Oy S Coar

The bounded mean oscillation space BMO(R”) was first introduced by John-Nirenberg
[16] to study some problems arising from elasticity theory. In harmonic analysis, it is well
known that BMO(R") is the dual of Hardy space H*(R"). In [14], Bongioanni, Harboure,
and Salinas added a perturbation term into the definition of BMO(R”) and introduced a
new class of BMO type spaces associated with Schrodinger operators. See also [17, 18].

Given a function b € L}

loc and a cube B, let b denote the average of b on B:

1
b:—/bxdx.
YT B()

Definition 2.7 Suppose V € B, s > n/2,and o € (0, 00).
(i) A new space BMO, (p) is defined as the set of all b € L. _ which satisfies

loc

1 r \°
b(y)—bgldy<C — 1, 2.2
|B(x7 V)| /B(x,r)| (y) B| e (1 ’ ,O(x)) ( )

where the supremum is taken over all cubes B(x, r) € R”. A norm for b € BMO, (p),

denoted by ||b]|, is given by the infimum of the constants satisfying (2.2), after
identifying functions that differ upon a constant.
(ii) With the above definition in mind, we define BMO«(p) = |, .o BMO, (p).

Proposition 2.8 ([14]) For 0 <o <o’, BMO(R") C BMO, (p) C BMO,/(p).

Bongioanni, Harboure, and Salinas [14] gave some examples to clarify that BMO(R") is
a subspace of BMOy,(p).

Lemma 2.9 ([14], Proposition 3) Let o >0 and 1 < p < 0. If b € BMO, (p), then for all
B=B(x,r)withx € R" and r >0,

L Lo\ oy
(i3 [1o0r-6alar)" <o (1475 )

where o’ = (ly + 1)o and ly is the constant appearing in Lemma 2.5.
The following result can be deduced from Lemma 2.9 immediately.

Lemma 2.10 ([14], Lemma 1) Let 0 > 0 and 1< p < 00. If b € BMO,(p), B = B(x,r), and
Bg, = B(x, 2%r), then for x € R" and r > 0 with o’ = (ly + 1)o,

1 PN
( . |b(y)—b3|"dy)"snbnak(uﬂ) .

1Bay | Jg, px)
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2.2 Herz spaces
We state some basic knowledge on the Herz spaces. In 1968, in order to study absolutely
convergent Fourier transforms, Herz [19] introduced a new class of function spaces K
which are equivalent to the homogeneous Herz spaces with special exponent. In 1990s, Lu
and Yang introduced the homogeneous Herz spaces and non-homogeneous Herz spaces
with general indices. By the block decomposition, Lu and Yang obtained many interesting
properties of these spaces. We refer the reader to Lu, Yang, and Hu [20] for the details
[21-24] and the references therein.

For k € Z, let By = {x € R" : |x| < 2¥} and E; = Bi\Bi_1. Denote by xx the characteristic
function of Ei. Define

Xk» ke N,
XBy» k=0.

Xk =

The Herz spaces are defined as follows.

Definition 2.11 Leta € R, 0<p,g < oc.
(i) The homogeneous Herz space K; ¥ (R”") is defined by

I(;,p(Rn) = {f € quoc(Rn\O) : “f”['(g’l’(Rn) < OO};

where

1
q
I Nl e = {ZEk“"ivXkqu(Rn)} :

keZ

(ii) The non-homogeneous Herz space K,‘; P(R") is defined by
](L‘;’P(R”) = {f € quoc(Rn) : ”f”Kg’p(]R”) < OO},

where

1

o0 i
W llgr gy = {szwllf}?kllmﬂa@} :

k=0
Proposition 2.12 ([20], Proposition 1.1.2) Let 0 < p,q < 00 and 0 < o < 00. Then
K (R") = KZP(R™) N LI(R").
Forf € K3¥(R),

”fHK;"”(Rn) ~ ”f”j(;"p(Rn) + |If lzawny.-

Let X be a function space. We denote by X* the dual of X. For the homogeneous and
non-homogeneous Herz spaces, there exist the following dual relations, respectively.

Lemma 2.13 ([20], Corollary 1.2.1) Leta € R, 0 < p <00, and 1 < g < 0o. Then:
D) (K77 @®M)* =K (R").
(i) (Kg”(®)" = K" (R").
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2.3 Some lemmas
Let L = —A + V be the Schrodinger operator with V' € B;, s > %. The heat semigroup

associated with L is defined as
T.f(x) = eLf(x) = / Ki(x,0)f ) dy, feL*(R"),t>0. (2.3)
RVI

Lemma 2.14 ([25], Theorem 4.10) Let K;(x,y) be the kernel defined in (2.3). For every non-

negative integer N, there is a constant Cy such that

0 < K,(y) < Cyi s exP<_%) (L4 Vel p() + Vel p) ™.

For 0 < f8 < 7, the fractional integral associated with L is defined by
o0
LPf(x) = / e Lf(x)tP 1 dt.
0
The following result is obtained by Tang and Dong [3].

Lemma 2.15 ([3]) Suppose V € Bs, s > 5. For every N € N, there exists a constant Cy such
that

/ ” tPK (x, y) di < Cn 1
X, < .
0 ARV =W = ylp)N Jx -y

Denote by Kg(-, -) the kernel of the operator T = (-A + V)= V#. The following point-

wise estimate of K is a direct corollary of Lemma 2.15. We omit the details.

Lemma 2.16 Suppose that V € B, s > 5. For every N € N, there exist constants Cy and
8 > 0 such that for 0 < h < le—6y|’

Cn 1
Kg(x,9)| < VA (y)
[Ks .| L+ x=yl/p@E)N |x—y|"-28 v
and
Cn ||

|Kp(x + 1) = Kp(x,9)] < VA ().

1+ x = yl/p()N |x — y|n-28+3

For the sake of convenience, in the sequel, we take N large enough such that N/(ly +1) —

o (lp +1) — NpB > 0, where Nj is the constant in Lemma 2.6.

Lemma 2.17 Suppose that V € B; with s >

. 1
@) [j=k=2, then Trmiom = Gk

. 1 1
(b) Ifj = k+2, then GV = CipVia

5-Letx € Ex, y € E.
1
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Proof 'We only prove (a), and (b) can be dealt with similarly. For x € E; and y € E; with
j < k—2,byasimple computation, we can see that |x—y| ~ 2. By (c) of Lemma 2.5, we have

1

( : )N
<

- N = Y P S
(Lt = =1/p(x)) L=y oo

< ( (L+ Jxl/p(0))/o"0 )N
= \(L+ |x|/p(0))lo/0+1 + |x — y|/p(0)
< ((1 + |x|/p(0))l°”0+1)”
=T+ x—11/000)
1
1+ 2k/p(0))N/(lo+l) : O

<
— (

A ball centered at x and with radius p(x) is called critical. In this paper, we use the symbol
B(x, p(x)) to denote the critical ball. Dziubanski and Zienkiewicz [26] gave the following
covering lemma.

Lemma 2.18 ([26], Lemma 2.3) There exists a sequence of points {x;}32, C R", such that
the family of critical balls {Qx = B(x, p(xx))} 33, satisfies:

(i) R = U, Qi

(i) There exists N = N(p) such that for every k € N,

card{j: 4Q; N 4Q;} < N.

Definition 2.19 Let y >0and B, be the set {B(y,r) :y € R",r < yp(y)}. For f € L} (R")

loc
and x € R”, we define the following two maximal functions:

1
Mo )= sup /B 10| dy

xeBeBy,y

and

1
M (f)(x) = sup E/Blf(y)—fgwy.

xeBeBy,y

Definition 2.20 Let §g be the set {B(y,r) : y € R”,r > 0} and let Q be a ball in R”. For
felLl (R") andy e Q, we define

loc

Mo(f)@) = sup
< sebesq BN QL Jpng

f )| dy

and

Ii _ 1 _
MoDt)= sb TBral /BnQ f0) = fircl

In the proof of Theorem 3.8 below, we need the following Fefferman-Stein type inequal-

ity.
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Lemma 2.21 ([14], Lemma 2) For 1< p < 0o, there exist & and y such that if {Qi}32, isa
sequence of the balls as those in Lemma 2.18, then for all f € L1 (R"),

loc

1 p
/RJM,),S(f)(x)Fdx,S/Rn|Mf)yy(f)(x)|pdx+Xk:|Qk|(@ /ZQka(x)|dx> .

3 Commutators [b, Tg] on Herz type spaces
3.1 The boundedness of [b, Tg] on LP(R")

Throughout this paper, for p € (1,00), denote by p’ the conjugate of p, that is, % + 1% =1

As usual, for f € L} (R"), the p-maximal function M, is defined as

loc

Myf () = sup( ol dy) ’

r>0

1
|B(x) }”)| B(x,r,

Definition 3.1 Letf € L] (R"). The fractional Hardy-Littlewood maximal operator M, ,,
is defined by

1 N
I = — %y d .
Moof @) ilelg(wﬂ% /Blf(y)’ y)

Lemma 3.2 ([27]) Suppose that1l<y <p; <= and piz = le — 2. Then

1Moy f N2 @y S N e ey

Now we consider the boundedness of T = (-A + V)#V#, B > 0. The following maximal
estimate is obtained by Li, Wan, and Zhang [28].

Lemma 3.3 ([28], Theorem 4.8) Suppose that V € B; for s > 5. Let 0 < < 1 < 5,1<

ERY; n 1 _ 1 _ 28128
(ﬂz) <P1< 3088 and P2 p no Then

|2+ VYPVPL@)] S Moy S @)-
Let B; = B>. By Lemma 3.3, we can obtain the following results.
Corollary 3.4 Suppose that V € Bs,s > 5. Let 1< < 3.
(i) For ﬁ <p <00, Ty is bounded on L7

(i) Forl<p< %, T} is bounded on LP.

Now, let b e BMO, (p). We consider the L”-boundedness of the commutator [b, Ts]. We
need the following maximal function estimate of [b, Tg].

Theorem 3.5 Suppose that V € Bs, s > g, and b € BMO,(p), 0 < o < oc0. Ifﬁ <p <00,
there exists a constant C > 0 such that, for all f € L}, (R") and every critical ball Q =
Blxo, p(x0))s

fa_/Q“b, Tﬂlf(x)idxfC“b”o{ilel(gMpf(x)+}i61€1£Mp(Tﬂf)(x)]'
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Proof For any constant a, b(x) — b(y) = (b(x) — a) — (b(y) — a). Then we have

b5 = [ (bw) - b)) K2 0)

= (b0 -a) | Ksloy)f @) dy+ Ts((b-a)f) @)
]Rn

=11 +12.

Let f € L?(R") and Q = B(xo, p(x9)) with a = by. We deal with the average of I; and I; on
Q, respectively. At first, by Lemma 2.9 and Hoélder’s inequality with p > ﬁ, we can get

< —
|Q|/|1|d |Q|/|h(’“) bao||Tpf (x)| dax

{IQ|/|b(x) bagl” dx} {|Q|/|Tﬂf(" |de}

< 1Bl inf M,(T4f)@)

For I, we split f —f1 +f2, where fi (x) = f(x) x20(x) and f5(x) = f(x) x2q)c (x). Take py € (Ssﬁ,p)
and denote p = 2 5+ By Corollary 3.4 and Lemma 2.9, we apply Hélder’s inequality to get

L / | T3 ((b - bag)f) (x)| dx
Q

Ql
(IQIf'T'S (- bwﬁ)("|0dx>
{|Q|/| ~bo)f( ‘podx}po

1 P11 s
< J__ pd - b _b HPOd
”{|Q|/2Qlf(x)| x} {|Q|/2Q| (%)~ baql "}

< 16l inf My ()()
Next we deal with the term
1
o / | T5 ((b = bag)fo) ()| dlx.
QI Jo

If x € B(xo, p(x0)) and z € B(xo, 2 p(xp)) with j > 2, then |x — z| ~ |xg — z|. With the help of
Lemmas 2.17 and 2.10, we use Holder’s inequality to deduce that

Ts((b - bag)f2) ()
< / 1b(2) — bagl|f (2)| VF (2) e
|

x0—-zl>20(xg) (1 + %)Nl g — 2|28

|b(z) - bagl|f(2)| VP (2) dz

> 1
Qe2)™M L1 /
]Xd: |2/p(x0)|n—2,3 2 p(xo)<|xo—2|<2 L p(x0)
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. 1

e NNy 12 (o) | { 1 a2

<N (1+2)™M 2 b(z2) - bao|" dz
12:1:( ) 12 p(x0)|"28 | Q] Q2j+1| |

X

1 B
1 s 17| 1 st

d, Vv d,

{|Qy~+1| o, e Z} {|le ol Z}

S L L
1 2] NZ,— b||, inf M
S L) g gy P i MAN )

<16l inf My ()0),

where Qi1 = B(xo, 21 p(x0)), g + 1'% + le =1,and Ny =N/(lp+1)and N5 = N/(lo +1) —o (I +

1) - NoB.
Finally, in Lemma 2.15, take N large enough such that N > N,. We complete the proof
of Theorem 3.5. O

Remark 3.6 It is easy to check that if the critical ball Q is replaced by 2Q, Theorem 3.5
also holds.

Lemma 3.7 Let V € By, s > 5, and b € BMO,(p), 0 < 0 < 00. Then for any p > j and
y > 1, there exists a constant C such that for all f and x,y € B = B(xy, r) with r < yp(xo),

/(23>c |K(%,2) - K(5,2)|V? (2)|b(2) - bg]||f (2)| dz < C|| bl inf My ().

Proof Write E; = B(xo, 2" r)\B(xo, 2'r). For x € B(xo,r) and z € Ej, we have |x—z| ~ |xo —z|.
With the help of Lemmas 2.17, 2.10 and 2.6, we obtain

/( |K(x,2) - K(3,2)|V* (2) |b(2) - by||f (2)| dz
2B)¢

<Z/ @) - bl @IV @Irl’
N/=1 E x— ZO|)N1|x Zo|" 2B+8

J L+ p(xo)
% 1 |rl® 5
FZI( Q/,« )Nl (2/}”)" 26+6 /El|b(2) _bBHf(Z)|V (Z)dZ
Z _ — 1l inf M, (/)2
=1 ﬂ(xo

< .
Sbllo ;g(gMp(f)(Z),

where N7 = N/(lp + 1) and N = N/(lp +1) — o (lp + 1) — NoS. Taking N large enough, we
complete the proof of Lemma 3.7. d

With the help of Lemma 3.7, we can obtain the L”-boundedness of [b, Tg]. Denote by
T} the dual operator of 7. We have the following.

Theorem 3.8 Let V € B, s > 5, and let b € BMO, (p), 0 < o < 00.
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() If1<B<b, 5 <p<oo, then
106, To1f | uny < 18l 1 o,
(i) f1<B<y 1<p<3, then

16 T30 o eny S 1M 1 ooy

Proof We only prove (i), and (ii) follows by duality. For f € L?(R"), ﬁ < p <00, by Theo-
rem 3.5, we can see that [b, Ts]f € LI (R, By Theorem 3.5, Lemma 3.7, and Remark 3.6,

loc
we have

8 s = [ 8 0

1 q
< /Rn |Mf),y([b, Tﬁlf)(x)|qu+ Xk:IQIJ('Q—k' -/2Qk|[b’ T,elf(x)|dx>

S /R |75, (16, Tyl ) ()| dx
q q
+ ||b||a<;/2Qk]Mpf(x)| dx+2k:/2QkyMp(Tﬁf)(x)\ dx)
S /R M (1B, Tylf) )| dox + 111l (I gy + 1 Taf Waqen)

S /R M (18, Tl )| o + 116l I1f o

where the last but one inequality is due to Lemma 2.18, and the boundedness of M, in
Li(R") for p < q. Next, we consider the term

_/]Rn M5, (16, Tp1f ) )| dx.

We have [b, Tglf (x) =: Bi(x) + Ba(x), where

By (%) =: (b(x) - bp) Tyf (x),
By (x) =: Tp((b - bp)f)(x).

This gives

1
5 6.0 - (6,7510) s

1

1
< — _
~B] /B|B1(x) (B1)s|dx + B

/|Bz(x) — (By)p| dx
B
:IAl +A2,

where

Av= o [ 1813 - (Ba] s
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and
1
Ay = — [ [Bo(%) - (B)g| dx.
1Bl Jp
For Aj, letp > ﬁ Because r < yp(xy), by Holder’s inequality and Lemma 2.9, we have

For Ay, let x € R” and B = B(xo, ) with r < y p(x,) such that x € B. We split f = f; + f, with
fi =f x28- Hence we can divide A, into two parts as

Ar= 1 [ |Bao) - Bala|ds = s + 42
where
1
Ay = — /|Tﬁ ((b - bB)fl)(x) - (Tﬂ(b - bB)fl)B| dx
|Bl /s
and
1
Axp = /‘Tﬁ (b= bu)fs) () = (Tp(b — bo)fa) | .
|Bl JB

Take py € (ﬁ, p)andlet pu = p_Lpo. Applying Corollary 3.4 and Holder’s inequality, we can

get
1
A2,1 5 E /1;| T,f} ((b - bB)ﬁ) (x)| dx

1 v s |
< ﬁ/B\Tﬁ((b—bB)fl)(x)| dx}

1 po
<) - _ Po
S Bl /23| (b(x) - bp)fi ()| dx}

1 1
1 wo [ 1 r
<{— bx)-b “podx} {— (x)pdx}
|B| 2B| 5| |B| ZBV |

S 16lle Mp(f) ().

For A, 5, by Lemma 3.7, we have

ﬁ / /B | Tp((b = by)fs) () - Ty ((b - bs)fa) ()| duedy

S 161l Mp(f) ().

Axp S

Therefore, we get

|ME([b, Tg1f) ()| dix S 11Bllo {Mp(Tf) (&) + M, (f) (%)}
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Finally, by the L?(IR”) boundedness of M, we obtain

|5, (16, Tglf) [ o S 181 11 s
This completes the proof of Theorem 3.8. 0

3.2 The boundedness of [b, Tg] on Herz spaces
Theorem 3.9 Suppose that V € By, s > 5. Let 0 < < 5,0 <p <00, cmd— <g<oo.lf
-4 Zca<n(l- ———) then

ITaf Nlier@ny S W llior @ny-
Proof We write
£0)= S Fousm = 3 0,
j=—00 j=—00
which gives

[ee) k-2 b
ITaf orny S D 2““’(2 1tk T Lo w)
k=—00 =

ji=—

k+1
Z 2’“’1’(2 Xk Tafill Lo )

y=k-1

00 0 p
+ Z 2kap(z ”XkTﬂﬁ”L‘l(]R”))
k=—00 Jy=k+2

:M1 +M2 +M3.

For M, by Corollary 3.4, we have

=-00 k-1

k+1
M, < Z 21@(2 |lf||Lq(R") S W Wiy
V=

Now we estimate M;. Via a simple computation, for x € E; and y € E; with j < k -2, we
can deduce that |x — y| ~ 2%, By Lemmas 2.17, 2.16, and 2.6, we use Holder’s inequality to
obtain

1
q q
| Xk TafillLany = (/ dx>
Ex

st o] )
S T3 2 (o) (k)7 < /E k‘ /E ,|V O O)| dy| dx

(fE- V(y)dy)? |E; |1—-—ﬂ
~ (1+2’1‘/ (0))N/o+1) 1 1 % il Laqrrny
P |Ei]

/ K 9)f0)dy

Ej

128
i ll oy |Ej| "2 ™
T @+ 24 p(O)NIorDNo 133
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Take N large enough. For —g <a< n(—é +1- %), we have

k=—00

00 k=2 128 p
MY 2kap{ 2050 ) Ly }

j=—00

[ k=2 L 28 p
i—kn(l-1-26 _a) .,
< Z{Z 2(1 kyn(l-z -3 n)2] M”Lq(]R”)} .

k=—00 \j=—0c0

We divide the estimate of M; into two cases.

Case 1: p < 1. By the p-triangle inequality

00 r [
(Z |ﬂk|> <Y lal, 0<r<i, (3.1)
k=—00 k=—00

we have

M< Yy Z QUmp(=g =575 )2""1"|lf||Lq @

< Z 2/ap||f||Lq (R™)

”f”K‘YP R”

Case 2: p > 1. By the Holder inequality, we can get
1
> 1 12 _a v
k: 00 —00

1
S o okmpl1-L-2 5 "1
x| > 22 v T 7

—00 k=j+2

”f”K‘”’ R

For M3, note that when x € E, y € Ej, and j > k + 2, then |x — y| ~ 2/. Similar to M, we
have

1

1 1 q a
Tsf: ny < B
lxx TfillLagn S @+ 290D )2 (/Ek’/E,| V f(y)|dy‘ dx>

101
|Eicl 7 1Ej| 7 |1l Laqrry
~ (1 + 2/ p(0))N/llo+D-Nop "
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Because —g <a< n(—% +1- %), we use (3.1) and Holder’s inequality to obtain
o0 o0 1
(k=j)n(Z+%) o
My <Y 4D 25 D0 £ gy < Ve
k=—00 \j=k+2
Finally, we get
ITaf N gergny S W ll ke - O

Theorem 3.10 Suppose that V € By, s > 5, and b € BMO,(p), 0 <o <00. If0 < B < 5

0<p<oo, and—<q<oow;th——<a<n(1 l——) then

|| [b, T,glf”kgm(Rn) S ||b||a|lf||j<;'1’(]Rn)'

Proof We write
fO)=Y_fOlxs0) = >_ £0).
j==00 j==00

Hence, we have

I k-2 r
0 e = 3 27 2 ot
k=—00 Jj=—00

k+1 p
+ Z zkap(z ||Xk (b, Tﬁlf”Lq R” )

y=k—1

k=—00 j=k+2

o0 s ’
. Z okap ( Z ”Xk[b’ Tﬁ]ﬁ”Lq(R”)>
)
= My +M; + Ms.

For M, by Theorem 3.8, we have

k+1
My S Z 2“’”(2 |lf||M(R") S W Wiy
V=

—00 k-1

Now we estimate M;. We write b(x) — b(y) = (b(x) - bg,) —

]
1016, T e =
Ex

< (/ | (b(x) —bB,)T,g(;;)(x)|%1x)5
Ex

+ Bt 175 (&~ 8)8) [ 0z,

< 1,1 + M1,2'

~

(b(y) - b;) and get

Y
dx)

/E (B - bO) K3 0) dy
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Because x € E, y € Ej, and j < k-2, we deduce that |x —y| ~ 2¥. By Lemmas 2.16 and 2.17,

we have

1 1
Tp(f)(x ®x) < (1 + 25/ p(0))N/Uo+D) (2k)n-2p /Ej Vﬂ@)V(y)’ dy.

Using Lemmas 2.6 and 2.10 and the Holder inequality, we have

[y 1)~ g7t
My S (1k+2k/p(()))N/(lo+1) (2ky= 2,3/ Vﬂ(y)Lf@)ldy

< (k_j)”b||a(f5/ V) dy)’ |E1‘|1_q_ﬁ fill Loy
~ k lo+1)—(lp+1)o 28 W) n
(1 + 2%/ p(0))N/Uo+1)~(lo+1) |Ek|1_l_7

q n

A (—kn(1-1_28
= (k=27 b 1f oy
(1 + 2/(/IO(0))N/(l()+l)—(lo+l)0—1\[oﬁ

For the term Mj 5, we use Holder’s inequality to obtain

[ 166)= bV 0ls]
B
S 11bls (1+27p(0)) ™ £l o (|1:{| / Vo dy) IE;"

B
S 1llo (1+210(0)) Y If laqer) (/ h/(y)(dy) Ea P,
Ej
which gives

_L_ﬁ
1816 116 | ey Ej1

|Tﬂ((b_b )( )|N 1+ Q//p(O)) (lo+1)o—NoB *

The above estimate implies that

1 l_l_%
1 |Exl®  11Dllo 1 ll o | Eil 7™

My, <
Y (L 2K p ()N o) (2Ky-28 (1+ 27/ p(0)) oD NoP

i—k)n(1-1_28
< 27 bl e
~ (1 + 2%/ p(0))N/to+D~Uo+1)o-Nop *

Take N large enough. Because _3 <a<n(-1 s t1- —) we obtain

[e'e] k=2 L 2 14
- L2
My S Bl Y iZ j2imomta ")MHM(W)]

k=—00 \j=—00

00 k=2 p
Slsig Y : 3 (k- 2ot D26 o } .

k=—00 \j=—00

We still divide the proof into two cases.
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Case 1: p < 1. By the inequality (3.1) we have

[e¢]

~ ~kmp(1-1 -2 g
My SIbIE > Z (k= 2070 a =5 = o

k=-00 j=—00
Slibl? Z 2|1l a )
I_

< p 14
SIBIE I W

Case 2: p > 1. The Holder inequality implies that

~ ad k=2 _k a 1 28 « i
Ml YA D k- 22w 0G5
V=

k=—00 =—00

k=2 ;la p
(Z 22(1 knp(l- ;-5 -5 W) oje p”f”Lq Rn)) }

[e¢] o]

o Lig _l_L_,
SbIE Y 2y a2V

j=—00 k=j+2

< NBI I W gy

For Ms, note that when x € Ej, y € E;, and j > k + 2, then |x — y| ~ 2. Similar to Theo-
rem 3.9, using the following decomposition: b(x) — b(y) = (b(x) — bg,) — (b(y) — bg,), we can

get
”Xk[b’ Tﬂlﬁ”Lq(R")

1
< ! ! / /|h(x)—b(y)|vﬁ[f(y)|dy ")
~ W 21p) 0 @2\ Jp, Ly

G- Kbl Lol
(1 + 2//,0( ))N/ (lo+1)-(lp+1)o—Np B |l |E/| 1 ”ﬁ”Lq(]R")'
Since N is large enough and -2 < a< n(—;l +1- —) we obtain

o0 o0 b
~ . k—j)n(L+2) i
M 5 ||b||{; Z { Z (1—k)2( 1)n(q+n)21a|l]§”Lq(]Rﬂ)} )

k=—00 \j=k+2

Similar to M, we have Mj < |bllh |[f||K¢y,,(Rn . Finally, we get

|05, 751 | ey S 100 gy -

Let T be the dual operator of Tg. By the duality of Herz spaces, we have the following
corollary of Theorem 3.10.

Corollary 3.11 Suppose that V € B, s > 5, and b € BMO,(p), 0 <0 <00. If0 < B < 7,
O<p<oo,1<q<%withn(—$+%)<a<n(l—$),then
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e Sl ger s
(a) ||T5f||/1<q1’(]1§n) ~ ”f”KqP(]R )
(b) 15, Ty f llger g, < 1Blo If ien ey

With the help of Lemma 2.12, we can get some similar results to Theorem 3.9, 3.10 and
Corollary 3.11 for the non-homogeneous Herz spaces Ky (R").

Theorem 3.12 SupposethatVeBs,szgandbeBMOU(p),0<a<oo,Let0<ﬂ<g
and 0 < p < o0.

s _n _1_28
1) Ifs_ﬂ<q<oo, q<oz<n(1 7 =), then

||Tf5f”1<;"1’(Rn) ,S ”f”](;"l’(Rn),

I [br Tﬂ]f”](;"p(]gn) 5 ”b”cr ”fll]((‘;'P(]Rn)'
(2) Ifi<gc< %, n(—é + %) <a<n(l- %1), then

||T,/5f||1<;"P(Rn) g ”f”](:'P(Rn):

” [br T;g]f”](;'p(]gn) S ”b”zr ”f”](c‘;'l’(]]gn)-

4 Commutators [b, R;] on Herz type spaces

In this section, let R; = V(A + V)72 be the Riesz transform associated to Schrédinger
operators L = —A + V with V € B, s > n/2.For b € BMO, (p), we consider the boundedness
of R; and the commutator [b,R;] on the Herz spaces, respectively. Denote by Ky, the
kernel of R;, that is,

R0 = [ Ky (59 0) .
By the fundamental solution of L, Shen [1] obtained the following estimate of K, .

Lemma 4.1 ([1], Section 5) Suppose V' € B, s > 5. Then for every N, there exists a constant
Cy > 0 such that

C 1 Vi 1
Kz, (%,9)] < N N( - / ildzdjw )
@+l =yl/ pEDN X = y1" S,y |2 =217 lx —yI"

Let R, = (-A + V)™2V12 be the dual operator of R;. By Lemma 4.1, Shen proved that
the operator R;, is bounded on L?(R"). Precisely, we have the following.

Lemma 4.2 ([1], Theorem 0.5) Suppose that V' € B, for some s > 3, and let (% - %)* =
Then

(1) Ry is bounded on L1(R") for 1< q < g;

(2) R} is bounded on L1(R") for g < g < oo.

B

By the idea of Shen [1], Guo, Li, and Peng [9] obtained a regularity estimate of the kernel
R; and proved the commutators [, R;] are bounded on some Lebesgue spaces L” with
b € BMO(R"). For b € BMO(p), Bongioanni, Harboure, and Salinas [14] proved the L?-
boundedness of [b, Ry ]. Recall that BMO(R”) C BMO, (p). Hence the result of Bongioanni,
Harboure, and Salinas [14] generalizes that of Guo, Li, and Peng [9].
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Lemma 4.3 ([14], Theorem 1) Suppose that V' € B; for some s > 5, and b € BMOx(p). Let
(% - %)* = %, then

(1) [b,Ry] is bounded on L1(R") for 1< g < g;

(2) [b,R}] is bounded on L1(R") for g < q < co.

Based on the results of Shen [1] and Bongioanni, Harboure, and Salinas [14], we consider
the boundedness of R; on Herz spaces. If s > n, Shen [1] proved that R; is a Calderén-
Zygmund operator. By Theorem 6.2.1 in [20], it is obvious that R; is bounded on Herz
spaces. Hence in the next theorem, we only consider the case of 5 <s<n.

Theorem 4.4 Suppose that V € Bs, s > 5, and let (% - %)* =

and =% <a <n(l -1 1), then
q a7

%.If0<p<oo,(21)’<q<oo,

IR N ger @y < CIf Nl g gony-

Proof By the decomposition

f0)=>"fO)x50) = >_ £0),
j==00 j==o0
we obtain

o) k=2 p
IR Vo oy S D 2k°‘1’(2 ||kaLﬁ||Lq<Rn>>

k=—00 jj=—00

%) k+1 V4
Ly zkw(z ||XkRLf,qu<W))
k=—00

j=k-1

e8] [e'¢) p
S zkap(z ||XkRu§||Lq<Rn)>
k=—00 y=k+2

=W1+W2+W3.

For W, by Lemma 4.3, we have

00 k+1 14
LD W(Z Ilﬁlqu(Rn)) S 1y

k=-00 y=k-1

Now we estimate W;. Because x € Ex, y € Ej, and j < k — 2, we deduce that |x — y| ~ 2. By
Lemmas 4.1 and 2.16, we get

xR fi Nl Laqwny

(U,
</,

i\
dx)

F I 1 V(z)
— = _dzd
/E, A+ lx—yl/p@E)N |x—y|*1 ./B(y,x—y) |z —y|"! “

fE Ky, (2 0)f () dy

N\
dx)
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(U,

= Wl,l + WLZ‘

/ 1462l 1 dy
£ (L+[x—yl/p(x)N |x —yI"

7

0 N\
dx)

For W1;, by Lemma 2.17, we have

1
1 1 V(z) 1 )q
< ————dzdy| dx
11
(L+ 25/ p(0) /(D |2k|"1( E iy =1
1 IEkI”’ / / V(2)
< ————dzdy.
~ (1+2k/p(0))N/(lo+1) |2k|n 1 v | (0,.2k+1) |z — y|n Ty mn—1 zay

Using the Holder inequality, we obtain

V(z)
/lf ‘fozkﬂ |z - J’|”1dZdy

1-1_1
SJ |E1| 19 |W||Lq(R”) HIl(VXB(O,Zk“))HL;I(R”
1-1_1

SIE T @ lfilla@m |V xpo,2601 | s @) (4.1)

where in the last inequality, we have used the boundedness of the fractional integral 7;
with %1 = % — . Because V' € B;, we use Lemma 2.6 to deduce that

1_
IV soas e S 1Eeald ™ [ Vea)de
B(0 2k+1)
< ] H(251) 72 (14 2841/ p(0))
1.2 N
S Exals 77 (1+ 25 /p(0)) ™.
The above estimate (4.2) implies that

1-1_

fill Laqn |E;|

LI~ k N/(lo+1)—N;
(1 + 2K/ p(0))N/to+1)-No |Ex|

Y T

1
q
Let N be large enough. When j < k — 2, we have
< o-Kn(1- 1_1y
Wi S2 T3 fll ey

Next we estimate W) 5. We have

1
Wiz S
(1 2k/p(0))N/ lo+1) |2k|n

ool

_1 1
illzogn B0 |Ecla
~ (1+2k/p(0))N/(lo+1) |2k|n :

Take N large enough. For j < k — 2, we have

i—kyn(1-1 i~k)n(1-1-1
Wia < 2002 1l gy < 2770 @) o).
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Hence, when j < k — 2, we have

0
1 xxRefill Lac Rﬂ)NZ(/ onll-g- llflqu ®")-

Slnce—g <a<n(l- l - %) we have

[e'e) k-2 p
—k)n
LD 2k“”(Z 20 ufnLan)) .
J

k=—00

Similar to the proof of Theorem 3.10, by Holder’s inequality and (4.1), we obtain
Wi S If -

For W3, note that when x € Ey, y € Ej, and j > k + 2, then |x — y| ~ 2. We have

\%4 14
[V e Ve,
B(,lx—yl) |z —y|"" B(0,2+1) |z —y|"=

Therefore, when j > k + 2, by Lemma 2.17, we have

1 xxRefll Larmy

N\
dx)

< 1 1 /
~ W+ 2T [T\ g,

B2+ 12— y"!

frore] )

lf()’)\/ 4 LZ)_dZdy
L

1
1+ 27 p(0)NGo+D) [ (/

= W3,1 + ngz.
Similar to (4.1) and (4.2), we get
1-1-1
/ o)l / o) |z — yl'l —— = dzdy SIEL T 1 fillawn |V xpo.0 ls@n)
and

1_2 ; N,
IV X0 ls@n S Bl (1+277/p(0))™

Take N large enough. Because 1 = 1 — 1 we have
qg s n
1
< i ll o |Ex|
B 1+ 26 p(0)N 10+1> No |Ej|<1—%)—<1—%,—%>—<%—%)

1
I 1| La gy IEqu
~ (1+2k/p( ))N/ (lo+1)-Nog |E|q

k—j)n(L
52( l)n(q)|m||Lq(R”)~
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For W3, using Holder’s inequality, we can easily get

1
Ifill Larmy |Ex|4

32 I 1°
(1+2/p(O)PNo+D g

k—j)n(L
52( ]>n(q)”ﬁ”L‘l(R”)'

Combining with W3; and Ws,, we get

oo k-2 X p
k—j)n(=
Wg 5 Z 2k0tp<z 2( l)n(q)”fj”Lq(]R”)> .

k=—00 Jj=—00

Since —g <a<n(l- é - %), Holder’s inequality and (4.1) imply that W3 < |[f||‘;f<a,p. This
q
completes the proof of Theorem 4.4. d

Now we consider the boundedness of the commutators [, R;] on Herz spaces, where
b € BMO, (p). If s > n and b € BMO(R"), the desired boundedness can be deduced from
Theorem 1.1 in [29]. Hence in the following theorem, we still assume that s € (1/2, n).

Theorem 4.5 Suppose that V € By, s > 5, and b € BMO, (p), 0 <0 < 0. Let (% - %)* =

If0<p<oo,(51)’<q<oo,and—§<a<n(1—%—%),then

1
7

|06, Ru1f [ gy 1 gy

Proof Similar to Theorem 4.4, we write
O =Y fOxs0) =Y ).
j=—00 j=—00
Hence, we have

o) k=2 p
” [b’RL]fHI;'(;'P(Rn) 5 Z 2kap<z H Xk[b’ RL]ﬁ”L‘Z(]R”))
P ;

00 jj=—00

0 k+1 g
s Z 2/«117(2 ||Xk[erL1ﬁ“Lq(R")>

k=—00 y=k-1

o0 i ’
v 30 2k ( > ||Xk[b,RL1ﬂ“w<R">>

k=—00 Jy=k+2

= Wl + ‘~V2 + ")\&3.
For W5, by Lemma 4.3, we have
k+1

9] p
i~ ki
W<y 2 “1”(Z Hﬁlqu(R")) S Mo gy
k=—00

j=k-1
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Now we estimate W;. For x € Ej, y € Ejwithj < k-2, |x—y| ~ 2¥. By Lemma 2.16, we can

get
“Xk[b’RL]ﬁ”Lq(R")
N\
~([ | 0t - s o] ax)
Ej E]'
1
<([ | Lttt V"“h¢y¢m)q
£ g L+ 1=yl pGDN % = y1" Jpgy,x-yp) 12 = 21"
1
(b)) -bY I 1 ! )5
+ dy| dx
(/Ek /E,. A+ x=yl/ )N |x—y|" ’
= ‘7«1’1 + ‘771,2.
For \/~V1,1, we can see that b(x) — b(y) = (b(x) — bg) - (b(y) — bg;). Hence, by Lemma 2.17, we
have
Wi, < v
LI~ (1 + 2%/ p(0))N/o+1
1
1 V(z) 1 )q
X —— b(x) - b(y))f (») dzdy| dx
|2k|"1< E E,»i( OO Bly,lx—y)) 12 = yI" ’

1
5 (1+2k/p(0))N/lo+1 |2k|n 1 (/ | b(x) b3)|qu>

dzd
/Lf |/02’<+1)|Z yln-t “a

|Ey]d
(1 +2k/p(0))N/lo+1 |2k|n 1

14
x/ @ - dzdy
B0.2k+1) |2 = y|"™

1) (2)
Wl 1 Wl 1-

f|wy b))

Using Holder’s inequality and the boundedness of the fractional integral 7; with 1 7= % - %,
we obtain
V(z)
E B(0,2k+1) |2 =y
bl 1B 7T
o |&j 1
™ (L+2/p(0))-lo+De illzoe ”II(VXB(OYZ"*‘))HL?%(R")
1-1_1
L O R
n +1 S (M
™ [+ 2/p(0)) lore VIHENT T AR IEED
1616 Ui ll ey I SR
|Ejl" 9 |Ex|s™n,

~ {1+ 25/ p(0)) D7 No
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where in the last inequality we have used (4.2) above. We get

1-1_
7 2) < 15115 111l 22 @y |Ej]

S (1 + 2%/ p(0))N/Uo+D~(o+1)o-No

Q| R

1

q
1-1_
|Exl™ 7
Similar to Wfi), we have

N _11 1.2
flf \f oty T7 W O 2y S Wfluscen 1+ 2400 ) BB
2+

By Lemma 2.10, we get

. 1-1-1
) < (k = DB llo il zawn) |E;|” 7 4
1,1 (1+2k/p(0))N/ lp+1)—(lp+1)o—Np |Ek|1 % cl]

Since N is large enough, when j < k — 2, we have
v N -Kn1-2-=
Wan < =202 bl f o,

Next we estimate W;,. We can get

~ 1 1 %
Wl,2 S (1 + 2k/p(()))N/(lo+1) |2k|n (./E |(b(x) - ij)‘qu> L} lf(y)| dy

1 |Ex|4
* (1+2k/p(0))N/(lo+1 211((|n /‘ b()/ bB])f(y ‘dy

D | w2
12 T Wio-

Using Lemma 2.10 and the Holder inequality, we get the following estimates:

. -1
)« K=DIblo Wfillzagn 1B 7
12 (L4 2K p(Q)NIlo Do 1

and

1-1
@ < 16l |V}||Lq(]]§n) |E]| q
b2 N (1 2k/p( ))N/(10+1)—(lo+l)a .

Take N large enough. Because j < k — 2, we can see that
~ o (=R)n(1-1-1)
Wi S k=22l If o).

Hence,

o (i—Kn(1-L-1
61, RIS | gy S k= 027" T2 bl 1 oy
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Since -2 <@ <n(l-1-1
q a7

), similar to Theorem 3.10, we use Holder’s inequality to obtain

o k=2 r

~ o i—n(-1-1

sy Zk“P(Z(k— j)2U =g ||b||allﬂllm<w>>
)

k=—00 j=—00

SNBIZN I -
S IIJllflqu,p
For W, if x € E; and y € E; with j > k + 2, then |x — y| ~ 2/. We have

k(B RL1G | g gy

<
<(/,
I(b6) - bONFO) 1
' (fgk /E,. WL+ =yl p@)N fx—yP"

= WS,I + Wg,z.

1

q q
dx)

V(z)
Binje—y)) 12 ="

/E | |(b(x) - b 1 /

dzd
(Lt =GN =yl T y

1 \i
dy dx)

Using the decomposition b(x) — b(y) = (b(x) — bg,) — (b(y) — bg,) again, we get

V(z)
b(y)-b ™ 4
le( by [ T
< f |(b) - ba, )F )| V@ gy
Ej

B0 12 —y|" 1

k= DIblsfillza@n 1

11
S Wr 2/ p(0)) oo Bl 1 TIET
On the other hand,
V(z) ; No =il 1 2
O [, o Ty 42 S Wilaon (1 210000 10T B3
E B(0,2/* -

Therefore

~ , k—j)n(L
W1 < G = k2D by 1fillLaqen.

Similarly, we can get

~ , k—j)n(L
Wi < G = k2% 5], 116 1] 2 ny-

Because —Z <« < n(1 — %1 - %), by the estimates for Wa1 and Wi, we can use Holder’s
inequality and (4.1) to get

o] k=2 2

v , k—in(L

W<y 2“‘*’(2(;—@2( ”"<q)||b||g|m||Lq<Rn)) SIBIE I e
k=—00 Jj=—00

This completes the proof of Theorem 4.5.
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Corollary 4.6 Suppose that V € Bs, s > 5, and (% - %)* ==.Let b€ BMO,(p), 0 <o < 00.

Q=

If0<p<oo,1<q<51,—§+§<a<n(1—%),then:
O MRS gz gny S W llgee mys
() 15, Ry 1f i ey S 16 If oo oy

There are similar results for the non-homogeneous Herz space K,‘; P(R™).

Theorem 4.7 Suppose that V € By, s > g and let b € BMO, (p), 0 < 0 < 00. Let 0 < p < 00,
1 1y _ 1
G-2"=7

1) 1f(é)’<q<oocmd—§<a<n(l—

- 1), then
q

p n < ” ny»
||RLf||1<:1’P(R )~ Hf”[(‘;p(]R )
1o, Relf Wl cerr ey S WMo I 1l e oy

(2) Ifl<q<21and—§+§<a<n(1—%}),then

||R2f||1(:'P(Rn) g ”f”](Z‘"(R”)’
|| [b’RZ].f”Kg'p(R”) 5 ”blld ”_f”](;‘p(R")'
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