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Abstract
Let L = –� + V be a Schrödinger operators on R

n, n≥ 3, where the nonnegative
potential V belongs to the reverse Hölder class Bs for s > d

2 . Let Tβ = (–� + V)–βVβ ,
β > 0, and RL =∇(–� + V)–1/2 be the Riesz transform associated to L. We prove that
the operator Tβ and RL are bounded on Herz spaces K̇α,p

q (Rn) and Kα,p
q (Rn),

respectively. Suppose that b ∈ BMOσ (ρ), which is larger than BMO(Rn). By a maximal
estimate, we obtain the boundedness of commutators [b, Tβ ] and [b,RL] on Herz
spaces.
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1 Introduction
Let L = –� + V be a Schrödinger operators on R

n, n ≥ , where the nonnegative po-
tential V belongs to the reverse Hölder class Bs, s > n

 . The Riesz transforms and the
fractional integrals associated with L have been studied extensively. In , Shen []
proved the Lp-boundedness of the operators (–� + V )iγ , ∇(–� + V )–, ∇(–� + V )–/,
and ∇(–�+ V )–∇ . Later, Sugano [] and Tang-Dong [] generalized some results of Shen
[] and obtained the estimates for the operators V β (–�+V )–β ,  ≤ β ≤ β < n

 , and their
dual operators. The endpoint properties of Riesz transform and the fractional integral as-
sociated to L have been obtained by Yang, Yang, and Zhou []. For further information,
we refer the reader to Jiang [], Liu [], Liu and Dong [], Sugano [] and the references
therein.

In the study of harmonic analysis and the partial differential equations, the commutators
related to singular integral operators play an important role. Let RL = ∇(–� + V )–/ be
the Riesz transform associated with L. Based on the results of Shen [], Guo, Li, and Peng
[] obtained the Lp-boundedness of the commutators [b, RL] provided V ∈ Bq, q ≥ n/. By
the functional calculus of L, Bui [] obtained the weighted estimate of commutators of
some singular integrals related to L. We refer to Liu, Huang, and Dong [], Liu, Wang,
and Dong [], and Wang and Liu [] for the latest developments on this topic.

In Section , assume that V ∈ Bs, s ≥ n
 . Let Tβ = (–� + V )–βV β and b ∈ BMOσ (ρ),

where BMOσ (ρ) denotes a function space associated with L. Such spaces were first intro-
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duced by Bongioanni, Harboure, and Salinas [] as a generalization of the bounded mean
oscillation space BMO(Rn). We investigate the boundedness of the commutator [b, Tβ ]
on Herz type spaces K̇α,p

q (Rn) and Kα,p
q (Rn), respectively. In Section ., with the help

of the Lp-boundedness of Tβ , we verify that the commutators [b, Tβ ] are also bounded
on Lp(Rn). See Theorem .. In Section ., we prove that if the index (β , p, q,α) satis-
fies

⎧
⎪⎪⎨

⎪⎪⎩

 < β < n/,  < p < ∞,

s/(s – β) < q < ∞,

–n/q < α < n( – /q – β/n),

the operators Tβ and the commutators [b, Tβ ] are bounded on the homogeneous Herz
spaces K̇α,p

q (Rn). A similar result also holds for the non-homogeneous Herz spaces
Kα,p

q (Rn). See Theorems . and . for the details.
By use of a maximal estimate, Bongioanni, Harboure, and Salinas [] proved that the

commutators [b, RL] are bounded on Lp(Rn), where b ∈ BMOσ (ρ). See Theorem  in [].
In Section , the Lp-boundedness of [b, RL] can be further extended to the setting of
K̇α,p

q (Rn) and Kα,p
q (Rn), respectively. Precisely, we obtain the following results. Suppose

that V ∈ Bs, s ≥ n
 , and b ∈ BMOσ (ρ),  < σ < ∞. Let 

q̃ =: ( 
s – 

n )+. If the index (p, q,α)
satisfies

⎧
⎨

⎩

 < p < ∞, (q̃)′ < q < ∞,

–n/q < α < n( – /q – /q̃),

then RL and [b, RL] are bounded on K̇α,p
q (Rn) and Kα,p

q (Rn). See Theorems ., . and ..

Remark . We point out that the results obtained in Sections  and  cover many former
results. It is obvious that

⎧
⎨

⎩

K̇,q
q (Rn) = Lq(Rn),

K̇α,q
q (Rn) = Lq(Rn, |x|αq).

Hence our results generalize the Lp-boundedness of [b, Tβ ] and [b, RL] to the boundedness
of Herz type spaces. On the other hand, Theorems ., ., . and . imply that [b, Tβ ]
and [b, RL] are bounded on the Lebesgue spaces Lq(Rn) with power weighted |x|αq.

Remark . For β = , , T = (–� + V )–V and T = (–� + V )–/V /. For b ∈ BMO(Rn),
the Lp-boundedness of [b, Ti], i = ,  have been obtained by Guo, Li, and Peng [], respec-
tively. See Theorem  in []. In this paper, we assume that b ∈ BMOσ (ρ), which is larger
than BMO(Rn). Hence our results cover those of Guo, Li, and Peng []. On the other hand,
the boundedness of [b, Tβ ] on Herz spaces are new even for the case b ∈ BMO(Rn).

The rest of this paper is organized as follows. In Section , we state some notations and
known results which will be used throughout this paper. In Section , we prove the com-
mutators [b, Tβ ] are bounded on Lp(Rn) and Herz spaces with b ∈ BMOσ (ρ), respectively.
Section  is devoted to the boundedness of [b, RL] on Herz spaces, where b ∈ BMOσ (ρ).
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Some notations Throughout the paper, the Lebesgue measure of the ball B ⊂R
n denote

by |B|. c and C will denote unspecified positive constants, possibly different at each oc-
currence. The constants are independent of the functions. U ≈ V represents that there is
a constant c >  such that c–V ≤ U ≤ cV whose right inequality is also written as U � V.
Similarly, if V ≥ cU, we denote V � U.

2 Preliminaries
2.1 Auxiliary function and BMO type spaces
In this paper, we consider the Schrödinger differential operator L = –� + V on R

n, n ≥ ,
where V is a nonnegative potential belonging to the reverse Hölder class Bs, s ≥ n

 , which
is defined as follows.

Definition . A nonnegative locally Ls-integrable function V on R
n is said to belong to

Bs, s > , if there exists C >  such that the reverse Hölder inequality

(


|B|
∫

B
V s(x) dx

) 
s
�

(


|B|
∫

B
V (x) dx

)

holds for every ball B ⊂ R
n.

Remark . Assume that V ∈ Bs,  < s < ∞. Then V (y) dy is a doubling measure. Namely,
there exists a constant C such that for any r >  and y ∈R

n,

∫

B(x,r)
V (y) dy � C

∫

B(x,r)
V (y) dy. (.)

Lemma . ([], Lemma .) Suppose that V ∈ Bs, s > n
 . There exists a constant C such

that for  < r < r < ∞,


rn–

∫

B(x,r)
V (y) dy �

(
r

r

)n/s–

· 
rn–



∫

B(x,r)
V (y) dy.

In order to study the Neumann problem for the Schrödinger operator, Shen [] intro-
duced the following auxiliary function.

Definition . For x ∈R
n, the function ρ is defined by

ρ(x) = sup

{

r >  :


rn–

∫

B(x,r)
V (y) dy ≤ 

}

.

We list some properties of the auxiliary function ρ which will be used in the sequel.

Lemma . ([], Lemma .) There exist positive constants C > , c > , and l >  such
that, for x, y in R

n,
(a) ρ(x) ∼ ρ(y) if |x – y| ≤ C

ρ(x) ,
(b) ρ(x) ≤ C( + |x – y|/ρ(x))lρ(y),
(c) ρ(x){ + |x – y|/ρ(x)}l/(l+) ≥ cρ(y).
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Lemma . ([], Lemma .) Suppose V ∈ Bs, s > n
 . Then for any N > log C + , where

C is the constant in (.), there exists a constant CN such that for any x ∈R
n and r > ,


( + r/ρ(x))N

∫

B(x,r)
V (y) dy � CN rn–.

The bounded mean oscillation space BMO(Rn) was first introduced by John-Nirenberg
[] to study some problems arising from elasticity theory. In harmonic analysis, it is well
known that BMO(Rn) is the dual of Hardy space H(Rn). In [], Bongioanni, Harboure,
and Salinas added a perturbation term into the definition of BMO(Rn) and introduced a
new class of BMO type spaces associated with Schrödinger operators. See also [, ].
Given a function b ∈ L

loc and a cube B, let bB denote the average of b on B:

bB =


|B|
∫

B
b(x) dx.

Definition . Suppose V ∈ Bs, s > n/, and σ ∈ (,∞).
(i) A new space BMOσ (ρ) is defined as the set of all b ∈ L

loc which satisfies


|B(x, r)|

∫

B(x,r)

∣
∣b(y) – bB

∣
∣dy < C

(

 +
r

ρ(x)

)σ

, (.)

where the supremum is taken over all cubes B(x, r) ∈R
n. A norm for b ∈ BMOσ (ρ),

denoted by ‖b‖σ is given by the infimum of the constants satisfying (.), after
identifying functions that differ upon a constant.

(ii) With the above definition in mind, we define BMO∞(ρ) =
⋃

σ> BMOσ (ρ).

Proposition . ([]) For  < σ < σ ′, BMO(Rn) ⊂ BMOσ (ρ) ⊂ BMOσ ′ (ρ).

Bongioanni, Harboure, and Salinas [] gave some examples to clarify that BMO(Rn) is
a subspace of BMO∞(ρ).

Lemma . ([], Proposition ) Let σ >  and  < p < ∞. If b ∈ BMOσ (ρ), then for all
B = B(x, r) with x ∈R

n and r > ,

(


|B|
∫

B

∣
∣b(y) – bB

∣
∣p dy

) 
p

≤ ‖b‖σ

(

 +
r

ρ(x)

)σ ′

,

where σ ′ = (l + )σ and l is the constant appearing in Lemma ..

The following result can be deduced from Lemma . immediately.

Lemma . ([], Lemma ) Let σ >  and  < p < ∞. If b ∈ BMOσ (ρ), B = B(x, r), and
BBk = B(x, kr), then for x ∈R

n and r >  with σ ′ = (l + )σ ,

(


|BBk |
∫

BBk

∣
∣b(y) – bB

∣
∣p dy

) 
p

≤ ‖b‖σ k
(

 +
kr
ρ(x)

)σ ′

.
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2.2 Herz spaces
We state some basic knowledge on the Herz spaces. In , in order to study absolutely
convergent Fourier transforms, Herz [] introduced a new class of function spaces Kq

which are equivalent to the homogeneous Herz spaces with special exponent. In s, Lu
and Yang introduced the homogeneous Herz spaces and non-homogeneous Herz spaces
with general indices. By the block decomposition, Lu and Yang obtained many interesting
properties of these spaces. We refer the reader to Lu, Yang, and Hu [] for the details
[–] and the references therein.

For k ∈ Z, let Bk = {x ∈ R
n : |x| ≤ k} and Ek = Bk\Bk–. Denote by χk the characteristic

function of Ek . Define

χ̃k =

⎧
⎨

⎩

χk , k ∈N,

χB , k = .

The Herz spaces are defined as follows.

Definition . Let α ∈R,  < p, q ≤ ∞.
(i) The homogeneous Herz space K̇α,p

q (Rn) is defined by

K̇α,p
q

(
R

n) =
{

f ∈ Lq
loc

(
R

n\
)

: ‖f ‖K̇α,p
q (Rn) < ∞}

,

where

‖f ‖Kα,p
q (Rn) =

{∑

k∈Z
kαp‖f χk‖Lq(Rn)

} 
q

.

(ii) The non-homogeneous Herz space Kα,p
q (Rn) is defined by

Kα,p
q

(
R

n) =
{

f ∈ Lq
loc

(
R

n) : ‖f ‖Kα,p
q (Rn) < ∞}

,

where

‖f ‖Kα,p
q (Rn) =

{ ∞∑

k=

kαp‖f χ̃k‖Lq(Rn)

} 
q

.

Proposition . ([], Proposition ..) Let  < p, q ≤ ∞ and  < α < ∞. Then

Kα,p
q

(
R

n) = K̇α,p
q

(
R

n) ∩ Lq(
R

n).

For f ∈ Kα,p
q (Rn),

‖f ‖Kα,p
q (Rn) ≈ ‖f ‖K̇α,p

q (Rn) + ‖f ‖Lq(Rn).

Let X be a function space. We denote by X∗ the dual of X. For the homogeneous and
non-homogeneous Herz spaces, there exist the following dual relations, respectively.

Lemma . ([], Corollary ..) Let α ∈R,  < p < ∞, and  ≤ q < ∞. Then:
(i) (K̇α,p

q (Rn))∗ = K̇–α,p′
q′ (Rn).

(ii) (Kα,p
q (Rn))∗ = K–α,p′

q′ (Rn).
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2.3 Some lemmas
Let L = –� + V be the Schrödinger operator with V ∈ Bs, s ≥ n

 . The heat semigroup
associated with L is defined as

Ttf (x) = e–tLf (x) =
∫

Rn
Kt(x, y)f (y) dy, f ∈ L(

R
n), t > . (.)

Lemma . ([], Theorem .) Let Kt(x, y) be the kernel defined in (.). For every non-
negative integer N , there is a constant CN such that

 ≤ Kt(x, y) � CN t– n
 exp

(

–
|x – y|

t

)
(
 +

√
t/ρ(x) +

√
t/ρ(y)

)–N .

For  < β < n
 , the fractional integral associated with L is defined by

L–β f (x) =
∫ ∞


e–tLf (x)tβ– dt.

The following result is obtained by Tang and Dong [].

Lemma . ([]) Suppose V ∈ Bs, s ≥ n
 . For every N ∈N, there exists a constant CN such

that

∫ ∞


tβ–Kt(x, y) dt ≤ CN

( + |x – y|/ρ(x))N


|x – y|n–β
.

Denote by Kβ (·, ·) the kernel of the operator Tβ = (–� + V )–βV β . The following point-
wise estimate of Kβ is a direct corollary of Lemma .. We omit the details.

Lemma . Suppose that V ∈ Bs, s ≥ n
 . For every N ∈ N, there exist constants CN and

δ >  such that for  < h < |x–y|
 ,

∣
∣Kβ (x, y)

∣
∣ ≤ CN

( + |x – y|/ρ(x))N


|x – y|n–β
V β (y)

and

∣
∣Kβ (x + h, y) – Kβ (x, y)

∣
∣ ≤ CN

( + |x – y|/ρ(x))N
|h|δ

|x – y|n–β+δ
V β (y).

For the sake of convenience, in the sequel, we take N large enough such that N/(l + ) –
σ (l + ) – Nβ > , where N is the constant in Lemma ..

Lemma . Suppose that V ∈ Bs with s ≥ n
 . Let x ∈ Ek , y ∈ Ej.

(a) If j ≤ k – , then 
(+|x–y|/ρ(x))N ≤ 

(+k /ρ())N/(l+) .
(b) If j ≥ k + , then 

(+|x–y|/ρ(x))N ≤ 
(+j/ρ())N/(l+) .
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Proof We only prove (a), and (b) can be dealt with similarly. For x ∈ Ek and y ∈ Ej with
j ≤ k –, by a simple computation, we can see that |x–y| ∼ k . By (c) of Lemma ., we have


( + |x – y|/ρ(x))N ≤

(


 + |x – y| 
ρ()(+|x|/ρ())l/l+

)N

≤
(

( + |x|/ρ())l/l+

( + |x|/ρ())l/l+ + |x – y|/ρ()

)N

≤
(

( + |x|/ρ())l/l+

 + |x – y|/ρ()

)N

≤ 
( + k/ρ())N/(l+) . �

A ball centered at x and with radius ρ(x) is called critical. In this paper, we use the symbol
B(x,ρ(x)) to denote the critical ball. Dziubański and Zienkiewicz [] gave the following
covering lemma.

Lemma . ([], Lemma .) There exists a sequence of points {xk}∞k= ⊂ R
n, such that

the family of critical balls {Qk = B(xk ,ρ(xk))}∞k> satisfies:
(i) R

n =
⋃

k Qk .
(ii) There exists N = N(ρ) such that for every k ∈ N ,

card{j : Qj ∩ Qk} ≤ N .

Definition . Let γ >  and Bρ,γ be the set {B(y, r) : y ∈R
n, r ≤ γρ(y)}. For f ∈ L

loc(Rn)
and x ∈R

n, we define the following two maximal functions:

Mρ,γ (f )(x) = sup
x∈B∈Bρ,γ


|B|

∫

B

∣
∣f (y)

∣
∣dy

and

M

ρ,γ (f )(x) = sup

x∈B∈Bρ,γ


|B|

∫

B

∣
∣f (y) – fB

∣
∣dy.

Definition . Let FQ be the set {B(y, r) : y ∈ R
n, r > } and let Q be a ball in R

n. For
f ∈ L

loc(Rn) and y ∈ Q, we define

MQ(f )(x) = sup
x∈B∈FQ


|B ∩ Q|

∫

B∩Q

∣
∣f (y)

∣
∣dy

and

M

Q(f )(x) = sup

x∈B∈FQ


|B ∩ Q|

∫

B∩Q

∣
∣f (y) – fB∩Q

∣
∣dy.

In the proof of Theorem . below, we need the following Fefferman-Stein type inequal-
ity.
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Lemma . ([], Lemma ) For  < p < ∞, there exist ξ and γ such that if {Qk}∞k= is a
sequence of the balls as those in Lemma ., then for all f ∈ L

loc(Rn),

∫

Rn

∣
∣Mρ,ξ (f )(x)

∣
∣p dx �

∫

Rn

∣
∣M


ρ,γ (f )(x)
∣
∣p dx +

∑

k

|Qk|
(


|Q|

∫

Qk

∣
∣f (x)

∣
∣dx

)p

.

3 Commutators [b, Tβ ] on Herz type spaces
3.1 The boundedness of [b, Tβ ] on Lp(Rn)
Throughout this paper, for p ∈ (,∞), denote by p′ the conjugate of p, that is, 

p + 
p′ = .

As usual, for f ∈ L
loc(Rn), the p-maximal function Mp is defined as

Mpf (x) = sup
r>

(


|B(x, r)|
∫

B(x,r)

∣
∣f (y)

∣
∣p dy

) 
p

.

Definition . Let f ∈ Lq
loc(Rn). The fractional Hardy-Littlewood maximal operator Mσ ,γ

is defined by

Mσ ,γ f (x) = sup
x∈B

(


|B|– σγ
n

∫

B

∣
∣f (y)

∣
∣γ dy

) 
γ

.

Lemma . ([]) Suppose that  < γ < p < n
σ

and 
p

= 
p

– σ
n . Then

‖Mσ ,γ f ‖Lp (Rn) � ‖f ‖Lp (Rn).

Now we consider the boundedness of Tβ = (–�+V )–βV β , β > . The following maximal
estimate is obtained by Li, Wan, and Zhang [].

Lemma . ([], Theorem .) Suppose that V ∈ Bs for s > n
 . Let  < β ≤ β < n

 ,  <
( s
β

)′ < p < n
(β–β) and 

p
= 

p
– β–β

n . Then

∣
∣(–� + V )–β V β f (x)

∣
∣� M(β–β),( s

β
)′ f (x).

Let β = β. By Lemma ., we can obtain the following results.

Corollary . Suppose that V ∈ Bs, s ≥ n
 . Let  < β < n

 .
(i) For s

s–β
< p < ∞, Tβ is bounded on Lp.

(ii) For  < p < s
β

, T∗
β is bounded on Lp.

Now, let b ∈ BMOσ (ρ). We consider the Lp-boundedness of the commutator [b, Tβ ]. We
need the following maximal function estimate of [b, Tβ ].

Theorem . Suppose that V ∈ Bs, s ≥ n
 , and b ∈ BMOσ (ρ),  < σ < ∞. If s

s–β
< p < ∞,

there exists a constant C >  such that, for all f ∈ Lp
loc(Rn) and every critical ball Q =

B(x,ρ(x)),


|Q|

∫

Q

∣
∣[b, Tβ ]f (x)

∣
∣dx ≤ C‖b‖σ

{
inf
x∈Q

Mpf (x) + inf
x∈Q

Mp(Tβ f )(x)
}

.
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Proof For any constant a, b(x) – b(y) = (b(x) – a) – (b(y) – a). Then we have

[b, Tβ ]f (x) =
∫

Rn

(
b(x) – b(y)

)
Kβ (x, y)f (y) dy

=
(
b(x) – a

)
∫

Rn
Kβ (x, y)f (y) dy + Tβ

(
(b – a)f

)
(x)

= I + I.

Let f ∈ Lp(Rn) and Q = B(x,ρ(x)) with a = bQ. We deal with the average of I and I on
Q, respectively. At first, by Lemma . and Hölder’s inequality with p > s

s–β
, we can get


|Q|

∫

Q
|I|dx � 

|Q|
∫

Q

∣
∣b(x) – bQ

∣
∣
∣
∣Tβ f (x)

∣
∣dx

�
{


|Q|

∫

Q

∣
∣b(x) – bQ

∣
∣p′

dx
} 

p′ { 
|Q|

∫

Q

∣
∣Tβ f (x)

∣
∣p dx

} 
p

� ‖b‖σ inf
x∈Q

Mp(Tβ f )(x).

For I, we split f = f + f, where f(x) = f (x)χQ(x) and f(x) = f (x)χ(Q)c (x). Take p ∈ ( s
s–β

, p)
and denote μ = p

p–p
. By Corollary . and Lemma ., we apply Hölder’s inequality to get


|Q|

∫

Q

∣
∣Tβ

(
(b – bQ)f

)
(x)

∣
∣dx

�
(


|Q|

∫

Q

∣
∣Tβ

(
(b – bQ)f

)
(x)

∣
∣p dx

) 
p

�
{


|Q|

∫

Q

∣
∣
(
b(x) – bQ

)
f (x)

∣
∣p dx

} 
p

�
{


|Q|

∫

Q

∣
∣f (x)

∣
∣p dx

} 
p
{


|Q|

∫

Q

∣
∣b(x) – bQ

∣
∣μp dx

} 
μp

� ‖b‖σ inf
x∈Q

Mp(f )(x).

Next we deal with the term


|Q|

∫

Q

∣
∣Tβ

(
(b – bQ)f

)
(x)

∣
∣dx.

If x ∈ B(x,ρ(x)) and z ∈ B(x, jρ(x)) with j ≥ , then |x – z| ∼ |x – z|. With the help of
Lemmas . and ., we use Hölder’s inequality to deduce that

Tβ

(
(b – bQ)f

)
(x)

�
∫

|x–z|>ρ(x)

|b(z) – bQ||f (z)|V β (z)
( + |x–z|

ρ(x) )N |x – z|n–β
dz

�
∞∑

j=

(
 + j)–N 

|jρ(x)|n–β

∫

jρ(x)<|x–z|<j+ρ(x)

∣
∣b(z) – bQ

∣
∣
∣
∣f (z)

∣
∣V β (z) dz
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�
∞∑

j=

(
 + j)–N |j+ρ(x)|n

|jρ(x)|n–β

{


|Qj+ |
∫

Qj+

∣
∣b(z) – bQ

∣
∣p dz

} 
p

×
{


|Qj+ |

∫

Qj+

∣
∣f (z)

∣
∣p dz

} 
p
{


|Qj+ |

∫

Qj+

∣
∣V (z)

∣
∣s dz

} β
s

�
∞∑

j=

j
(
 + j)–N |jρ(x)|(n–)β

|jρ(x)|–β |Qj |β ‖b‖σ inf
y∈Q

Mp(f )(y)

� ‖b‖σ inf
y∈Q

Mp(f )(y),

where Qj+ = B(x, j+ρ(x)), β

s + 
p + 

p
= , and N = N/(l + ) and N = N/(l + ) –σ (l +

) – Nβ .
Finally, in Lemma ., take N large enough such that N > N. We complete the proof

of Theorem .. �

Remark . It is easy to check that if the critical ball Q is replaced by Q, Theorem .
also holds.

Lemma . Let V ∈ Bs, s ≥ n
 , and b ∈ BMOσ (ρ),  < σ < ∞. Then for any p > s

s–β
and

γ ≥ , there exists a constant C such that for all f and x, y ∈ B = B(x, r) with r < γρ(x),

∫

(B)c

∣
∣K(x, z) – K(y, z)

∣
∣V β (z)

∣
∣b(z) – bB

∣
∣
∣
∣f (z)

∣
∣dz ≤ C‖b‖σ inf

u∈B
Mpf (u).

Proof Write Ej = B(x, j+r)\B(x, jr). For x ∈ B(x, r) and z ∈ Ej, we have |x–z| ∼ |x –z|.
With the help of Lemmas ., . and ., we obtain

∫

(B)c

∣
∣K(x, z) – K(y, z)

∣
∣V β (z)

∣
∣b(z) – bB

∣
∣
∣
∣f (z)

∣
∣dz

�
∞∑

j=

∫

Ej

|b(z) – bB||f (z)|V β (z)|r|δ
( + |x–z|

ρ(x) )N |x – z|n–β+δ
dz

�
∞∑

j=


( + jr

ρ(x) )N

|r|δ
(jr)n–β+δ

∫

Ej

∣
∣b(z) – bB

∣
∣
∣
∣f (z)

∣
∣V β (z) dz

�
∞∑

j=

j–jδ

( + jr
ρ(x) )N

‖b‖σ inf
z∈Q

Mp(f )(z)

� ‖b‖σ inf
z∈Q

Mp(f )(z),

where N = N/(l + ) and N = N/(l + ) – σ (l + ) – Nβ . Taking N large enough, we
complete the proof of Lemma .. �

With the help of Lemma ., we can obtain the Lp-boundedness of [b, Tβ ]. Denote by
T ′

β the dual operator of Tβ . We have the following.

Theorem . Let V ∈ Bs, s ≥ n
 , and let b ∈ BMOσ (ρ),  < σ < ∞.
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(i) If  < β < n
 , s

s–β
< p < ∞, then

∥
∥[b, Tβ ]f

∥
∥

Lp(Rn) � ‖b‖σ ‖f ‖Lp(Rn).

(ii) If  < β < n
 ,  < p < s

β
, then

∥
∥
[
b, T∗

β

]
f
∥
∥

Lp(Rn) � ‖b‖σ ‖f ‖Lp(Rn).

Proof We only prove (i), and (ii) follows by duality. For f ∈ Lp(Rn), s
s–β

< p < ∞, by Theo-
rem ., we can see that [b, Tβ ]f ∈ L

loc(Rn). By Theorem ., Lemma ., and Remark .,
we have

∥
∥[b, Tβ ]f

∥
∥q

Lq(Rn) �
∫

Rn

∣
∣Mρ,ξ

(
[b, Tβ ]f

)
(x)

∣
∣q dx

�
∫

Rn

∣
∣M


ρ,γ
(
[b, Tβ ]f

)
(x)

∣
∣q dx +

∑

k

|Qk|
(


|Qk|

∫

Qk

∣
∣[b, Tβ ]f (x)

∣
∣dx

)q

�
∫

Rn

∣
∣M


ρ,γ
(
[b, Tβ ]f

)
(x)

∣
∣q dx

+ ‖b‖σ

(∑

k

∫

Qk

∣
∣Mpf (x)

∣
∣q dx +

∑

k

∫

Qk

∣
∣Mp(Tβ f )(x)

∣
∣q dx

)

�
∫

Rn

∣
∣M


ρ,γ
(
[b, Tβ ]f

)
(x)

∣
∣q dx + ‖b‖σ

(‖f ‖q
Lq(Rn) + ‖Tβ f ‖q

Lq(Rn)
)

�
∫

Rn

∣
∣M


ρ,γ
(
[b, Tβ ]f

)
(x)

∣
∣q dx + ‖b‖σ ‖f ‖q

Lq(Rn),

where the last but one inequality is due to Lemma ., and the boundedness of Mp in
Lq(Rn) for p < q. Next, we consider the term

∫

Rn

∣
∣M


ρ,γ
(
[b, Tβ ]f

)
(x)

∣
∣q dx.

We have [b, Tβ ]f (x) =: B(x) + B(x), where

⎧
⎨

⎩

B(x) =: (b(x) – bB)Tβ f (x),

B(x) =: Tβ ((b – bB)f )(x).

This gives


|B|

∫

B

∣
∣[b, Tβ ]f (x) –

(
[b, Tβ ]f

)

B

∣
∣dx

� 
|B|

∫

B

∣
∣B(x) – (B)B

∣
∣dx +


|B|

∫

B

∣
∣B(x) – (B)B

∣
∣dx

=: A + A,

where

A =


|B|
∫

B

∣
∣B(x) – (B)B

∣
∣dx



Li and Wan Journal of Inequalities and Applications  (2016) 2016:172 Page 12 of 27

and

A =


|B|
∫

B

∣
∣B(x) – (B)B

∣
∣dx.

For A, let p > s
s–β

. Because r < γρ(x), by Hölder’s inequality and Lemma ., we have

A � ‖b‖σ Mp(Tβ f )(x).

For A, let x ∈R
n and B = B(x, r) with r < γρ(x) such that x ∈ B. We split f = f + f with

f = f χB. Hence we can divide A into two parts as

A =


|B|
∫

B

∣
∣B(x) – (B)B

∣
∣dx =: A, + A,,

where

A, =


|B|
∫

B

∣
∣Tβ

(
(b – bB)f

)
(x) –

(
Tβ (b – bB)f

)

B

∣
∣dx

and

A, =


|B|
∫

B

∣
∣Tβ

(
(b – bB)f

)
(x) –

(
Tβ (b – bB)f

)

B

∣
∣dx.

Take p ∈ ( s
s–β

, p) and let μ = p
p–p

. Applying Corollary . and Hölder’s inequality, we can
get

A, �


|B|
∫

B

∣
∣Tβ

(
(b – bB)f

)
(x)

∣
∣dx

�
{


|B|

∫

B

∣
∣Tβ

(
(b – bB)f

)
(x)

∣
∣p dx

} 
p

�
{


|B|

∫

B

∣
∣
(
b(x) – bB

)
f(x)

∣
∣p dx

} 
p

�
{


|B|

∫

B

∣
∣b(x) – bB

∣
∣μp dx

} 
μp

{


|B|
∫

B

∣
∣f (x)

∣
∣p dx

} 
p

� ‖b‖σ Mp(f )(x).

For A,, by Lemma ., we have

A, �


|B|
∫ ∫

B

∣
∣Tβ

(
(b – bB)f

)
(u) – Tβ

(
(b – bB)f

)
(y)

∣
∣du dy

� ‖b‖σ Mp(f )(x).

Therefore, we get

∣
∣M


ρ,γ
(
[b, Tβ ]f

)
(x)

∣
∣dx � ‖b‖σ

{
Mp(Tβ f )(x) + Mp(f )(x)

}
.
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Finally, by the Lp(Rn) boundedness of Mp, we obtain

∥
∥M


ρ,γ
(
[b, Tβ ]f

)∥
∥

Lq � ‖b‖σ ‖f ‖Lq .

This completes the proof of Theorem .. �

3.2 The boundedness of [b, Tβ ] on Herz spaces
Theorem . Suppose that V ∈ Bs, s ≥ n

 . Let  < β < n
 ,  < p < ∞, and s

s–β
< q < ∞. If

– n
q < α < n( – 

q – β

n ), then

‖Tβ f ‖K̇α,p
q (Rn) � ‖f ‖K̇α,p

q (Rn).

Proof We write

f (y) =
∞∑

j=–∞
f (y)χEj (y) =

∞∑

j=–∞
fj(y),

which gives

‖Tβ f ‖p
K̇α,p

q (Rn)
�

∞∑

k=–∞
kαp

( k–∑

j=–∞
‖χkTβ fj‖Lq(Rn)

)p

+
∞∑

k=–∞
kαp

( k+∑

j=k–

‖χkTβ fj‖Lq(Rn)

)p

+
∞∑

k=–∞
kαp

( ∞∑

j=k+

‖χkTβ fj‖Lq(Rn)

)p

= M + M + M.

For M, by Corollary ., we have

M �
∞∑

k=–∞
kαp

( k+∑

j=k–

‖fj‖Lq(Rn)

)p

� ‖f ‖p
K̇α,p

q (Rn)
.

Now we estimate M. Via a simple computation, for x ∈ Ek and y ∈ Ej with j ≤ k – , we
can deduce that |x – y| ∼ k . By Lemmas ., ., and ., we use Hölder’s inequality to
obtain

‖χkTβ fj‖Lq(Rn) =
(∫

Ek

∣
∣
∣
∣

∫

Ej

K(x, y)f (y) dy
∣
∣
∣
∣

q

dx
) 

q

� 
( + k/ρ())N/(l+)


(k)n–β

(∫

Ek

∣
∣
∣
∣

∫

Ej

∣
∣V β (y)f (y)

∣
∣dy

∣
∣
∣
∣

q

dx
) 

q

�
(
∫

Ej
V (y) dy)β

( + k/ρ())N/(l+)
|Ej|– 

q –β

|Ek|– 
q – β

n
‖fj‖Lq(Rn)

� ‖fj‖Lq(Rn)

( + k/ρ())N/(l+)–Nβ

|Ej|– 
q – β

n

|Ek|– 
q – β

n
.
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Take N large enough. For – n
q < α < n(– 

q +  – β

n ), we have

M �
∞∑

k=–∞
kαp

{ k–∑

j=–∞
(j–k)n(– 

q – β
n )‖fj‖Lq(Rn)

}p

�
∞∑

k=–∞

{ k–∑

j=–∞
(j–k)n(– 

q – β
n – α

n )jα‖fj‖Lq(Rn)

}p

.

We divide the estimate of M into two cases.
Case : p ≤ . By the p-triangle inequality

( ∞∑

k=–∞
|ak|

)r

≤
∞∑

k=–∞
|ak|r ,  < r < , (.)

we have

M �
∞∑

k=–∞

k–∑

j=–∞
(j–k)np(– 

q – β
n – α

n )jαp‖fj‖p
Lq(Rn)

�
∞∑

j=–∞
jαp‖fj‖p

Lq(Rn)

� ‖f ‖p
K̇α,p

q (Rn)
.

Case : p > . By the Hölder inequality, we can get

M �
∞∑

k=–∞

{( k–∑

j=–∞



 (j–k)np′(– 

q – β
n – α

n )

) 
p′

×
( k–∑

j=–∞



 (j–k)np(– 

q – β
n – α

n )jαp‖fj‖p
Lq(Rn)

) 
p
}p

�
∞∑

j=–∞
jαp

∞∑

k=j+



 (j–k)np(– 

q – β
n – α

n )‖fj‖p
Lq(Rn)

� ‖f ‖p
K̇α,p

q (Rn)
.

For M, note that when x ∈ Ek , y ∈ Ej, and j ≥ k + , then |x – y| ∼ j. Similar to M, we
have

‖χkTβ fj‖Lq(Rn) �


( + j/ρ())N/(l+)


(j)n–β

(∫

Ek

∣
∣
∣
∣

∫

Ej

∣
∣V β f (y)

∣
∣dy

∣
∣
∣
∣

q

dx
) 

q

� |Ek|

q |Ej|–


q ‖fj‖Lq(Rn)

( + j/ρ())N/(l+)–Nβ
.
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Because – n
q < α < n(– 

q +  – β

n ), we use (.) and Hölder’s inequality to obtain

M �
∞∑

k=–∞

{ ∞∑

j=k+

(k–j)n( 
q + α

n )jα‖fj‖Lq(Rn)

}p

� ‖f ‖p
K̇α,p

q (Rn)
.

Finally, we get

‖Tβ f ‖K̇α,p
q (Rn) � ‖f ‖K̇α,p

q (Rn). �

Theorem . Suppose that V ∈ Bs, s > n
 , and b ∈ BMOσ (ρ),  < σ < ∞. If  < β < n

 ,
 < p < ∞, and s

s–β
< q < ∞ with – n

q < α < n( – 
q – β

n ), then

∥
∥[b, Tβ ]f

∥
∥

K̇α,p
q (Rn) � ‖b‖σ ‖f ‖K̇α,p

q (Rn).

Proof We write

f (y) =
∞∑

j=–∞
f (y)χEj (y) =

∞∑

j=–∞
fj(y).

Hence, we have

∥
∥[b, Tβ ]f

∥
∥p

K̇α,p
q (Rn) �

∞∑

k=–∞
kαp

( k–∑

j=–∞

∥
∥χk[b, Tβ ]fj

∥
∥

Lq(Rn)

)p

+
∞∑

k=–∞
kαp

( k+∑

j=k–

∥
∥χk[b, Tβ ]fj

∥
∥

Lq(Rn)

)p

+
∞∑

k=–∞
kαp

( ∞∑

j=k+

∥
∥χk[b, Tβ ]fj

∥
∥

Lq(Rn)

)p

= M̃ + M̃ + M̃.

For M̃, by Theorem ., we have

M̃ �
∞∑

k=–∞
kαp

( k+∑

j=k–

‖fj‖Lq(Rn)

)p

� ‖f ‖p
K̇α,p

q (Rn)
.

Now we estimate M̃. We write b(x) – b(y) = (b(x) – bBj ) – (b(y) – bBj ) and get

∥
∥χk[b, Tβ ]fj

∥
∥

Lq(Rn) =
(∫

Ek

∣
∣
∣
∣

∫

Ej

(
b(x) – b(y)

)
Kβ (x, y)f (y) dy

∣
∣
∣
∣

q

dx
) 

q

�
(∫

Ek

∣
∣
(
b(x) – bBj

)
Tβ (fj)(x)

∣
∣q dx

) 
q

+ |Ek|

q
∥
∥Tβ

(
(b – bBj )fj

)∥
∥

Lq(Ek )

� M̃, + M̃,.
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Because x ∈ Ek , y ∈ Ej, and j ≤ k – , we deduce that |x – y| ∼ k . By Lemmas . and .,
we have

Tβ (fj)(x) � 
( + k/ρ())N/(l+)


(k)n–β

∫

Ej

V β (y)
∣
∣f (y)

∣
∣dy.

Using Lemmas . and . and the Hölder inequality, we have

M̃, �
(
∫

Ek
|b(x) – bBj |q dx)


q

( + k/ρ())N/(l+)


(k)n–β

∫

Ej

V β (y)
∣
∣f (y)

∣
∣dy

�
(k – j)‖b‖σ (

∫

Ej
V (y) dy)β

( + k/ρ())N/(l+)–(l+)σ
|Ej|– 

q –β

|Ek|– 
q – β

n
‖fj‖Lq(Rn)

� (k – j)(j–k)n(– 
q – β

n )‖b‖σ ‖fj‖Lq(Rn)

( + k/ρ())N/(l+)–(l+)σ–Nβ
.

For the term M̃,, we use Hölder’s inequality to obtain

∫

Ej

∣
∣b(y) – bBj

∣
∣V β (y)

∣
∣f (y)

∣
∣dy

� ‖b‖σ

(
 + j/ρ()

)(l+)σ ‖fj‖Lq(Rn)

(


|Ej|
∫

Ej

∣
∣V (y)

∣
∣s dy

) β
s
|Ej|– 

q

� ‖b‖σ

(
 + j/ρ()

)(l+)σ ‖fj‖Lq(Rn)

(∫

Ej

∣
∣V (y)

∣
∣dy

)β

|Ej|– 
q –β ,

which gives

∣
∣Tβ

(
(b – bBj )f

)
(x)

∣
∣� ‖b‖σ ‖fj‖Lq(Rn)|Ej|– 

q – β
n

( + j/ρ())–(l+)σ–Nβ
.

The above estimate implies that

M̃, �


( + k/ρ())N/(l+)
|Ek|


q

(k)n–β

‖b‖σ‖fj‖Lq(Rn)|Ej|– 
q – β

n

( + j/ρ())–(l+)σ–Nβ

� (j–k)n(– 
q – β

n )‖b‖σ ‖fj‖Lq(Rn)

( + k/ρ())N/(l+)–(l+)σ–Nβ
.

Take N large enough. Because – n
q < α < n(– 

q +  – β

n ), we obtain

M̃ � ‖b‖p
σ

∞∑

k=–∞

{ k–∑

j=–∞
(k – j)(j–k)n(– 

q – β
n )‖fj‖Lq(Rn)

}p

� ‖b‖p
σ

∞∑

k=–∞

{ k–∑

j=–∞
(k – j)(j–k)n(– 

q – β
n – α

n )jα‖fj‖Lq(Rn)

}p

.

We still divide the proof into two cases.
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Case : p ≤ . By the inequality (.) we have

M̃ � ‖b‖p
σ

∞∑

k=–∞

k–∑

j=–∞
(k – j)p(j–k)np(– 

q – β
n – α

n )jαp‖fj‖p
Lq(Rn)

� ‖b‖p
σ

∞∑

j=–∞
jαp‖fj‖p

Lq(Rn)

� ‖b‖p
σ ‖f ‖p

K̇α,p
q (Rn)

.

Case : p > . The Hölder inequality implies that

M̃ � ‖b‖p
σ

∞∑

k=–∞

{( k–∑

j=–∞
(k – j)p′



 (j–k)np′(– 

q – β
n – α

n )

) 
p′

×
( k–∑

j=–∞



 (j–k)np(– 

q – β
n – α

n )jαp‖fj‖p
Lq(Rn)

) 
p
}p

� ‖b‖p
σ

∞∑

j=–∞
jαp

∞∑

k=j+



 (j–k)np(– 

q – β
n – α

n )‖fj‖p
Lq(Rn)

� ‖b‖p
σ ‖f ‖p

K̇α,p
q (Rn)

.

For M̃, note that when x ∈ Ek , y ∈ Ej, and j ≥ k + , then |x – y| ∼ j. Similar to Theo-
rem ., using the following decomposition: b(x) – b(y) = (b(x) – bBk ) – (b(y) – bBk ), we can
get

∥
∥χk[b, Tβ ]fj

∥
∥

Lq(Rn)

� 
( + j/ρ())N/(l+)


(j)n–β

(∫

Ek

[∫

Ej

∣
∣b(x) – b(y)

∣
∣V β

∣
∣f (y)

∣
∣dy

]q

dx
) 

q

� (j – k)‖b‖σ

( + j/ρ())N/(l+)–(l+)σ–Nβ
|Ek|


q |Ej|–


q ‖fj‖Lq(Rn).

Since N is large enough and – n
q < α < n(– 

q +  – β

n ), we obtain

M̃ � ‖b‖p
σ

∞∑

k=–∞

{ ∞∑

j=k+

(j – k)(k–j)n( 
q + α

n )jα‖fj‖Lq(Rn)

}p

.

Similar to M̃, we have M̃ � ‖b‖p
σ ‖f ‖p

K̇α,p
q (Rn)

. Finally, we get

∥
∥[b, Tβ ]f

∥
∥

K̇α,p
q (Rn) � ‖b‖σ ‖f ‖K̇α,p

q (Rn). �

Let T ′
β be the dual operator of Tβ . By the duality of Herz spaces, we have the following

corollary of Theorem ..

Corollary . Suppose that V ∈ Bs, s ≥ n
 , and b ∈ BMOσ (ρ),  < σ < ∞. If  < β < n

 ,
 < p < ∞,  < q < s

β
with n(– 

q + β

n ) < α < n( – 
q ), then
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(a) ‖T ′
β f ‖K̇α,p

q (Rn) � ‖f ‖K̇α,p
q (Rn);

(b) ‖[b, T ′
β ]f ‖K̇α,p

q (Rn) � ‖b‖σ ‖f ‖K̇α,p
q (Rn).

With the help of Lemma ., we can get some similar results to Theorem ., . and
Corollary . for the non-homogeneous Herz spaces Kα,p

q (Rn).

Theorem . Suppose that V ∈ Bs, s ≥ n
 and b ∈ BMOσ (ρ),  < σ < ∞. Let  < β < n


and  < p < ∞.

() If s
s–β

< q < ∞, – n
q < α < n( – 

q – β

n ), then

⎧
⎨

⎩

‖Tβ f ‖Kα,p
q (Rn) � ‖f ‖Kα,p

q (Rn),

‖[b, Tβ ]f ‖Kα,p
q (Rn) � ‖b‖σ ‖f ‖Kα,p

q (Rn).

() If  < q < s
β

, n(– 
q + β

n ) < α < n( – 
q ), then

⎧
⎨

⎩

‖T ′
β f ‖Kα,p

q (Rn) � ‖f ‖Kα,p
q (Rn),

‖[b, T ′
β ]f ‖Kα,p

q (Rn) � ‖b‖σ ‖f ‖Kα,p
q (Rn).

4 Commutators [b, RL] on Herz type spaces
In this section, let RL = ∇(–� + V )–/ be the Riesz transform associated to Schrödinger
operators L = –�+V with V ∈ Bs, s > n/. For b ∈ BMOσ (ρ), we consider the boundedness
of RL and the commutator [b, RL] on the Herz spaces, respectively. Denote by KRL the
kernel of RL, that is,

RL(f )(x) =
∫

KRL (x, y)f (y) dy.

By the fundamental solution of L, Shen [] obtained the following estimate of KRL .

Lemma . ([], Section ) Suppose V ∈ Bs, s > n
 . Then for every N , there exists a constant

CN >  such that

∣
∣KRL (x, y)

∣
∣ ≤ CN

( + |x – y|/ρ(x))N

(


|x – y|n–

∫

B(y,|x–y|)
V (z)

|z – y|n– dz dy +


|x – y|n
)

.

Let R′
L = (–� + V )–/V / be the dual operator of RL. By Lemma ., Shen proved that

the operator RL is bounded on Lp(Rn). Precisely, we have the following.

Lemma . ([], Theorem .) Suppose that V ∈ Bs for some s > n
 , and let ( 

s – 
n )+ = 

q̃ .
Then

() RL is bounded on Lq(Rn) for  < q < q̃;
() R′

L is bounded on Lq(Rn) for q̃ < q < ∞.

By the idea of Shen [], Guo, Li, and Peng [] obtained a regularity estimate of the kernel
RL and proved the commutators [b, RL] are bounded on some Lebesgue spaces Lp with
b ∈ BMO(Rn). For b ∈ BMO∞(ρ), Bongioanni, Harboure, and Salinas [] proved the Lp-
boundedness of [b, RL]. Recall that BMO(Rn) ⊂ BMOσ (ρ). Hence the result of Bongioanni,
Harboure, and Salinas [] generalizes that of Guo, Li, and Peng [].
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Lemma . ([], Theorem ) Suppose that V ∈ Bs for some s > n
 , and b ∈ BMO∞(ρ). Let

( 
s – 

n )+ = 
q̃ , then

() [b, RL] is bounded on Lq(Rn) for  < q < q̃;
() [b, R′

L] is bounded on Lq(Rn) for q̃ < q < ∞.

Based on the results of Shen [] and Bongioanni, Harboure, and Salinas [], we consider
the boundedness of RL on Herz spaces. If s ≥ n, Shen [] proved that RL is a Calderón-
Zygmund operator. By Theorem .. in [], it is obvious that RL is bounded on Herz
spaces. Hence in the next theorem, we only consider the case of n

 < s < n.

Theorem . Suppose that V ∈ Bs, s > n
 , and let ( 

s – 
n )+ = 

q̃ . If  < p < ∞, (q̃)′ < q < ∞,
and – n

q < α < n( – 
q – 

q̃ ), then

‖RLf ‖K̇α,p
q (Rn) ≤ C‖f ‖K̇α,p

q (Rn).

Proof By the decomposition

f (y) =
∞∑

j=–∞
f (y)χEj (y) =

∞∑

j=–∞
fj(y),

we obtain

‖RLf ‖p
K̇α,p

q (Rn)
�

∞∑

k=–∞
kαp

( k–∑

j=–∞
‖χkRLfj‖Lq(Rn)

)p

+
∞∑

k=–∞
kαp

( k+∑

j=k–

‖χkRLfj‖Lq(Rn)

)p

+
∞∑

k=–∞
kαp

( ∞∑

j=k+

‖χkRLfj‖Lq(Rn)

)p

= W + W + W.

For W, by Lemma ., we have

W �
∞∑

k=–∞
kαp

( k+∑

j=k–

‖fj‖Lq(Rn)

)p

� ‖f ‖p
K̇α,p

q (Rn)
.

Now we estimate W. Because x ∈ Ek , y ∈ Ej, and j ≤ k – , we deduce that |x – y| ∼ k . By
Lemmas . and ., we get

‖χkRLfj‖Lq(Rn)

=
(∫

Ek

∣
∣
∣
∣

∫

Ej

KRL (x, y)f (y) dy
∣
∣
∣
∣

q

dx
) 

q

�
(∫

Ek

∣
∣
∣
∣

∫

Ej

|f (y)|
( + |x – y|/ρ(x))N


|x – y|n–

∫

B(y,|x–y|)
V (z)

|z – y|n– dz dy
∣
∣
∣
∣

q

dx
) 

q
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+
(∫

Ek

∣
∣
∣
∣

∫

Ej

|f (y)|
( + |x – y|/ρ(x))N


|x – y|n dy

∣
∣
∣
∣

q

dx
) 

q

= W, + W,.

For W,, by Lemma ., we have

W, �


( + k/ρ())N/(l+)


|k|n–

(∫

Ek

∣
∣
∣
∣

∫

Ej

∣
∣f (y)

∣
∣
∫

B(y,|x–y|)
V (z)

|z – y|n– dz dy
∣
∣
∣
∣

q

dx
) 

q

� 
( + k/ρ())N/(l+)

|Ek|

q

|k|n–

∫

Ej

∣
∣f (y)

∣
∣
∫

B(,k+)

V (z)
|z – y|n– dz dy.

Using the Hölder inequality, we obtain
∫

Ej

∣
∣f (y)

∣
∣
∫

B(,k+)

V (z)
|z – y|n– dz dy

� |Ej|– 
q – 

q̃ ‖fj‖Lq(Rn)
∥
∥I(VχB(,k+))

∥
∥

Lq̃(Rn)

� |Ej|– 
q – 

q̃ ‖fj‖Lq(Rn)‖VχB(,k+)‖Ls(Rn), (.)

where in the last inequality, we have used the boundedness of the fractional integral I

with 
q̃ = 

s – 
n . Because V ∈ Bs, we use Lemma . to deduce that

‖VχB(,k+)‖Ls(Rn) � |Ek+| 
s –

∫

B(,k+)
V (z) dz

� |Ek+| 
s –(k+)n–( + k+/ρ()

)N

� |Ek+| 
s – 

n
(
 + k+/ρ()

)N . (.)

The above estimate (.) implies that

W, �
‖fj‖Lq(Rn)

( + k/ρ())N/(l+)–N

|Ej|– 
q – 

q̃

|Ek|– 
q – 

q̃
.

Let N be large enough. When j ≤ k – , we have

W, � (j–k)n(– 
q – 

q̃ )‖fj‖Lq(Rn).

Next we estimate W,. We have

W, �


( + k/ρ())N/(l+)


|k|n
(∫

Ek

∣
∣
∣
∣

∫

Ej

∣
∣f (y)

∣
∣dy

∣
∣
∣
∣

q) 
q

� ‖fj‖Lq(Rn)|Ej|– 
q

( + k/ρ())N/(l+)
|Ek|


q

|k|n .

Take N large enough. For j ≤ k – , we have

W, � (j–k)n(– 
q )‖fj‖Lq(Rn) � (j–k)n(– 

q – 
q̃ )‖fj‖Lq(Rn).
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Hence, when j ≤ k – , we have

‖χkRLfj‖Lq(Rn) � (j–k)n(– 
q – 

q̃ )‖fj‖Lq(Rn).

Since – n
q < α < n( – 

q – 
q̃ ), we have

W �
∞∑

k=–∞
kαp

( k–∑

j=–∞
(j–k)n(– 

q – 
q̃ )‖fj‖Lq(Rn)

)p

.

Similar to the proof of Theorem ., by Hölder’s inequality and (.), we obtain

W � ‖f ‖p
K̇α,p

q
.

For W, note that when x ∈ Ek , y ∈ Ej, and j ≥ k + , then |x – y| ∼ j. We have

∫

B(y,|x–y|)
V (z)

|z – y|n– dz �
∫

B(,j+)

V (z)
|z – y|n– dz.

Therefore, when j ≥ k + , by Lemma ., we have

‖χkRLfj‖Lq(Rn)

� 
( + j/ρ())N/(l+)


|j|n–

(∫

Ek

∣
∣
∣
∣

∫

Ej

∣
∣f (y)

∣
∣
∫

B(,j+)

V (z)
|z – y|n– dz dy

∣
∣
∣
∣

q

dx
) 

q

+


( + j/ρ())N/(l+)


|j|n
(∫

Ek

∣
∣
∣
∣

∫

Ej

∣
∣f (y)

∣
∣dy

∣
∣
∣
∣

q

dx
) 

q

= W, + W,.

Similar to (.) and (.), we get

∫

Ej

∣
∣f (y)

∣
∣
∫

B(,j+)

V (z)
|z – y|n– dz dy � |Ej|– 

q – 
q̃ ‖fj‖Lq(Rn)‖VχB(,j+)‖Ls(Rn)

and

‖VχB(,j+)‖Ls(Rn) � |Ej+| 
s – 

n
(
 + j+/ρ()

)N .

Take N large enough. Because 
q̃ = 

s – 
n , we have

W, �
‖fj‖Lq(Rn)

( + k/ρ())N/(l+)–N

|Ek|

q

|Ej|(– 
n )–(– 

q – 
q̃ )–( 

s – 
n )

� ‖fj‖Lq(Rn)

( + k/ρ())N/(l+)–N

|Ek|

q

|Ej|

q

� (k–j)n( 
q )‖fj‖Lq(Rn).
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For W,, using Hölder’s inequality, we can easily get

W, �
‖fj‖Lq(Rn)

( + k/ρ())N/(l+)
|Ek|


q

|Ej|

q

.

� (k–j)n( 
q )‖fj‖Lq(Rn).

Combining with W and W, we get

W �
∞∑

k=–∞
kαp

( k–∑

j=–∞
(k–j)n( 

q )‖fj‖Lq(Rn)

)p

.

Since – n
q < α < n( – 

q – 
q̃ ), Hölder’s inequality and (.) imply that W � ‖f ‖p

K̇α,p
q

. This
completes the proof of Theorem .. �

Now we consider the boundedness of the commutators [b, RL] on Herz spaces, where
b ∈ BMOσ (ρ). If s ≥ n and b ∈ BMO(Rn), the desired boundedness can be deduced from
Theorem . in []. Hence in the following theorem, we still assume that s ∈ (n/, n).

Theorem . Suppose that V ∈ Bs, s > n
 , and b ∈ BMOσ (ρ),  < σ < ∞. Let ( 

s – 
n )+ = 

q̃ .
If  < p < ∞, (q̃)′ < q < ∞, and – n

q < α < n( – 
q – 

q̃ ), then

∥
∥[b, RL]f

∥
∥

K̇α,p
q (Rn) � ‖f ‖K̇α,p

q (Rn).

Proof Similar to Theorem ., we write

f (y) =
∞∑

j=–∞
f (y)χEj (y) =

∞∑

j=–∞
fj(y).

Hence, we have

∥
∥[b, RL]f

∥
∥p

K̇α,p
q (Rn) �

∞∑

k=–∞
kαp

( k–∑

j=–∞

∥
∥χk[b, RL]fj

∥
∥

Lq(Rn)

)p

+
∞∑

k=–∞
kαp

( k+∑

j=k–

∥
∥χk[b, RL]fj

∥
∥

Lq(Rn)

)p

+
∞∑

k=–∞
kαp

( ∞∑

j=k+

∥
∥χk[b, RL]fj

∥
∥

Lq(Rn)

)p

= W̃ + W̃ + W̃.

For W̃, by Lemma ., we have

W̃ �
∞∑

k=–∞
kαp

( k+∑

j=k–

‖fj‖Lq(Rn)

)p

� ‖f ‖p
Kα,p

q (Rn)
.
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Now we estimate W̃. For x ∈ Ek , y ∈ Ej with j ≤ k – , |x – y| ∼ k . By Lemma ., we can
get

∥
∥χk[b, RL]fj

∥
∥

Lq(Rn)

=
(∫

Ek

∣
∣
∣
∣

∫

Ej

(
b(x) – b(y)

)
KRL (x, y)f (y) dy

∣
∣
∣
∣

q

dx
) 

q

�
(∫

Ek

∣
∣
∣
∣

∫

Ej

|(b(x) – b(y))f (y)|
( + |x – y|/ρ(x))N


|x – y|n–

∫

B(y,|x–y|)
V (z)

|z – y|n– dz dy
∣
∣
∣
∣

q

dx
) 

q

+
(∫

Ek

∣
∣
∣
∣

∫

Ej

|(b(x) – b(y))f (y)|
( + |x – y|/ρ(x))N


|x – y|n dy

∣
∣
∣
∣

q

dx
) 

q

= W̃, + W̃,.

For W̃,, we can see that b(x) – b(y) = (b(x) – bBj ) – (b(y) – bBj ). Hence, by Lemma ., we
have

W̃, �


( + k/ρ())N/l+

× 
|k|n–

(∫

Ek

∣
∣
∣
∣

∫

Ej

∣
∣
(
b(x) – b(y)

)
f (y)

∣
∣
∫

B(y,|x–y|)
V (z)

|z – y|n– dz dy
∣
∣
∣
∣

q

dx
) 

q

� 
( + k/ρ())N/l+


|k|n–

(∫

Ek

∣
∣
(
b(x) – bBj

)∣
∣q dx

) 
q

×
∫

Ej

∣
∣f (y)

∣
∣
∫

B(,k+)

V (z)
|z – y|n– dz dy

+


( + k/ρ())N/l+
|Ek|


q

|k|n–

∫

Ej

∣
∣
(
b(y) – bBj

)
f (y)

∣
∣

×
∫

B(,k+)

V (z)
|z – y|n– dz dy

= W̃ ()
, + W̃ ()

, .

Using Hölder’s inequality and the boundedness of the fractional integral I with 
q̃ = 

s – 
n ,

we obtain

∫

Ej

∣
∣
(
b(y) – bBj

)
f (y)

∣
∣
∫

B(,k+)

V (z)
|z – y|n– dz dy

� ‖b‖σ |Ej|– 
q – 

q̃

( + j/ρ())–(l+)σ ‖fj‖Lq(Rn)
∥
∥I(VχB(,k+))

∥
∥

Lq̃(Rn)

� ‖b‖σ |Ej|– 
q – 

q̃

( + j/ρ())–(l+)σ ‖fj‖Lq(Rn)‖VχB(,k+)‖Ls(Rn)

� ‖b‖σ ‖fj‖Lq(Rn)

( + k/ρ())–(l+)σ–N
|Ej|– 

q – 
q̃ |Ek| 

s – 
n ,
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where in the last inequality we have used (.) above. We get

W̃ ()
, � ‖b‖σ ‖fj‖Lq(Rn)

( + k/ρ())N/(l+)–(l+)σ–N

|Ej|– 
q – 

q̃

|Ek|– 
q – 

q̃
.

Similar to W̃ ()
, , we have

∫

Ej

∣
∣f (y)

∣
∣
∫

B(,k+)

V (z)
|z – y|n– dz dy � ‖fj‖Lq(Rn)

(
 + k/ρ()

)N |Ej|– 
q – 

q̃ |Ek| 
s – 

n .

By Lemma ., we get

W̃ ()
, � (k – j)‖b‖σ ‖fj‖Lq(Rn)

( + k/ρ())N/(l+)–(l+)σ–N

|Ej|– 
q – 

q̃

|Ek|– 
q – 

q̃
.

Since N is large enough, when j ≤ k – , we have

W̃, � (k – j)(j–k)n(– 
q – 

q̃ )‖b‖σ ‖fj‖Lq(Rn).

Next we estimate W̃. We can get

W̃, � 
( + k/ρ())N/(l+)


|k|n

(∫

Ek

∣
∣
(
b(x) – bBj

)∣
∣q dx

) 
q
∫

Ej

∣
∣f (y)

∣
∣dy

+


( + k/ρ())N/(l+)
|Ek|


q

|k|n
∫

Ej

∣
∣
(
b(y) – bBj

)
f (y)

∣
∣dy

=: W̃ ()
, + W̃ ()

, .

Using Lemma . and the Hölder inequality, we get the following estimates:

W̃ ()
, � (k – j)‖b‖σ ‖fj‖Lq(Rn)

( + k/ρ())N/(l+)–(l+)σ
|Ej|– 

q

|Ek|– 
q

and

W̃ ()
, � ‖b‖σ ‖fj‖Lq(Rn)

( + k/ρ())N/(l+)–(l+)σ
|Ej|– 

q

|Ek|– 
q

.

Take N large enough. Because j ≤ k – , we can see that

W̃, � (k – j)(j–k)n(– 
q – 

q̃ )‖b‖σ‖fj‖Lq(Rn).

Hence,

∥
∥χk[b, RL]fj

∥
∥

Lq(Rn) � (k – j)(j–k)n(– 
q – 

q̃ )‖b‖σ ‖fj‖Lq(Rn).
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Since – n
q < α < n( – 

q – 
q̃ ), similar to Theorem ., we use Hölder’s inequality to obtain

W̃ �
∞∑

k=–∞
kαp

( k–∑

j=–∞
(k – j)(j–k)n(– 

q – 
q̃ )‖b‖σ‖fj‖Lq(Rn)

)p

� ‖b‖p
σ ‖f ‖p

K̇α,p
q

.

For W̃, if x ∈ Ek and y ∈ Ej with j ≥ k + , then |x – y| ∼ j. We have

∥
∥χk[b, RL]fj

∥
∥

Lq(Rn)

�
(∫

Ek

∣
∣
∣
∣

∫

Ej

|(b(x) – b(y))f (y)|
( + |x – y|/ρ(x))N


|x – y|n–

∫

B(y,|x–y|)
V (z)

|z – y|n– dz dy
∣
∣
∣
∣

q

dx
) 

q

+
(∫

Ek

∣
∣
∣
∣

∫

Ej

|(b(x) – b(y))f (y)|
( + |x – y|/ρ(x))N


|x – y|n dy

∣
∣
∣
∣

q

dx
) 

q

=: W̃, + W̃,.

Using the decomposition b(x) – b(y) = (b(x) – bBk ) – (b(y) – bBk ) again, we get

∫

Ej

∣
∣
(
b(y) – bBk

)
f (y)

∣
∣
∫

B(y,|x–y|)
V (z)

|z – y|n– dz

�
∫

Ej

∣
∣
(
b(y) – bBk

)
f (y)

∣
∣
∫

B(,j+)

V (z)
|z – y|n– dz dy

� (k – j)‖b‖σ ‖fj‖Lq(Rn)

( + j/ρ())–(l+)σ–N
|Ej|– 

q – 
q̃ |Ej| 

s – 
n .

On the other hand,

∫

Ej

∣
∣f (y)

∣
∣
∫

B(,j+)

V (z)
|z – y|n– dz dy � ‖fj‖Lq(Rn)

(
 + j/ρ()

)N |Ej|– 
q – 

q̃ |Ej| 
s – 

n .

Therefore

W̃, � (j – k)(k–j)n( 
q )‖b‖σ‖fj‖Lq(Rn).

Similarly, we can get

W̃, � (j – k)(k–j)n( 
q )‖b‖σ ‖fj‖Lq(Rn).

Because – n
q < α < n( – 

q – 
q̃ ), by the estimates for W̃ and W̃, we can use Hölder’s

inequality and (.) to get

W̃ �
∞∑

k=–∞
kαp

( k–∑

j=–∞
(j – k)(k–j)n( 

q )‖b‖σ ‖fj‖Lq(Rn)

)p

� ‖b‖p
σ ‖f ‖p

K̇α,p
q

.

This completes the proof of Theorem .. �
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Corollary . Suppose that V ∈ Bs, s > n
 , and ( 

s – 
n )+ = 

q̃ . Let b ∈ BMOσ (ρ),  < σ < ∞.
If  < p < ∞,  < q < q̃, – n

q + n
q̃ < α < n( – 

q ), then:
(i) ‖R′

Lf ‖K̇α,p
q (Rn) � ‖f ‖K̇α,p

q (Rn);
(ii) ‖[b, R′

L]f ‖K̇α,p
q (Rn) � ‖b‖σ‖f ‖K̇α,p

q (Rn).

There are similar results for the non-homogeneous Herz space Kα,p
q (Rn).

Theorem . Suppose that V ∈ Bs, s > n
 and let b ∈ BMOσ (ρ),  < σ < ∞. Let  < p < ∞,

( 
s – 

n )+ = 
q̃ .

() If (q̃)′ < q < ∞ and – n
q < α < n( – 

q – 
q̃ ), then

⎧
⎨

⎩

‖RLf ‖Kα,p
q (Rn) � ‖f ‖Kα,p

q (Rn),

‖[b, RL]f ‖Kα,p
q (Rn) � ‖b‖σ ‖f ‖Kα,p

q (Rn).

() If  < q < q̃ and – n
q + n

q̃ < α < n( – 
q ), then

⎧
⎨

⎩

‖R′
Lf ‖Kα,p

q (Rn) � ‖f ‖Kα,p
q (Rn),

‖[b, R′
L]f ‖Kα,p

q (Rn) � ‖b‖σ ‖f ‖Kα,p
q (Rn).
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