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Abstract
For x ∈ R, the error function erf(x) is defined as

erf(x) =
2√
π

∫ x

0
e–t

2
dt.

In this paper, we answer the question: what are the greatest value p and the least
value q, such that the double inequality
erf(Mp(x, y;λ)) ≤ G(erf(x), erf(y);λ) ≤ erf(Mq(x, y;λ)) holds for all x, y ≥ 1 (or 0 < x, y < 1)
and λ ∈ (0, 1)? Here,Mr(x, y;λ) = (λxr + (1 – λ)yr)1/r (r �= 0),M0(x, y;λ) = xλy1–λ and
G(x, y;λ) = xλy1–λ are the weighted power and the weighted geometric mean,
respectively.
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1 Introduction
For x ∈ R, the error function erf(x) is defined as

erf(x) =
√
π

∫ x


e–t

dt.

The most important properties of this function are collected, for example, in [, ]. In the
recent past, the error function has been a topic of recurring interest, and a great number
of results on this subject have been reported in the literature [–]. It might be surprising
that the error function has application in the field of heat conduction besides probability
[, ].

In , Aumann [] introduced a generalized notion of convexity, the so-called MN-
convexity, when M and N are mean values. A function f : [,∞) → [,∞) is MN-convex
if f (M(x, y)) ≤ N(f (x), f (y)) for x, y ∈ [,∞). The usual convexity is the special case when
M and N both are arithmetic means. Furthermore, the applications of MN-convexity re-
veal a new world of beautiful inequalities which involve a broad range of functions from
the elementary ones, such as sine and cosine function, to the special ones, such as the �
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function, the Gaussian hypergeometric function, and the Bessel function. For the details
as regards MN-convexity and its applications the reader is referred to [–].

Let λ ∈ (, ), we define A(x, y;λ) = λx + ( – λ)y, G(x, y;λ) = xλy–λ, H(x, y;λ) = xy
λy+(–λ)x

and Mr(x, y;λ) = (λxr +(–λ)yr)/r (r �= ), M(x, y;λ) = xλy–λ. These are commonly known
as weighted arithmetic mean, weighted geometric mean, weighted harmonic mean, and
weighted power mean of two positive numbers x and y, respectively. Then it is well known
that the inequalities

H(x, y;λ) = M–(x, y;λ) < G(x, y;λ) = M(x, y;λ) < A(x, y;λ) = M(x, y;λ)

hold for all λ ∈ (, ) and x, y >  with x �= y.
By elementary computations, one has

lim
r→–∞ Mr(x, y;λ) = min(x, y) (.)

and

lim
r→+∞ Mr(x, y;λ) = max(x, y).

In [], Alzer proved that c(λ) = λ+(–λ) erf()
erf(/(–λ)) and c(λ) =  are the best possible factors

such that the double inequality

c(λ) erf
(
H(x, y;λ)

) ≤ A
(
erf(x), erf(y);λ

) ≤ c(λ) erf
(
H(x, y;λ)

)
(.)

holds for all x, y ∈ [, +∞) and λ ∈ (, /).
Inspired by (.), it is natural to ask: does the inequality erf(M(x, y)) ≤ N(erf(x), erf(y))

hold for other means M, N , such as geometric, harmonic or power means?
In [, ], the authors found the greatest values α, α and the least values β, β, such

that the double inequalities

erf
(
Mα (x, y;λ)

) ≤ A
(
erf(x), erf(y);λ

) ≤ erf
(
Mβ (x, y;λ)

)

and

erf
(
Mα (x, y;λ)

) ≤ H
(
erf(x), erf(y);λ

) ≤ erf
(
Mβ (x, y;λ)

)

hold for all x, y ≥  (or  < x, y < ) and λ ∈ (, ).
In the following we answer the question: what are the greatest value p and the least value

q, such that the double inequality

erf
(
Mp(x, y;λ)

) ≤ G
(
erf(x), erf(y);λ

) ≤ erf
(
Mq(x, y;λ)

)

holds for all x, y ≥  (or  < x, y < ) and λ ∈ (, )?

2 Lemmas
In this section we present two lemmas, which will be used in the proof of our main results.
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Lemma . Let r �= , r = – – 
e
√

π erf() = –. . . . , and u(x) = log erf(x/r). Then the
following statements are true:

() if r < r, then u(x) is strictly convex on [, +∞);
() if r ≤ r < , then u(x) is strictly concave on (, ];
() if r > , then u(x) is strictly concave on (, +∞).

Proof Simple computations lead to

u′(x) =
e–x/r x/r–

r
√

π erf(x/r)
(.)

and

u′′(x) =
e–x/r x/r–

r√π erf(x/r)
g(x), (.)

where

g(x) =
(
–x/r +  – r

)
erf

(
x/r) –

√
π

e–x/r
x/r . (.)

Then

g ′(x) = x/r–g(x), (.)

g(x) = –

r

erf
(
x/r) –



√

π
e–x/r

x–/r , (.)

and

g ′
(x) =


r√π

e–x/r
x–/r–[(r – )x/r + r

]
. (.)

We divide the proof into two cases.
Case . If r < , then (.), (.), and (.) lead to

g ′
(x) < , (.)

lim
x→+

g(x) > , lim
x→+∞ g(x) = –∞, (.)

lim
x→+

g(x) = –∞, lim
x→+∞ g(x) = , (.)

and

g() = (– – r) erf() –


e
√

π
. (.)

Inequality (.) implies that g(x) is strictly decreasing on [, +∞).
It follows from the monotonicity of g(x) and (.) that there exists x ∈ (, +∞), such

that g(x) is strictly increasing on [, x] and strictly decreasing on [x, +∞).
From the piecewise monotonicity of g(x) and (.) we clearly see that there exists x ∈

(, +∞), such that g(x) <  for x ∈ (, x) and g(x) >  for x ∈ (x, +∞).
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Case .. If r < r, then from (.) we know that g() > . This leads to g(x) >  for
x ∈ [, +∞). Therefore (.) leads to the conclusion that u(x) is strictly convex on [, +∞).

Case .. If r ≤ r < , then (.) implies that g() ≤ . This leads to g(x) ≤  for x ∈ (, ].
Therefore (.) leads to the conclusion that u(x) is strictly concave on (, ].

Case . If r > , then (.) and (.) imply that

g(x) <  (.)

and

lim
x→+

g(x) =  (.)

for x ∈ (, +∞).
It follows from (.), (.), and (.) that g(x) < . Therefore (.) leads to the conclu-

sion that u(x) is strictly concave on (, +∞). �

Lemma . The function h(x) = x + xe–x
∫ x

 e–t dt
is strictly increasing on (, +∞).

Proof Simple computations lead to

h′(x) =
h(x)

(
∫ x

 e–t dt)
, (.)

where

h(x) = x
(∫ x


e–t

dt
)

+
(
 – x)e–x

∫ x


e–t

dt – xe–x
,

lim
x→+

h(x) = , (.)

and

h′
(x) = 

(∫ x


e–t

dt
)

+
(
x + x

)
e–x

∫ x


e–t

dt + xe–x >  (.)

for x ∈ (, +∞).
Hence, h(x) is strictly increasing on (, +∞), as follows from (.), (.), and (.).

�

3 Main results
Theorem . Let λ ∈ (, ) and r = –– 

e
√

π erf() = –. . . . . Then the double inequality

erf
(
Mp(x, y;λ)

) ≤ G
(
erf(x), erf(y);λ

) ≤ erf
(
Mq(x, y;λ)

)
(.)

holds for all x, y ≥  if and only if p = –∞ and q ≥ r.

Proof First of all, we prove that inequality (.) holds if p = –∞ and q ≥ r. It follows from
(.) that the first inequality in (.) is true if p = –∞. Since the weighted power mean
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Mt(x, y;λ) is strictly increasing with respect to t on R, thus we only need to prove that the
second inequality in (.) is true if r ≤ q < .

If r ≤ q < , u(z) = log erf(z/q), then Lemma .() leads to

λu(s) + ( – λ)u(t) ≤ u
(
λs + ( – λ)t

)
(.)

for λ ∈ (, ) and s, t ∈ (, ].
Let s = xq, t = yq, and x, y ≥ . Then (.) leads to the second inequality in (.).
Second, we prove that the second inequality in (.) implies q ≥ r.
Let x ≥  and y ≥ . Then the second inequality in (.) leads to

D(x, y) =: erf
(
Mq(x, y;λ)

)
– G

(
erf(x), erf(y);λ

) ≥ . (.)

It follows from (.) that

D(y, y) =
∂

∂x
D(x, y)|x=y = 

and

∂

∂x D(x, y)|x=y =
λ( – λ)y

erf′(y)

[
q –  +

(
y +

ye–y

∫ y
 e–t dt

)]
. (.)

Therefore,

q ≥ lim
y→+

(
 – y –

ye–y

∫ y
 e–t dt

)
= r

follows from (.) and (.) together with Lemma ..
Finally, we prove that the first inequality in (.) implies p = –∞. We distinguish two

cases.
Case I. p ≥ . Then for any fixed y ∈ [, +∞) we have

lim
x→+∞ erf

(
Mp(x, y;λ)

)
= 

and

lim
x→+∞ G

(
erf(x), erf(y);λ

)
= erf–λ(y) < ,

which contradicts the first inequality in (.).
Case II. –∞ < p < . Let x ≥ , α = λ/p and y → +∞. Then the first inequality in (.)

leads to

E(x) =: erfλ(x) – erf(αx) ≥ . (.)

It follows from (.) that

lim
x→+∞ E(x) =  (.)



Li et al. Journal of Inequalities and Applications  (2015) 2015:382 Page 6 of 8

and

E′(x) =
λ√
π

e–x
[

erfλ–(x) –
α

λ
e(–α)x

]
. (.)

Note that α > , then

lim
x→+∞

[
erfλ–(x) –

α

λ
e(–α)x

]
= . (.)

It follows from (.) and (.) that there exists a sufficiently large η ∈ [, +∞), such that
E′(x) >  for x ∈ (η, +∞). Hence E(x) is strictly increasing on [η, +∞).

From the monotonicity of E(x) on [η, +∞) and (.) we conclude that there exists η ∈
[, +∞), such that E(x) <  for x ∈ (η, +∞), this contradicts (.). �

Theorem . Let λ ∈ (, ), then the double inequality

erf
(
Mμ(x, y;λ)

) ≤ G
(
erf(x), erf(y);λ

) ≤ erf
(
Mν(x, y;λ)

)
(.)

holds for all  < x, y <  if and only if μ ≤ r and ν ≥ .

Proof First of all, we prove that (.) holds if μ ≤ r and ν ≥ .
If μ ≤ r, u(z) = log erf(z/μ), then Lemma .() leads to

u
(
λs + ( – λ)t

) ≤ λu(s) + ( – λ)u(t) (.)

for λ ∈ (, ), s, t > .
Let s = xμ, t = yμ, and  < x, y < . Then (.) leads to the first inequality in (.).
If ν ≥ , u(z) = log erf(z/ν), then Lemma .() leads to

λu(s) + ( – λ)u(t) ≤ u
(
λs + ( – λ)t

)
(.)

for λ ∈ (, ),  < s, t < .
Therefore, the second inequality in (.) follows from s = xν , t = yν , and  < x, y <  to-

gether with (.).
Second, we prove that the second inequality in (.) implies ν ≥ .
Let  < x, y < . Then the second inequality in (.) leads to

J(x, y) =: erf
(
Mν(x, y;λ)

)
– G

(
erf(x), erf(y);λ

) ≥ . (.)

It follows from (.) that

J(y, y) =
∂

∂x
J(x, y)|x=y = 

and

∂

∂x J(x, y)|x=y =
λ( – λ)y

erf′(y)

[
ν –  +

(
y +

ye–y

∫ y
 e–t dt

)]
. (.)
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Hence, from (.) and (.) together with Lemma . we know that

ν ≥ lim
y→+

[
 –

(
y +

ye–y

∫ y
 e–t dt

)]
= .

Finally, we prove that the first inequality in (.) implies μ ≤ r.
Let y → . Then the first inequality in (.) leads to

L(x) =: G
(
erf(x), erf();λ

)
– erf

(
Mμ(x, ;λ)

) ≥  (.)

for  < x < .
It follows from (.) that

L() =  (.)

and

L′(x) =
λe–x

√
π

[
erf–λ() erfλ–(x) – xμ–(λxμ +  – λ

)/μ–ex–(λxμ+–λ)/μ]
. (.)

Let

L(x) = log
[
erf–λ() erfλ–(x)

]
– log

[
xμ–(λxμ +  – λ

)/μ–ex–(λxμ+–λ)/μ]
. (.)

Then

lim
x→–

L(x) = , (.)

L′
(x) = (λ – )

erf′(x)
erf(x)

–
(μ – )( – λ)
x(λxμ +  – λ)

– x + λxμ–(λxμ +  – λ
)/μ–,

and

lim
x→–

L′
(x) = ( – λ)

[
–μ –  –


e
√

π erf()

]
. (.)

If μ > r, then from (.) we clearly see that there exists a small δ > , such that L′
(x) < 

for x ∈ ( – δ, ). Therefore, L(x) is strictly decreasing on [ – δ, ].
The monotonicity of L(x) on [ – δ, ] and (.) imply that there exists δ > , such that

L(x) >  for x ∈ ( – δ, ).
Hence, (.) and (.) lead to L(x) being strictly increasing on [ – δ, ]. It follows

from the monotonicity of L(x) and (.) that there exists δ > , such that L(x) <  for
x ∈ ( – δ, ), this contradicts (.). �
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