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Abstract

Single-cell RNA-sequencing (scRNA-seq) has emerged
as a revolutionary tool that allows us to address
scientific questions that eluded examination just a few
years ago. With the advantages of scRNA-seq come
computational challenges that are just beginning
to be addressed. In this article, we highlight the
computational methods available for the design and
analysis of scRNA-seq experiments, their advantages
and disadvantages in various settings, the open
questions for which novel methods are needed, and
expected future developments in this exciting area.
in gene expression across conditions, pseudotime order-
Background
The ability to derive genome-wide mRNA expression
data from a population of cells has proven useful in
thousands of studies over the past two decades. In spite
of their utility, traditional expression experiments are
limited to providing measurements that are averaged
over thousands of cells, which can mask or even misrepre-
sent signals of interest. Fortunately, recent technological
advances now allow us to obtain transcriptome-wide data
from individual cells. This development is not simply one
more step toward better expression profiling, but rather a
major advance that will enable fundamental insights into
biology.
While the data obtained from single-cell RNA-

sequencing (scRNA-seq) are often structurally identical to
those from a bulk expression experiment (some K million
mRNA transcripts are sequenced from n samples or cells),
the relative paucity of starting material and increased reso-
lution give rise to distinct features in scRNA-seq data, in-
cluding an abundance of zeros (both biological and
technical), increased variability, and complex expression
distributions (Fig. 1). These features, in turn, pose both
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opportunities and challenges for which novel statistical
and computational methods are required.
In this review, we discuss such statistical and compu-

tational methods in detail. We begin with an overview of
practices for robust experimental design, quality control,
and expression estimation, where the principles and
methods used in bulk experiments, perhaps slightly
modified, apply directly. We then discuss methods for
normalization, noting that features that are unique to
scRNA-seq pose challenges for existing approaches.
Methods developed for downstream analysis are also
considered with specific focus on methods for clustering
and sub-population identification, assessing differences

ing, and network reconstruction (a summary is provided
in Table 1). We conclude with a discussion of the open
questions facing computational scientists, as well as
those that will soon arise as datasets quickly become
ever larger and more complex.
Experimental design
Generally speaking, a well-designed experiment is one
that is sufficiently powered and one in which technical
artifacts and biological features that may systematically
affect measurements are randomized, balanced, or con-
trolled in some other way in order to minimize oppor-
tunities for multiple explanations for the effect(s) under
study. Guidelines toward achieving this end have been
reviewed for bulk RNA-seq studies [1, 2] and many of
the same guidelines also hold for scRNA-seq. In short,
to minimize potential artifacts and confounding, it is im-
portant to randomize or balance over as many factors as
possible, ideally so that putatively interesting features
that are observed in the data are not due to artifacts im-
posed during sample preparation and/or data collection.
Although the specific factors that are important in any
design are highly experiment-dependent, if multiple pop-
ulations are being assessed, a primary candidate for
randomization is the order with which cells from distinct
populations are processed and libraries are constructed.
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Fig. 1 Prominent features in single-cell RNA-seq data relative to bulk RNA-seq include an abundance of zeros, increased variability, and
multi-modal expression distributions. a Boxplots of the gene-specific proportion of zeros in a bulk (bulk1) and single-cell (sc1) dataset
stratified by percentile of median gene expression. Sequencing depth ranges from 420,000 to 16.6 million in bulk1 and 385,000 to 16.4
million in sc1 (samples were chosen to have comparable depths; see the “Data” section). b Densities of gene-specific log variance for all
genes in three bulk and three single-cell RNA-seq datasets. Densities are also shown for the single-cell datasets for log variances calculated following
the removal of zeros, emphasizing that the increased variability observed relative to bulk is not entirely due to the presence of zeros. c For each dataset
shown in b, 1000 genes were selected at random from the list of genes for which at least 75 % of cells showed non-zero expression. For each gene,
zeros were removed and Mclust [92] was applied to log expression to estimate the number of modes. Because zeros were removed prior to Mclust, a
mode at zero will not contribute to the total number of modes shown
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If multiplexing is done, the assignment of barcoded sam-
ples should be randomized or balanced across multiple
lanes to minimize potential lane effects.
While randomization should be carried out to the ex-

tent possible, it is important to point out that, in many
cases, conducting a fully randomized experiment is not
realistic. Limited samples, a fixed number of single-cell
isolation platforms and sequencers, time constraints,
and budgets often prohibit the theoretically ideal experi-
ment from being realized in practice. In most cases,
samples must be processed in multiple batches, with
randomization occurring within batch. This is exempli-
fied nicely in an experiment concerning embryonic de-
velopment that profiles single-cell expression in oocytes
and zygotes as well as in 2-cell, 4-cell, and 8-cell em-
bryos [3]. In this study, within each batch, each
developmental stage was represented and stages were
randomized in an effort to ensure that batch and stage
were not confounded. Further discussion of possible
batch effects and a specific experimental design that re-
duces the confounding of batch effect with biological
signal are given in Hicks et al. [4]. Specifically, they
propose a design in which cells from the biological con-
ditions under study are represented together in multiple
batches, which are then randomized across sequencing
runs, flow cells, and lanes as in bulk-RNA-Seq. With this
design, one can model and adjust for batch effects that
result from systematic experimental bias.
Experimental design considerations will also be af-

fected by the various protocols and platforms available
for scRNA-seq. Platforms for isolating single cells vary
substantially with respect to capacity, cost, and time.



Table 1 Statistical methods for single-cell RNA-seq experiments

Name Description Requirements/deliverables

Normalization

GRM [57] Fits polynomial gamma regression model to FPKM data from
spike-ins; estimated parameters are used to convert FPKM of
endogenous genes to an absolute scale within each cell

Performs within cell normalization and may be used
with FPKM, RPKM, or TPM

SAMstrt [56] The resampling-based bulk normalization method in SAMseq
is applied to spike-ins

Assumes that an equal number of spike-in control
RNA molecules have been added to all samples

Identifying highly variable genes

Brennecke et al. [48] A gamma generalized linear model fit to the mean-variance
relationship quantified by the square of the coefficient of
variation (CV2) of the spike-ins estimates technical noise
parameters. These parameters are then used to estimate
technical variability for endogenous genes and to test
whether each gene exceeds a variability threshold

Spike-ins and endogenous genes are normalized
separately using the median normalization method.
Gene specific P values are provided to identify highly
variable genes

Kim et al. [63] Uses spike-ins to estimate parameters related to technical
variance, allowing for differences in variability across cells.
Estimates gene-specific biological variability by subtracting
technical variability from total variance

Normalization factors are estimated using the median
normalization method. A simulation based framework
to test for highly variable genes is provided

BASiCS [54] Jointly models spike-ins and endogenous genes as two
Poisson-Gamma hierarchicalmodels with shared parameters

Estimates normalization parameters jointly across all
genes. Gene-specific posterior probabilities are provided
to identify both lowly and highly variable genes

Noise reduction

scLVM [47] Uses a Gaussian Process Latent variable model to estimate
the covariance matrix associated with latent factors. Residuals
from a linear mixed model with the covariance term represent
de-noised expression estimates

Requires genes associated with the latent factor to be
identified a priori. Normalization factors are estimated
using the median normalization method

OEFinder [12] Uses orthogonal polynomial regression to identify genes
whose expression is associated with position on the C1
Fluidigm integrated fluidic circuit (IFC)

Gene-specific P values are provided to identify genes
affected by the artifact

Sub-population identification

ZIFA [70] Models dropout rate as a function of expression in a factor
analysis (linear dimension reduction) framework

Requires normalized, log-transformed estimates of gene
expression (zeros are not transformed)

Destiny [81, 82] Extends diffusion maps (a non-linear dimension reduction
approach) to handle zeros and sampling density
heterogeneities inherent in single cell data

Requires variance-stabilized gene expression estimates;
works best with a large number of cells

SNN-Cliq [71] Clusters cells by identifying and merging sub-graphs
(quasi-cliques) in a shared nearest neighbor (SNN) graph;
the number of clusters is chosen automatically

Requires a reduced set of genes. Xu and Su [71] recommend
using genes with average RPKM >20 and using a log
transformation to reduce the effect of outliers. Relies on a
valid choice of graph parameters

RaceID [59] Uses k-means applied to a similarity matrix of Pearson’s
correlation coefficients for all pairs of cells; the number of
clusters is chosen using the gap statistic. Outlier cells are
those that cannot be explained by a background model
that accounts for technical and biological noise. In a second
step, rare subpopulations can be identified and outlier cells
may be merged to an outlier cluster; new cluster centers are
then computed and each cell is assigned to the most highly
correlated cluster center

Requires a reduced set of genes. Grün et al. [59] consider
genes with a minimum of five transcripts in at least one cell

SCUBA [73] Uses k-means to cluster data along a binary tree detailing
bifurcation events for time-course data. Models expression
regulation along the tree using bifurcation theory

Requires a reduced set of genes. Marco et al. [73]
recommend using the 1000 most variable genes that are
expressed in at
least 30 % of cells

BackSPIN [60] Iteratively splits a two-way sorted (by both genes and cells)
expression matrix into two clusters containing independent
cells and genes, for a maximum number of splits. The algorithm
has a stopping condition to avoid splitting data that are very
homogeneous

Requires a reduced set of genes and the maximum number
of splits allowed. Zeisel et al. [60] recommend selecting the
top 5000 genes that have the largest residuals after fitting a
simple noise model

PCA/t-SNE [69] Linear/non-linear dimension reduction approach used for
unsupervised clustering of cells

Input is typically a correlation or similarity matrix
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Table 1 Statistical methods for single-cell RNA-seq experiments (Continued)

PAGODA [68] Allows for both detection and interpretation of the
transcriptional heterogeneity within a cell population. A
weighted principal component analysis (PCA) is conducted
for each gene set; those sets for which the variance explained
by the first principal component significantly exceeds genome-
wide background expectation are identified. To provide a
non-redundant view of heterogeneity structure, principal
components from different gene sets showing high
similarity are combined to form a single component of
heterogeneity

Requires un-normalized gene expression counts
(performs internal correction as in SCDE). Uses gene
ontology (GO) annotated or user-defined gene sets

Differential detection

MAST [76] A logistic regression model is used to test differential
expression rate between groups while a Gaussian
generalized linear model (GLM) describes expression
conditionally on non-zero expression estimates. Models
are corrected for cellular detection rate

Requires normalized gene expression estimates and
provides gene-specific P values from summing likelihood
ratio or Wald tests from the two components

SCDE [77] Models gene-specific expression as a two-component
mixture: a Poisson component describes zero and a
Negative Binomial describes non-zero measurements

Requires un-normalized gene expression counts (performs
internal correction) and provides gene-specific posterior
probabilities of differential expression (DE) between two
biological conditions. Tests for DE are performed on
non-zeros

scDD [78] Models expressed counts as a Dirichlet process mixture
(DPM) of normals to test for differentially distributed (DD)
genes associated with multi-modality in the expressed
component. Samples from the posterior further
characterize the gene-specific distributional difference
between two biological conditions to identify genes that
are differentially expressed (DE), differ in the proportion of
cells within modes (DP), differ in the number of modes
(DM), or are both DE and DM (DB)

Requires normalized, log-transformed gene expression
estimates and provides gene-specific P values (or a false
discovery rate (FDR)-controlled list) of DD genes between
two biological conditions. Each DD gene is then classified
into a specific type of distributional difference

Pseudotemporal ordering

Monocle [36] Reduces data using independent component analysis
(ICA) and constructs a minimum spanning tree (MST) to
order cells in pseudotime

Requires normalized, log-transformed gene expression
estimates and a reduced set of genes. Trapnell et al. [39]
recommend identifying genes that are differentially
expressed between time points or, if data at multiple
time points are not available, choosing genes above a
mean and variance threshold

Waterfall [80] Unsupervised clustering is used to identify clusters of cells
for which a putative ordering is determined on the basis
of their relative location in a PCA plot. K-means clustering
of single-cell transcriptomes on the PCA plot and an MST
that connects cluster centers determines pseudotime

Requires normalized estimates of gene expression with
outliers removed

Sincell [83] A flexible R workflow for building cell hierarchies with
multiple options for dimension reduction, clustering, and
graph building. Allows the user to assess the similarity
of graphs and performs resampling or random cell
substitution with simulated replicates to assess the
robustness of estimated hierarchies

Requires normalized, log-transformed gene expression
estimates and a reduced set of genes. Juliá et al. [83]
recommend identifying highly variable genes

Oscope [11] Uses a paired-sine model and K-medoids clustering to
identify groups of oscillatory genes. For each oscillatory
group, an extended nearest insertion algorithm is used to
construct the cyclic order of cells, defined as the order
that specifies each cell’s position within one cycle of the
oscillation of that group

Identifies groups of oscillatory genes, when present.
Requires normalized gene expression and use of only
high mean, high variance genes is recommended

Wanderlust [93] Cells are represented as nodes in an ensemble of k-nearest
neighbor graphs. For each graph, a user-defined starting
cell is used to calculate an orientation trajectory by
iteratively computing the shortest-path distance between
cells. The final trajectory is an average over all graphs

Developed using single-cell mass cytometry data, which
typically describe few genes (<50) and tens of thousands
of cells
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Both Saliba et al. [5] and Kolodziejczyk et al. [6] review
single-cell isolation practices in detail, with the latter in-
cluding details on the more recent droplet methods.
Additional consideration must be given to the protocols
used for extracting RNA from each isolated cell and for
its conversion to cDNA; common methods vary with
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respect to transcript coverage and strand specificity.
Details are provided in reviews by Grün and van
Oudenaarden [7], Saliba et al. [5] and Kolodziejczyk
et al. [6]. Another issue concerns whether or not to
include synthetic spike-ins (external transcripts added
in known concentrations) or unique molecular identifiers
(UMIs; short random sequences attached to individual
cDNA molecules). While both have a number of theoret-
ical advantages for normalization and expression estima-
tion, practical challenges have prevented their routine use
in scRNA-seq studies to date. In addition to the challenges
detailed by Stegle et al. [8], spike-ins are typically added in
an scRNA-seq experiment at very high relative concentra-
tions and, consequently, they take up a relatively large
proportion of reads, an important consideration during
deliberations regarding experimental design. In addition,
recent droplet technologies are not yet able to accommo-
date spike-ins. UMIs offer a great advantage in reducing
noise resulting from amplification bias [9, 10], but proto-
cols that implement UMIs sequence only the 5′ or 3′ end
of each transcript, making them unsuitable for studies of
isoforms or allele-specific expression.
Whatever the design, it is always beneficial (and requires

almost no additional resources) to record and retain infor-
mation on as many factors as possible to facilitate down-
stream diagnostics. Just as it is standard to check residuals
following a linear regression, it should be standard in se-
quencing experiments to check that effects of interest are
not confounded by variations in technician, sample pro-
cessing date/time, reaction temperature, position on cell
capture device, lane, batch, proportion of detected genes,
and so on. Through such an analysis, Leng et al. [11] iden-
tified an artifact related to position on Fluidigm’s IFC
array; once identified, the effects of such artifacts can be
removed [12]. It is also important to note that the sources
of variation in an scRNA-seq experiment are not yet com-
pletely understood, and there likely are systematic effects
that will be important in scRNA-seq that have yet to be
discovered. Novel methods to identify such factors are
needed and are beginning to be developed [4].
While many of the design principles established for

bulk RNA-seq hold in the single-cell setting, specific
guidelines to define what is meant by 'sufficiently pow-
ered' in an scRNA-seq experiment are less clear. As with
bulk-RNA-seq, guidelines will generally depend on the
questions of interest.
While most studies do not address the question of de-

termining the minimum number of cells required for a
given task, identifying the sequencing depth at which
the majority of human transcripts expressed in a cell, or
population of cells, are detected is a question that has
received considerable attention. The consensus is that,
beyond one million reads, there is very little change
(<5 %) in the number of reliably expressed genes
detected in a cell [13]. In fact, the majority of genes
seem to be detected at 500,000 reads; and over half are
typically detected at 250,000 reads [13, 14]. Furthermore,
Shalek et al. [15] demonstrated that one million reads is
sufficient to estimate the fraction of detectably express-
ing cells within a population and also to estimate the
mean and variance of a gene’s expression among detect-
ably expressing cells.
More reads will be required for more refined tasks,

such as fully characterizing transcript structure, estimat-
ing the expression of rare isoforms, or distinguishing
cells on the basis of subtle differences. Fewer reads but
larger cell numbers may be preferred when mapping out
a large population, searching for rare but distinct cell
types, or pooling cells in silico to obtain average gene-
expression clusters. Guidelines have yet to be reported
for these considerations, as well as for most analysis
tasks such as sub-population identification and the iden-
tification of transcripts showing differential distributions
across conditions. As with any power calculation, precise
guidelines will depend not only on the task at hand but
also on the signal-to-noise ratio inherent to a given system.
Pollen et al. [14] have shown, for example, that 50,000
reads is sufficient for cell-type classification in a sample of
301 cells containing diverse cell types. Conversely, in a
seemingly homogenous cell population, deeper sequencing
may be required to detect heterogeneity that is due to rare
subpopulations. Evaluating the trade-off that exists be-
tween sequencing depth and number of cells will also de-
pend on budget and, albeit to a much lesser extent, on
platform, protocol, base-pair length, and genome size.

Quality control and expression estimation
Once reads from a well-designed experiment are ob-
tained, quality control should be performed on the raw
reads, on the aligned reads, and across the collection of
cells in an effort to identify low-quality cells that should
be removed prior to expression estimation. Low-quality
refers to those cells that are broken or dead or to
capture sites that are empty or contain multiple cells; a
detailed discussion is provided in Ilicic et al. [16]. Micro-
scopic inspection of capture sites is often used to iden-
tify and remove empty or multiple captures prior to
sequencing [11, 17, 18], but such a visual inspection is
not possible with all platforms, is not feasible in very
large-scale experiments, and is not helpful in identify-
ing subtle features associated with low quality [16]. Be-
yond visual inspection, many of the hallmarks of low
quality are qualitatively the same as in bulk RNA-seq;
consequently, existing tools are proving useful in the
single-cell setting [8]. FASTQC [19], Kraken [20], and
RNA-SeQC [21] are all popular tools for assessing the
quality of raw and mapped reads within an individual
sample. Each calculates read quality using summaries
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of per-base quality defined using the probability of an
incorrect base call [22]. Cells with unusually high num-
bers of low-quality reads are flagged for removal.
Graphical interfaces allow a user to assess quickly
whether there is structure in the low-quality scores: an
abundance of low-quality scores in the first few posi-
tions of many reads may indicate a transient problem
with the run, whereas a decrease in quality in the last
positions indicates a general degradation. Trimming
may prove useful in the latter but is not suggested for
the former. The FASTQC website discusses these and
other issues in detail [19]. For samples with sufficiently
high-quality reads, as evidenced by relatively few base-
call errors, additional features should be assessed. For
most genomes, in a complex library free of nucleotide
composition, GC content, and/or amplification bias,
the proportion of nucleotides should be approximately
equal across read positions (at least after an initial bias
that may be present due to certain priming protocols),
GC content should be approximately normally distrib-
uted across reads with a mean and variance similar to
that in the reference transcriptome and very few reads
should be duplicated.
Additional criteria should be assessed once reads are

mapped to a reference transcriptome. The most common
metrics are total number or reads, number of transcripts
sequenced or detected, the proportion of uniquely map-
ping reads, and the proportion of reads mapping to anno-
tated exonic regions, where low numbers are indicative of
sample degradation and/or bias. The proportion of reads
mapping to the mitochondrial genome may also be useful
in identifying low-quality cells because in a broken cell
cytoplasmic RNA will be lost, while RNAs that are
enclosed in the mitochondria will be retained [16]. If
spike-ins are used, the ratio of reads mapping to synthetic
and endogenous transcripts can be informative [23]. Spe-
cifically, a high ratio may indicate that a cell was broken
during the capture process [16]. Patterns associated with
coverage are also important [21, 24] and can be evaluated,
for example, by considering the evenness of coverage as
represented by the mean coefficient of variation across
transcripts, 5′/3′ coverage as assessed by calculating the
average coverage at each percentile of length from anno-
tated 5′ and 3′ ends of known transcripts, and gaps in
coverage. Levin et al. [24] discuss these metrics in detail
and Li et al. [25] provide examples; RNA-SeQC provides a
software package to facilitate straightforward calculation
and visualization [21]. It is important to note that ex-
pected coverage patterns will depend on protocol and
should be evaluated accordingly [7].
Given all the metrics potentially relevant in assessing a

cell’s quality, it can be difficult to decide which samples
to include. Specifically, what proportion of low-quality
reads is considered unusually high? How many reads
should be unique in a sufficiently complex library?
FASTQC provides suggested thresholds that may be
used for these and many of the other metrics discussed
above. Although useful, thresholds will depend on many
factors, including specific features of the transcriptome
under study, read length, library preparation protocols,
and the experimental design. For some measures,
thresholds from bulk do not apply; mapping rates, for
example, are typically lower in scRNA-seq. For these
reasons, it can be helpful to compare metrics across
many samples. QoRTs [26] and Qualimap2 [27] allow a
user to assess the quality of individual cells in the ways
just described, but also introduce metrics to assess qual-
ity across a collection of samples. This allows a user to
identify outlier cells with respect to any of the metrics
just discussed. It also allows for the identification of
batch or other systematic artifacts that are not visible
when considering individual samples in isolation. Cau-
tion must be exercised when discarding individual cells,
or groups of cells, at this stage as a cell’s distinct features
may be due to interesting biological processes and not
technical artifacts. Keeping in mind that QoRTs and
Qualimap2 were developed for bulk RNA-seq, in which
outlier samples are more likely to be due to artifacts,
extra caution should be exercised before discarding a cell
that passes quality control individually but not in the
group setting. Ilicic et al. [16] recently developed a
supervised classification approach for identifying low-
quality cells in the single-cell setting. Like QoRTs and
Qualimap2, it considers a collection of cells; it also
accommodates not only technical but also biological
measures of cell quality and, because of its compre-
hensiveness, is likely to become one of the state-of-
the art methods in this area.
With quality cells in hand, expression may be repre-

sented as counts from non-UMI data using HTSeq [28]
or as expected counts using RSEM [29] or WemIQ
[30]. If UMI-tagged data are available, counts can be
obtained using approaches such as those detailed by
Islam et al. [10] or Hashimshony et al. [31]. Measures
of relative expression within a cell are also often used;
these include transcripts per million mapped reads
(TPM) or reads/fragments per kilobase per million
mapped reads (RPKM or FPKM, respectively). As de-
tailed below, these measures are not appropriate for
comparing expression across cells in most cases be-
cause they assume that RNA content is constant across
cells and that genes are equivalently expressed. For
most downstream analyses, normalization among cells
is needed.

Normalization
Normalization commonly refers to adjusting for differ-
ences in expression levels that result from technical
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artifacts, so that expression may be compared within or
between samples. It is widely recognized that many
systematic sources of variation affect scRNA-seq read
counts and should be adjusted for, including capture in-
efficiency, amplification biases, GC content, differences
in total RNA content, sequencing depth, etc. In practice,
however, it is difficult to estimate many of these variance
sources and so most often scRNA-seq normalization
amounts to adjusting for differences in sequencing
depth. When well-behaved and representative synthetic
spike-ins and/or UMIs are available, further refinement
is possible. We first discuss methods for normalization
that do not involve spike-ins or UMIs.

Normalization without spike-ins or UMIs
A number of scRNA-seq studies normalize for se-
quencing depth within a cell by calculating TPM [14,
15, 23, 32, 33] or RPKM/FPKM [34–37]. Although
useful, within-cell normalization methods are not ap-
propriate for many downstream analyses because they
do not accommodate changes in RNA content and
they can be misleading when genes are differentially
expressed [38]. A number of studies have demon-
strated, albeit in the bulk RNA-seq setting, that
between-sample normalization (adjusting for sequen-
cing depth and/or other factors to make samples com-
parable across a collection) is essential for principal
components analysis (PCA), clustering, and the identifi-
cation of differentially expressed (DE) genes [39–41]. A
striking example is provided by Bullard et al. [40], who
show that the normalization procedure has a bigger ef-
fect on the list of DE genes than do the specific
methods used for DE testing. Although these results
were derived for bulk RNA-seq, it is clear that appro-
priate between-cell normalization will be just as im-
portant for single-cell analyses. Unless otherwise noted,
we will hereinafter use normalization to mean between-
cell normalization.
Given the importance of normalization, it is not sur-

prising that many normalization methods are available
for bulk RNA-seq experiments [40–46], and these
methods have been used in the majority of reported
scRNA-seq experiments to date. Specifically, many
scRNA-seq studies use median normalization [47–51] or
a similar method [52, 53]. Although the details differ
slightly among approaches, each attempts to identify
genes that are relatively stable across cells (not DE), then
uses those genes to calculate global scale factors (one for
each cell, common across genes in the cell) to adjust
each gene’s read counts in each cell for sequencing
depth or other sources of systematic variation. Scale fac-
tors are defined such that adjusted expression of the pu-
tative stable genes is relatively constant across cells. In
other words, these methods assume that systematic
variation among the stable genes is due to technical
sources. Consequently, when that is not the case (for ex-
ample, when there are global systematic shifts in expres-
sion resulting from changes in RNA content), these
approaches can produce erroneous results [8]. In
addition, most methods derived from bulk RNA-seq dis-
card genes having any zero counts; and given the abun-
dance of zeros in single-cell data, doing so can have
major effects on normalized counts, with estimates of
global scale factors becoming unstable [54]. Finally, glo-
bal scale factor approaches assume that the relationship
between read counts and sequencing depth is common
across genes, which may not be the case in the single-
cell setting.

Normalization with spike-ins and/or UMIs
As mentioned above, global scale factors assume that
RNA content is constant, which is often not the case in
single-cell analyses as RNA content will vary with cell-
cycle phase, cell size, and the transcriptional dynamics
of select genes [55, 56]. Spike-ins, synthetic transcripts
spiked into each cell’s library at known concentrations,
can be used to estimate relative differences in RNA
content and thereby improve normalization. The idea is
that differences between the observed and expected ex-
pression of spike-ins can be attributed to technical arti-
facts. By calculating a cell-specific factor that adjusts
for the differences, and by applying that factor to en-
dogenous genes, normalized expression estimates can
be obtained. Some scRNA-seq studies use spike-ins to
improve estimates of global scaling factors [47] and
statistical methods have been proposed for this purpose
[54, 56, 57]. In spite of the promise, there are many
challenges in getting spike-ins to work well, which can
result in inconsistent detection [9, 17] (details are
provided in Stegle et al. [8]). As a result, the use of
spike-ins in scRNA-seq is not routine. UMIs are an-
other control that holds much promise. In short, ran-
dom sequences are attached to individual molecules
prior to PCR, making each molecule unique and allow-
ing for an absolute molecular count [10, 58]. UMIs
have been successful in greatly reducing amplification
noise in scRNA-seq data [9, 10, 59–62], but they cannot
be used in studies of isoforms or allele-specific expres-
sion [8]. As with spike-ins, their use in scRNA-seq is
not yet routine. In summary, due to a lack of methods
that can accommodate features inherent in single-cell
data and the challenges in routinely generating high-
quality, representative spike-ins, improved methods for
normalization of scRNA-seq data are required.

Estimating and adjusting for nuisance variation
Several strategies have been proposed to reduce noise
from both technical and biological sources in scRNA-seq
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experiments [9, 49]. In spite of considerable progress,
challenges remain, and scRNA-seq protocols continue to
have substantially increased levels of nuisance variation
relative to bulk RNA-seq. Capture efficiency (percentage
of mRNA molecules in the cell lysate that are captured
and amplified), amplification bias (non-uniform amplifica-
tion of transcripts), and sequencing efficiency (rate at
which cDNAs in a library are sequenced) are major con-
tributors to technical variation. These sources affect
counts in both a gene- and a cell-specific manner and are
observed to have the greatest effect on lowly expressed
genes [48, 63, 64]. Considerable variation also results from
differences among cells in cell-cycle stage or cell size, vari-
ation that is not typically observed in (unsynchronized)
bulk RNA-seq experiments in which expression is profiled
on average over thousands of cells. These biological
sources of variation are not of interest in most experi-
ments and hence contribute to nuisance variation, al-
though we note that in some experiments (for example,
investigations of cell-cycle genes), this variation will be of
direct interest. Given the substantial variability present in
scRNA-seq measurements, separating nuisance from
meaningful biological variation is crucial for accurately
characterizing sub-populations, identifying highly hetero-
geneous genes, and comparing expression levels among
groups of cells; a number of statistical approaches have
been developed toward this end.
One group of methods aims to estimate technical vari-

ability, with the goal of identifying genes that have over-
all variability that greatly exceeds that expected from
technical sources [48, 54, 63]. These methods use spike-
ins to estimate technical noise because spike-ins are
exposed to most of the same experimental steps as
endogenous genes but are free of biological variation.
Specifically, Brennecke et al. [48] demonstrated a strong
non-linear relationship between gene expression and
CV2 for spiked-in genes, where CV2 represents the
square of the coefficient of variation. By modeling this
relationship, estimates of technical variability are ob-
tained and genes whose expression variability greatly ex-
ceeds these estimates for a given biological variability
threshold can be identified. Although useful, this approach
does not fully capture cell-to-cell differences in technical
variability [63] or give explicit estimates of biological vari-
ability [9]. More recent methods provide improvements
by estimating biological variability [9] or by incorporating
additional aspects of technical noise to estimate parame-
ters that account for variation across cells using spike-ins
[63] or jointly over spike-ins and genes [54].
A second group of methods aims to identify and adjust

for nuisance variation imposed by oscillatory genes. Spe-
cifically, Buettner et al. [47] propose a single-cell latent
variable model (scLVM) to adjust for the effects of cell-
cycle oscillations. By adjusting for a structured source of
variation (resulting from oscillations), the overall re-
sidual variance is reduced, increasing the signal-to-noise
ratio and effectively increasing power. The scLVM
approach estimates a covariance matrix for known cell-
cycle genes using a Gaussian-process latent variable
model. A linear mixed model is then fitted to each gene
with random effects, modeling contributions from hid-
den factors represented by the covariance matrix, tech-
nical noise, and biological variation. Residuals from the fit
produce so-called 'corrected' gene expression values in
which the variation associated with the cell-cycle has been
removed. Buettner et al. [47] demonstrated nicely that
previously masked sub-populations associated with T-cell
differentiation are revealed following removal of cell cycle-
associated variation.
A related approach called Oscope [11] does not rely

on oscillating genes being identified a priori. Rather, it
was developed to identify and characterize oscillators in
snapshot (non temporal) scRNA-seq experiments. When
oscillations that are due to the cell cycle or other sources
are not of interest but rather are nuisance variables
masking the effects that are of interest, the oscillatory
gene groups identified by Oscope may be used subse-
quently in a de-noising step, using either scLVM or, for
specific groups of genes, OEFinder [12]. It should be
noted that Oscope is useful not only when oscillators are
nuisance variables but also when they are of direct inter-
est. For example, Oscope could be used in studies that
aim to identify new oscillators (see the “Pseudotemporal
ordering and inference” section).

Sub-population identification
Two of the most common goals of an scRNA-seq ex-
periment are identifying cell sub-populations within a
biological condition and characterizing genes that have
differential distributions (DD) across conditions. We dis-
cuss each separately. As with normalization, the majority
of reported scRNA-seq studies use methods developed
for bulk experiments. Specifically, hierarchical clustering
and/or PCA is often performed on DE [3, 15, 65], highly
expressed [66, 67], or highly variable genes [61, 62] (or
gene sets [68]) to identify cell sub-populations. A nonlin-
ear dimension-reduction method, t-SNE [69], has also
been used for scRNA-seq data and is often applied to a
subset of highly variable genes [60–62]. High variability
in expression levels among cells of the same type, which
is common in scRNA-seq, can cause underlying struc-
ture to be undetected by these otherwise useful ap-
proaches. In addition, PCA (and related methods such
as factor analysis (FA)) can provide misleading results in
the single-cell setting because of the presence of zeros
[70]. Methods have been developed recently to address
these limitations. ZIFA is a dimension-reduction ap-
proach that augments a latent variable factor analysis



Bacher and Kendziorski Genome Biology  (2016) 17:63 Page 9 of 14
model to accommodate zeros [70]. Pierson and Yau [70]
used simulation studies to show that ZIFA has compar-
able performance to PCA/FA when no (or few) zeros are
present and has considerable advantages in the presence
of zeros. SNN-Cliq is a computationally efficient cluster-
ing approach that relies on shared nearest neighbor
(SNN) similarity measures, which utilize rankings of
similarities (such as Euclidean distance) between gene
expression values as opposed to their numerical values
[71]. As the ranking of nodes usually retains meaning in
the high-dimensional setting, even when primary simi-
larity measures might not, SNN-cliq proves to be more
robust and precise than traditional approaches. Like SNN-
cliq, RaceID also provides advantages gained by clustering
of processed data as opposed to gene-expression values
[59]. Specifically, RaceID performs k-means clustering ap-
plied to a similarity matrix determined by Pearson’s cor-
relation coefficients from pairs of cells, which is shown to
yield improvements in cluster separation relative to using
expression values directly. A second step allows for outlier
cells to be regrouped into separate clusters in an effort to
identify rare sub-populations. Once sub-populations are
identified, it will be very interesting to determine if they
correspond to a known cell type; toward this end, a
cell-type-enrichment analysis approach similar to gene-
set-enrichment analysis has been developed as part of
SINCERA [72]. Finally, if data from multiple time
points are available, single-cell clustering using bifur-
cation analysis (SCUBA) can be used to identify sub-
populations at an initial time point and to extract
lineage relationships between the sub- populations and
cells at subsequent time points [73].

Identifying genes that have expression
differences across conditions
To identify genes that have expression differences across
conditions in an scRNA-seq study, investigators often use
methods from bulk RNA-seq that test for shifts in uni-
modal distributions across conditions [3, 31, 56, 67, 74, 75].
A number of groups have recognized the deficiencies in
doing so: due to both biological and technical variability
cell-to-cell, there is often an abundance of cells for which
a given gene’s expression is measured at zero. Recent
methods, including MAST [76] and SCDE [77], have been
developed to accommodate bimodality in expression levels
resulting from an abundance of zero (or low) values. In
these mixture-model-based approaches, one component
distribution accommodates unobserved, or dropout,
measurements (which include zero and, optionally, thre-
sholded low-magnitude observations) and a second uni-
modal component describes gene expression in cells where
expression is observed. (Note that SCDE uses a three-
component mixture to fit error models and to improve
expression estimates but a two-component mixture for
testing for differences in expression across conditions.) Al-
though these approaches provide an advance over the uni-
modal models that are used in the bulk setting, they are
insufficient for characterizing multi-modal expression data,
which is common in scRNA-seq experiments. For example,
cell heterogeneity often gives rise to bimodal distributions
within the “observed” component [15, 65].
A recent method developed by Korthauer et al. [78]

accommodates multi-modality to identify genes with DD
across conditions. In their Bayesian modeling frame-
work, called scDD, they accommodate four types of
changes across two biological conditions: shifts in uni-
modal distributions (traditional DE); differences in the
number of modes (DM); differences in the proportion of
cells within modes (DP); or both DE and DM, which the
authors refer to as DB. The scDD model provides pos-
terior probabilities of DD for each gene and then, using
those posterior probabilities, classifies each DD gene
into one of the four patterns. By explicitly modeling the
multi-modal expression, scDD is likely to have increased
power to identify differences in many settings.

Pseudotemporal ordering and inference
Dynamic processes such as stem cell renewal and differ-
entiation are essential for normal tissue development,
homeostasis, and repair, yet our understanding of these
fundamental processes remains primitive. Bulk RNA-seq
studies have enabled numerous insights, but averaging
over thousands of cells obscures, and in some cases mis-
represents, signals of interest [79]. Consequently, the
ability to profile genome-wide expression in individual
cells is critical to improving our understanding of the
dynamic cellular processes associated with development,
differentiation, and disease. Single-cell RNA-seq experi-
ments provide for such profiling but they too are limited
to snapshot experiments, meaning that continuous mon-
itoring of genome-wide gene expression in individual
cells over time is not possible. Fortunately, computa-
tional algorithms coupled with scRNA-seq data enable
reconstruction of differentiation paths from a population
of individual unsynchronized cells. The idea is that, at
any given time point, an unsynchronized cell population
contains cells at various stages of differentiation. (We
refer to differentiation throughout, noting that other dy-
namic biological processes may also be studied using
these approaches.) Expression dynamics may be resolved
by reordering the cells according to their position along a
differentiation path. A number of statistical and computa-
tional methods have been developed toward this end.
Although the details differ considerably among

methods, most approaches perform some type of dimen-
sion reduction and then apply algorithms from graph the-
ory (or extensions thereof) designed to traverse nodes in a
graph efficiently. In short, of interest in many graph
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theoretic considerations is identifying the paths (orderings
of nodes) that pass through selected nodes in a graph
while minimizing some distance function. This problem is
structurally similar to ordering cells along a differentiation
path or paths; the goal is to order cells so that the distance
between cells, determined by gene expression, is mini-
mized. Typically, distance is defined using genes that ex-
plain a substantial proportion of variance or those known
to be important in differentiation.
Monocle was the first robust and efficient computa-

tional method developed to order cells according to their
position along a differentiation process [36]. To recon-
struct the so-called pseudotemporal ordering, Monocle
uses independent component analysis (ICA) for dimen-
sion reduction, then constructs a minimum-spanning
tree (MST) through the dimension-reduced data. The
longest path through the MST is used initially to place
cells according to their progress through differentiation.
Divergence among paths is accommodated and numer-
ous trajectories are considered to order cells that are not
well placed initially. Monocle’s motivating examples and
analysis are done using data from four time points and
the authors [36] note that selecting genes that are DE
between time points allowed for robust ordering. It is
possible to use Monocle for pseudotime ordering of data
from a single time point, but doing so would require a
user to identify salient, temporally related genes, which
in some cases is not possible. Waterfall is similar to
Monocle but uses unsupervised clustering and PCA in a
pre-processing step to identify groups of ordered cells
(temporal delineators are not required) that are then
used to reconstruct a full ordering using an MST [80].
Methods that are based on diffusion maps have also

been developed [81]. They allow for dimension reduc-
tion and reconstruction in a single step, are relatively ro-
bust to noise, accommodate zeros, and are largely
insensitive to the underlying sampling distribution; but
with these advantages comes a considerable computa-
tional burden. Specific implementations that consider sub-
sets of paths can dramatically improve performance [82];
and Sincell provides a general implementation in which
various options for dimension reduction and pseudotem-
poral reconstruction may be specified by a user [83].
A key assumption that enables pseudotemporal order-

ing is that genes do not change direction very often, and
thus samples with similar transcriptional profiles should
be close in order. If oscillatory processes are of interest,
the aforementioned approaches are not appropriate be-
cause genes that follow the same oscillatory process
need not have similar transcriptional profiles. Two genes
with an identical frequency that are phase shifted, for ex-
ample, will have little similarity. Oscope was developed
to enable the identification and reconstruction of oscilla-
tory trajectories [11]. Like other pseudotemporal
reconstruction algorithms, Oscope capitalizes on the fact
that cells from an unsynchronized population represent
distinct states in a system. Unlike previous approaches,
however, it does not attempt to construct a linear order
that is based on minimizing change among adjacent
samples. Instead, it utilizes co-regulation information
among oscillators to identify groups of putative oscillat-
ing genes and then reconstructs the cyclic order of sam-
ples for each group, defined as the order that specifies
each cell’s position within one cycle of the oscillation.
There are likely other processes of interest whose dy-
namics are not well described by the pseudotemporal or
cyclic order reconstruction methods that are currently
available and novel methods in this domain will prove
useful.

Network inference
Elucidating the structure and function of transcriptional
regulatory networks is a central goal of numerous stud-
ies and scRNA-seq provides unprecedented potential to-
ward this end. This challenge is commonly viewed as a
regulatory network reconstruction problem, in which
genes or transcripts represent nodes and edges represent
interactions or dependence among nodes. Of primary
interest are identifying meaningful groups of nodes, esti-
mating edges, and determining the ways in which the
network changes following perturbation. The weighted
gene co-expression network analysis (WGCNA) is an
analysis approach widely used in bulk RNA-seq [84]. In
this framework, edges represent co-expression, as deter-
mined by both correlation and relative interconnected-
ness. It is not clear how these measures will perform in
general when applied to scRNA-seq, where zeros and
sub-populations are common, and it is likely that some
adjustment to the existing framework may prove benefi-
cial. At the same time, WGCNA has already enabled im-
portant insights in an scRNA-seq study focused on
embryonic development [53]. There, the authors applied
WGCNA to cells at the same developmental stage, min-
imizing the potential for spurious results induced by
high-correlation coefficients resulting from the presence
of sub-populations.
WGCNA and other association network reconstruc-

tion approaches have facilitated considerable progress in
bulk studies and are expected to do so for scRNA-seq as
well, but they do not provide information about regula-
tory relationships among nodes. To do so, temporal or
perturbation experiments are typically required. As de-
scribed in the previous section, it is possible to derive at
least partial ordering from snapshot scRNA-seq experi-
ments; two recent methods leverage the information
provided by pseudotemporal ordering approaches and
combine it with traditional methods for regulatory net-
work reconstruction to infer regulatory relationships
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among genes [85, 86]. In doing so, these exciting
methods greatly expand upon the type of information
that can now be obtained from snapshot scRNA-seq
experiments.

Conclusions
The past decade of genome research has led to major
advances in single-cell sequencing technologies and con-
comitant advances in computational and statistical
methodologies. Yet a number of challenges remain and
must be addressed to ensure that maximal information
can be obtained from single-cell RNA-seq, as well as
other types of single-cell experiments. Methods from
bulk experiments are readily applicable, perhaps follow-
ing straightforward extensions, for tasks such as quality
control and expression estimation that involve raw data.
In contrast, novel methods are required for tasks that
are directly affected by features characteristic of single-
cell data, including an abundance of zeros, increased
heterogeneity, and complex expression distributions.
These tasks include normalization, sub-population iden-
tification, assessment of differential dynamics, pseudo-
time reconstruction, and network inference. For
questions that involve processed measurements (involv-
ing PCA, FA, or network inference methods, for ex-
ample), a main challenge is how best to define distance.
Standard measures of distance may be compromised in
the single-cell setting given the frequency of strongly
expressed genes that dominate such measures and given
the abundance of missing data that are not missing at
random but rather arise from both biological and tech-
nical sources. Once robust and informative measures of
distance are developed, applications of traditional
methods will result in much-improved performance.
We have focused primarily on analyses for which mul-

tiple tools are available, although we note that there are
additional methodological challenges that are not
highlighted here. For example, novel methods are begin-
ning to be developed for studies of allele-specific expres-
sion [63] and isoform usage [87]. Methodological
challenges are also introduced with the advent of tech-
nologies that increase sample size by allowing for rou-
tine profiling of tens of thousands of cells [61, 62, 88].
Some of the methods discussed here will enjoy improved
performance, whereas others will require extensions or
approximations to handle the computational burden.
Advances will also facilitate the study of single-cell gene-
expression profiles over time, space [89], or lineage [90],
as well as of multiple types of -omics data within a single
cell [91]. This progress will usher in unique opportun-
ities to fully address fundamental questions associated
with cell state, circuitry, and fate decisions during de-
velopment, homeostasis, and disease. As we enter a
period of unparalleled data accumulation and analysis,
computational biology will undoubtedly continue to
contribute important advances to our understanding of
molecular systems.

Data
Six publically available datasets (three bulk and three
single cell) are shown in Fig. 1. Datasets bulk1, bulk3,
and sc3 contained spike-ins that were removed prior to
analysis. The six datasets are described in detail below.

Bulk1
Gene-level read counts calculated by HTSeq were down-
loaded from GEO GSE60314, genome release 6.01. In
short, RNA was extracted from individual Drosophila
Genetic Reference Panel (DGRP) flies and then multi-
plexed and sequenced using the Illumina HiSeq 2000
system. Here, we consider 60 female bulk RNA-seq sam-
ples to match the number of samples in the sc1 set. To
make the sequencing depths comparable, for each sc1
cell, a sample having comparable sequencing depth was
drawn from the 851 available bulk1 samples. The 60
chosen bulk samples have an average sequencing depth
of nine million and were normalized using the median
normalization method [42].

Bulk2
Transcript-level RPKM expression estimates were down-
loaded from GEO GSE40419. In short, RNA was ex-
tracted from tissue containing normal lung cells; cDNA
was prepared using the standard Illumina protocol and
sequenced using the Illumina HiSeq 2000 system. The
data contain 77 bulk RNA-seq samples. Prior to RPKM
normalization, reads were aligned using GSNAP and
gene-level counts were quantified by counting the num-
ber of uniquely aligned RNA sequencing reads.

Bulk3
Transcript-level read counts were downloaded from
GEO GSE47774. Here we consider 80 replicate samples
of Universal Human Reference (UHR) RNA (sample A)
sequenced at Beijing Genomics Institute (BGI) as part of
the Sequencing Quality Control (SEQC) project. Five
barcoded replicate libraries were generated then multi-
plexed and sequenced across eight lanes for two flow
cells using the Illumina HiSeq 2000 system. The data
have an average sequencing depth of 13.4 million and
were normalized using the median normalization
method [42].

Sc1
Gene-level read counts (generated using rpkmforgenes)
were downloaded from GEO GSE45719. RNA was
collected from individual Mus musculus embryonic cells
at various time points of development. Cells were
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handpicked and libraries were prepared using the Smart-
seq protocol. Libraries were multiplexed and sequenced
on the Illumina HiSeq 2000 system. Here we consider
scRNA-seq of 60 cells from the mid blastocyst embryo
stage. The data have an average sequencing depth of
nine million and were normalized using the median
normalization method [42].

Sc2
TPM expression estimates generated by RSEM were
downloaded from GEO GSE64016. In short, RNA was
extracted from undifferentiated H1 human embryonic
stem cells in three replicate experiments. Single-cell
RNA-seq was performed using the C1 Single Cell Auto
Prep System (Fluidigm); libraries were then multiplexed
and sequenced at 24 libraries per lane on the Illumina
HiSeq 2500 system. The data have an average sequen-
cing depth of 3.4 million.

Sc3
Gene-level read counts calculated by HTSeq were down-
loaded from ArrayExpress E-MTAB- 2805. In short, in-
dividual Mus musculus embryonic stem cells were
sorted using fluorescence-activated cell sorting (FACS)
for cell-cycle stage, then single cell RNA-seq was per-
formed using the C1 Single Cell Auto Prep System (Flui-
digm). Libraries were multiplexed and sequenced across
four lanes using the Illumina HiSeq 2000 system. Here
we consider 96 Mus musculus embryonic stem cells in
the G2M stage of the cell cycle. The data have an average
sequencing depth of 4.5 million and were normalized
using the median normalization method [42].
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