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Differential expression of conserved and
novel microRNAs during tail regeneration
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Abstract

Background: Lizards are evolutionarily the most closely related vertebrates to humans that can lose and regrow
an entire appendage. Regeneration in lizards involves differential expression of hundreds of genes that regulate
wound healing, musculoskeletal development, hormonal response, and embryonic morphogenesis. While
microRNAs are able to regulate large groups of genes, their role in lizard regeneration has not been investigated.

Results: MicroRNA sequencing of green anole lizard (Anolis carolinensis) regenerating tail and associated tissues
revealed 350 putative novel and 196 known microRNA precursors. Eleven microRNAs were differentially expressed
between the regenerating tail tip and base during maximum outgrowth (25 days post autotomy), including miR-133a,
miR-133b, and miR-206, which have been reported to regulate regeneration and stem cell proliferation in other model
systems. Three putative novel differentially expressed microRNAs were identified in the regenerating tail tip.

Conclusions: Differentially expressed microRNAs were identified in the regenerating lizard tail, including known
regulators of stem cell proliferation. The identification of 3 putative novel microRNAs suggests that regulatory
networks, either conserved in vertebrates and previously uncharacterized or specific to lizards, are involved in
regeneration. These findings suggest that differential regulation of microRNAs may play a role in coordinating
the timing and expression of hundreds of genes involved in regeneration.
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Background
Among amniotes, while mammals and birds display only
limited capacity for regeneration in the adult, lizards re-
tain the ability to regrow their tails, including the forma-
tion of multiple tissues such as spinal cord, skeletal
muscle, vasculature, cartilage, and skin, throughout their
lives [1–8]. Transcriptomic analysis of the green anole
lizard, A. carolinensis, regenerating tail revealed differen-
tial expression of genes involved in wound response,
hormonal response, and musculoskeletal development as
well as the Wnt and MAPK/FGF pathways [4]. This
study and others have demonstrated that the regenerat-
ing tail is not a recapitulation of development but a

different structure with the same function [4, 7]. While
many orthologous genes can be identified between the
genomes of the green anole and mammals such as
mouse and human [9], a key question about the evolu-
tion of regeneration in vertebrates focuses on what gen-
etic changes are responsible for lizards retaining their
regenerative capacity and mammals and birds losing this
ability.
Changes in the coding or cis-regulatory sequences of

multiple individual genes could account for the differential
capacity for regeneration within vertebrates. However,
given the large number of genes regulating this process,
regulators of multiple genes may be involved. MicroRNAs
can modulate the expression levels of large numbers of
genes, and divergent microRNA regulation could contrib-
ute to differences in regeneration between reptilian and
mammalian vertebrates. MicroRNAs are highly conserved
across metazoa [10] and play critical roles in regulating a
variety of biological processes, including proliferation and

* Correspondence: kenro@asu.edu
†Equal contributors
1School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
2Neurogenomics Division, Translational Genomics Research Institute, Phoenix,
AZ 85004, USA
Full list of author information is available at the end of the article

© 2016 Hutchins et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Hutchins et al. BMC Genomics  (2016) 17:339 
DOI 10.1186/s12864-016-2640-3

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/195064202?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-016-2640-3&domain=pdf
mailto:kenro@asu.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


differentiation of neurons as well as cardiac and skeletal
muscle tissue during development [11], hematopoietic
and embryonic stem cell differentiation [12, 13], and T-
cell development, maturation, differentiation, and activa-
tion [14]. MicroRNAs also play a key role in regulating
muscle development and repair, which has been exten-
sively studied in mouse and other model systems [15].
The role of microRNA regulation in adult regeneration is
an active area of research in vertebrate models.
The expression of microRNAs during development

and regeneration has been investigated in amphibians
(including the axolotl, the newt, Xenopus adult and tad-
poles) and in teleosts such as the zebrafish. In the axo-
lotl, microRNAs regulate limb and tail regeneration [16–
18]. In the newt, distinct sets of microRNAs, specifically
the let-7 family, are expressed during lens and inner ear
hair cell regeneration [18, 19]. In zebrafish, microRNAs
play an important role in heart, spinal cord, and caudal
tail fin regeneration [20–22].
MicroRNAs from whole animal for the green anole

lizard have been reported [23], but no studies have been
carried out to identify microRNAs in tail regeneration of
any lizard species. To investigate the role of microRNAs
in lizard regeneration, we performed deep sequencing of
RNA smaller than 100 bp. We targeted our analysis on
microRNAs from two distinct regenerating tail tissues,
the growing tip and base, which yielded differentially
expressed transcripts on total RNA transcriptomic ana-
lysis [4]. MicroRNA profiles from adult brain and skeletal
muscle were assayed to help in annotation of small RNAs.
From this sequencing data and subsequent microRNA
annotation, we identified differentially expressed micro-
RNAs between the growing tip and base of the regenerat-
ing tail that may play important roles in regulating stem
cell proliferation and differentiation during regeneration.
Furthermore, we predicted the mRNA targets of lizard
microRNAs and correlated their expression with mRNA
expression identified in a previous study [4]. This study
advances our understanding of which post-transcriptional
regulators may regulate regenerative capacity in the lizard.

Results
Identification of microRNAs in the regenerating lizard tail
During tail regeneration in the green anole lizard, there
is rapid outgrowth at 25 days post autotomy (dpa). We
collected nine regenerating tails at this 25 dpa stage and
dissected and pooled tissue from the tip and base to ob-
tain sufficient RNA for sequencing (n = 3 per pool; 3
pools as biological replicates) (Fig. 1a-b; Table 1). These
regenerating tail tissues and stages corresponded to our
previous RNA-Seq gene expression analysis, permitting
comparison of microRNA and mRNA levels [4]. The
326 differentially expressed genes identified in our previ-
ous study clustered into two groups characterized by

elevated gene expression in the regenerating tail tip or
base. Therefore, we sought to identify microRNAs in
these tissues that could regulate the regenerative
process. To aid in annotating putative novel microRNAs
and confirm the presence of previously identified micro-
RNAs in the green anole, we sequenced microRNAs in
adult skeletal muscle and brain, which represent compo-
nent tissues of the regenerating tail (muscle and central
nervous system).

Fig. 1 Experimental design of microRNA analysis of lizard tail
regeneration. a: Image of a green anole lizard with a fully
regenerated tail (arrow at break point). b: A 25 dpa regenerating tail
was divided into three equally sized segments, with the distal
regenerating tip and proximal regenerating base collected for
microRNA sequencing (sequenced each for the regenerating tail tip
and base, n = 3 per pool). For qRT-PCR analysis, five equally sized
segments were collected (n = 4). c: Venn diagram showing the
distribution of microRNAs expressed in the brain, skeletal muscle,
and 25 dpa regenerating tail tip and base (minimum count of 1)
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Annotation was carried out using miRDeep2 [24, 25],
a tool designed to identify known and putative novel
microRNAs from small-RNA sequencing together with
the miRBase database of published microRNAs [26, 27].
MiRDeep2 takes into account predicted microRNA sec-
ondary structure and uses the expression of 5p and 3p
mature sequences in order to assign a score to each
novel microRNA precursor. Our miRDeep2 analysis
identified a total of 546 precursor microRNA families
using a miRDeep2 score of 5 (corresponding to a true
positive rate of 94 ± 1 %) for putative novel microRNAs
(Additional file 1: Table S1; Fig. 1c). This compares to
282 microRNA anole precursors already identified in
miRBase [23]. Of the 546 precursor putative microRNAs
that we identified from regenerating tail, brain, and skel-
etal muscle, 196 of these precursors were also present in
miRBase (Additional file 1: Table S1). The remaining
350 putative microRNA precursors were identified by
miRDeep2 as potentially novel. Of these, 215 are most
likely orthologs of microRNAs found in other systems,
displaying either 100 % seed identity or a reciprocal
BLAST hit to vertebrate microRNA precursors found in
miRBase. This left 135 putative microRNA precursors
with no currently known ortholog based on sequence
alone (Additional file 1: Table S1) [26, 27]. Analysis of
synteny conservation of these microRNA precursors did
not identify any clear orthologs in the mouse or human
based on genomic location.

Tissue-specific patterns of microRNA gene expression
Altogether, 12 microRNAs are uniquely expressed in the
regenerating tail base compared to only three anole
microRNAs identified in the regenerating tail tip
(Fig. 1c). Most highly expressed microRNAs in regener-
ating tissue are expressed in both the tip and the base of
the regenerating tail (Table 2). While most microRNAs
are shared amongst tissues, the brain displayed the lar-
gest number of unique microRNAs (Fig. 1c). 489

microRNAs were expressed in brain, 340 are expressed
in skeletal muscle, and 473 were expressed in regenerat-
ing tail tissue. Highly expressed microRNAs in the brain
include a number of regulators of neuronal development
and differentiation such as miR-124a, miR-124b, miR-9,
and miR-26 (Table 2) [28–33]. miR-124a, miR-9, and
miR-181a specifically are some of the most abundant
microRNAs expressed in the vertebrate central nervous
system [34–36]. Highly expressed microRNAs in the
skeletal muscle include the muscle specific microRNAs,
or myomiRs, miR-1 and miR-133a [37, 38], along with
miR-26, miR-125b, and miR-27 all of which are in-
volved in myogenesis and skeletal muscle repair
(Table 2) [39–42]. Having identified the tissue specifi-
city of the identified microRNAs, we focused on dif-
ferential expression within the regenerating tail.

Differential expression analysis of regenerating tail
microRNAs and coordinated expression with mRNAs
Small-RNA sequencing of the 25 dpa regenerating lizard
tail tip and base identified the expression of 546 micro-
RNAs (Additional file 2: Table S2). In general, most of
the microRNAs were highly correlated between these
two tissues, with only 11 differentially expressed
microRNAs (Fig. 2a; Additional file 3: Table S3; ad-
justed p < 0.05). The impact of differential expression
of 11 microRNAs is of course amplified by a larger
number of predicted target genes (Table 3; Additional
file 4: Table S4) [43].
The differentially expressed microRNAs could be clus-

tered into four groups, where many microRNAs upregu-
lated in the base share high levels of expression with
skeletal muscle (Fig. 2b). Nine of these microRNAs have
elevated expression in the tail base, including miR-1,
miR-133a, miR-133b, and miR-206, which have been
shown to play key roles in regulating skeletal muscle
differentiation and function [37, 44–48]. In zebrafish, the
miR-133 precursor family regulates regeneration in the

Table 1 MicroRNA sequencing read summary

Sample Number of Reads Number of microRNA
precursors

Sequenced Adapter Trimmed Quality Filtered Unique Mapped to Anocar2.0 Known Putative Novel

ALL TISSUES 58,931,365 51,635,802 48,210,322 1,704,571 642,584 196 350

Regenerating Tail Tip (replicate pool 1) 6,896,312 4,911,787 4,638,573 267,572 80,047

Regenerating Tail Tip (replicate pool 2) 8,771,826 7,690,607 7,073,991 213,808 67,955

Regenerating Tail Tip (replicate pool 3) 8,738,345 8,054,177 7,339,012 205,521 84,089

Regenerating Tail Base (replicate pool 1) 6,905,196 6,084,203 5,763,610 317,605 134,040

Regenerating Tail Base (replicate pool 2) 9,398,842 8,815,680 8,181,644 245,564 87,691

Regenerating Tail Base (replicate pool 3) 5,898,914 5,514,428 5,107,890 157,094 62,711

Adult Skeletal Muscle 3,510,208 2,890,930 2,744,587 124,822 48,387

Adult Whole Brain 8,811,722 7,673,990 7,361,015 172,585 77,664
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tail fin [21], the heart [49], and spinal cord [22]. In mice,
miR-1 and miR-206 regulate satellite cell proliferation
via repression of Pax7 translation, thereby promoting
myotube formation [48, 50]. miR-184, which is differen-
tially expressed in the regenerating tail tip, regulates pro-
liferation and differentiation of neural stem cells [51]. Of
the 11 differentially expressed microRNAs, three were
putatively novel.

In order to validate and study differential expression
of miRNAs in different portions of the regenerating tail
we have followed expression levels in 9 miRNAs identi-
fied by our sequencing efforts (Fig. 3). We sectioned four
regenerated tails into five equal segments, extracted total
RNA from each segment, and followed miRNA level
changes between these segments using qRT-PCR (Fig. 3).
Each miRNA was assayed in triplicate for each tail

Table 2 Highly expressed microRNAs in brain, skeletal muscle, and regenerating tail tip and base (DESeq normalized counts)

microRNA precursor brain microRNA precursor muscle microRNA precursor regen. tail tip microRNA precursor regen. tail base

aca-mir-124b 96,714 aca-mir-1a-1 144,296 aca-mir-21 212,122 aca-mir-21 187,018

aca-mir-125b-1 75,541 aca-mir-1a-2 144,242 aca-mir-10b 78,808 aca-mir-199b 60,669

aca-mir-125b-2 73,617 aca-mir-133a-1 55,682 aca-mir-27b 67,317 aca-mir-27b 56,981

aca-mir-99b 64,863 aca-mir-133a-2 55,682 aca-mir-199b 65,229 aca-mir-199a-2 55,663

aca-mir-26-2 43,364 aca-mir-26-2 43,039 aca-mir-199a-2 29,690 aca-mir-199a-1 55,631

aca-mir-26-1 43,234 aca-mir-26-1 42,941 aca-mir-199a-1 29,657 aca-mir-10b 55,446

aca-mir-125a 41,711 aca-mir-21 33,124 aca-mir-203 29,477 aca-mir-99b 34,538

aca-mir-124a-2 39,123 aca-mir-99b 28,191 aca-mir-26-2 28,893 aca-mir-26-2 32,110

aca-mir-124a-1 39,122 aca-mir-124b 26,041 aca-mir-26-1 28,813 aca-mir-26-1 32,022

aca-mir-124a-3 39,122 aca-mir-125b-1 23,844 aca-mir-99b 20,212 aca-mir-203 25,853

aca-mir-100 30,873 aca-mir-27b 23,384 aca-mir-10a 18,919 aca-let-7a 17,446

aca-mir-9-3 22,674 aca-mir-125b-2 23,191 aca-mir-205a 16,783 aca-mir-10a 16,705

aca-mir-9-1 22,665 aca-mir-143 16,657 aca-let-7f-1 16,737 aca-let-7f-1 16,311

aca-mir-9-2 22,665 aca-mir-99a 12,634 aca-let-7a 16,118 aca-mir-1a-1 16,175

aca-let-7c-1 21,340 aca-mir-125a 12,331 aca-let-7f-2 15,753 aca-mir-1a-2 16,150

aca-let-7c-2 21,340 aca-mir-124a-2 11,107 aca-mir-181a-3 14,394 aca-let-7f-2 15,625

aca-mir-99a 20,749 aca-mir-124a-1 11,107 aca-mir-181a-2 14,348 aca-mir-140 14,167

aca-let-7a 19,748 aca-mir-124a-3 11,107 aca-mir-181a-1 14,347 aca-mir-148a 11,433

aca-mir-27b 16,237 aca-mir-100 10,673 aca-let-7e 10,906 aca-let-7e 11,273

aca-mir-181a-3 12,498 aca-mir-451 10,081 aca-mir-148a 10,513 aca-let-7c-1 10,238

Fig. 2 Differential expression of microRNAs in the 25 dpa regenerating lizard tail. a: Regression of normalized microRNA expression in the
regenerating tail tip and base (Beta-value = 0.995, Spearman’s Rank = 0.968). Each point on the graph represents a microRNA. Dashed lines
represent the cutoff for two-fold change. Differentially expressed microRNAs, i.e., displayed significant expression differences as determined by
DESeq (adjusted p < 0.05) are represented in red. b: Heatmap of differentially expressed microRNAs. Expression in each replicate is shown.
MicroRNAs were clustered by Jensen-Shannon divergence of DESeq variance stabilization transformed expression data
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Table 3 Predicted mRNA targets of upregulated, differentially expressed microRNAs (orthologous and putative novel)

Regenerating tissue source Upregulated, differentially
expressed microRNA

Predicted gene targets

regenerating tail tip aca-miR-184 adprhl2, anpep, ar, b3gnt1, bai2, ccar1, ccdc50, cdkn2c, cox4i2, depdc5, fam160a2,
gpi, h6pd, kars, limk1, me1, ncan, nek6, oxnad1, pcsk4, pdia3, pdpk1, phlda1, ring1,
rtn2, slc30a2, slc43a1, suclg1, sugp2, tgfb1, tmem214, usp21, xxylt1, G.11044, G.14682,
G.15668, G.19327, G.19921, G.20484, G.21669, G.21917, G.21923, G.22240, G.22349,
G.22365, G.22632

regenerating tail tip aca-miR-2188 aaas, b3gnt7, crtac1, grm7, hsf1, hsp90b1, itpkb, itsn1, mta1, mylk2, nmnat3, pou2f2,
tpd52, zbtb45, G.1698, G.6382

regenerating tail base 1_16347 (putative novel) abcf3, adhfe1, amn1, c11orf35, cep76, chrna4, ddit4, dmtn, dpy30, dpysl3, fam57a,
ikzf3, jarid2, lrrc4b, moxd1, mtpap, nmnat2, pfdn4, rps6kl1, scarf2, smpd2, sox13,
sws2, tlk2, tpt1, tpx2, trmt1, G.11229, G.11992, G.14528, G.16037, G.19728, G.19926,
G.4056

regenerating tail base 5_10675 (putative novel) adam33, ap1b1, arhgef33, ccdc104, efcab4a, fermt2, ggt1, klhl38, ncoa4, nkd1, pipox,
plxna4, ppfia4, psmc6, psmf1, rgs18, sall1, sdf2l1, traf3ip3, trim65, txlna, zfyve1, G.11978,
G.20962, G.21441, G.4400

regenerating tail base aca-miR-1b efhd1, irak4, sema4c, slain2, snai2, tktl1, G.22875, G.9382

regenerating tail base aca-miR-206 ankrd17, c5orf30, cd44, cep192, chrac1, gbe1, notch3, poldip3, G.14293, G.4173, G.9382

regenerating tail base GL343237.1_6814 (putative novel) ddb2, elmsan1, irf7, kank4, kifap3, klhdc3, ldb2, map1lc3b, nfia, orc4, ppp1r9b, ptprh,
secisbp2, swap70, vash2, znf385c, G.12700, G.2381, G.3078, G.4859

regenerating tail base aca-miR-1a-1; aca-miR-1a-2 ankrd17, efhd1, gbe1, ikbkap, irak4, pdgfa, sema4c, slain2, snai2, tktl1, G.14293, G.9382

regenerating tail base aca-miR-133a-1; aca-miR-133b abcf3, adhfe1, amn1, arhgdia, c10orf12, c11orf35, cacna1b, cep76, cfdp1, chrna4, col1a1,
creld1, ddit4, dmtn, dpy30, dpysl3, fam57a, gria1, gtpbp1, ikzf3, lrrc4b, moxd1, mtpap,
nmnat2, pfdn4, ppapdc2, rps6kl1, scarf2, smpd2, sox13, tm2d3, tpt1, tpx2, trmt1, vcp,
G.10949, G.11229, G.11992, G.14528, G.16037, G.19284, G.19728, G.19926, G.3656,
G.4056, G.5104
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replicates. cDNA was synthesized using primers specific to the mature miRNA. Three qRT-PCR replicates were performed for each gene in each tail
section (600 total reactions). Expression is normalized to ef1a, and quantified using the ΔΔCt method. a Highly conserved miRNAs with expression
decreasing from the base to the tip. b Highly conserved miRNAs with expression increasing from the base to the tip. c Expression of putative
novel miRNAs across regenerating tail sections
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section, totaling 600 qRT-PCR reactions. As shown in
Fig. 3 miR-1a, miR-1b, miR-133a and miR-206 show
increased expression in the proximal portion of the regen-
erating tail, while miR-184 and miR-2188 display an op-
posite pattern. Importantly, we were able to also detect
these positional changes in a small subset of putative
novel miRNAs (5_10675 and GL343237.1_6814) and puta-
tive novel Anolis-specific miR-133b ortholog (1_16347),
detected by our sequencing results (Fig. 3). These three
putative novel miRNAs possess hairpin structures indica-
tive of miRNAs (Additional file 8: Figure S1, Additional
file 9: Figure S2 and Additional file 10: Figure S3). Add-
itionally, the sequencing reads preferentially stack onto
one arm of the hairpin, and have 1–2 nucleotide over-
hangs, which is characteristic of pre-miRNA processing by
Dicer [52] (Additional file 8: Figure S1, Additional file 9:
Figure S2 and Additional file 10: Figure S3). Of note, while
we detected expression changes in the regenerating tail
for 5_10675 by small RNA-Seq and qRT-PCR, this puta-
tive novel miRNA maps to multiple regions of the Anolis
genome, making it difficult to determine the exact gen-
omic origin of the transcript. Taken together, this data val-
idates our miRNA sequencing efforts, and importantly
shows differential localization patterns of several miRNAs
in the regenerating tail, suggesting that miRNAs may play
a functional role in this process.
Predicted targets of these putative novel microRNAs are

listed in Table 3. A number of genes predicted to be tar-
geted by the three putative novel microRNAs are involved
in mitosis and cell cycle control, including antagonist of
mitotic exit network 1 homolog (amn1), centrosomal pro-
tein 76 kDa (cep76), jumonji, AT rich interactive domain 2
(jarid2), leucine rich repeat containing 4B (lrrc4b), origin
recognition complex, subunit 4 (orc4), protein phosphat-
ase 1, regulatory subunit 9B (ppp1r9b), proteasome
macropain 26S subunit, ATPase, 6 (psmc6), proteasome
macropain inhibitor subunit 1 (psmf1), tousled-like kinase
2 (tlk2), tumor protein translationally-controlled 1 (tpt1),
and the microtubule-associated gene tpx2. In addition, a
number of genes involved in neurogenesis or synapse for-
mation were targets, including cholinergic receptor, nico-
tinic, alpha 4 (chrna4), dihydropyrimidinase-like 3
(dpysl3), plexin A4 (plxna4), sphingomyelin phospho-
diesterase 2 neutral membrane (smpd2), and EF-hand do-
main family member D1 (sws2/efhd1). Finally, Wnt
pathway members fermitin family member 2 (fermt2),
naked cuticle homolog 1 (nkd1), and spalt-like transcrip-
tion factor 1 (sall1) were among the predicted targets.
Given the cell proliferation and tissue formation taking
place within the regenerating tail base, these putative
novel microRNAs may play a key role in regulating the re-
generative process.
We have previously shown that there are at least 326

differentially expressed genes in the regenerating lizard

tail, including genes in the Wnt and FGF/MAPK path-
ways as well as those involved in wound repair, hormo-
nal regulation, and musculoskeletal development [4]. We
identified microRNA/target mRNA pairs that both have
at least 2-fold change in expression between the regener-
ating tail tip and base (Additional file 5: Table S5) and
performed DAVID analysis of Gene Ontology Biological
Processes on the targeted mRNA transcripts to identify
significant functional terms (p < 0.05; Additional file 6:
Table S6) [53, 54]. Of particular interest are coordinated
profiles of expression where the microRNA changes
reinforce the mRNA gene expression, i.e., microRNAs
levels are decreased where the expression of their mRNA
targets are increased, as these could represent post-
transcriptional microRNA repression (Fig. 4a-b). Add-
itionally, the group of highly expressed mRNA genes
whose regulatory microRNAs are also upregulated in the
corresponding tissue are of interest as they could repre-
sent translational microRNA repression (Fig. 4c-d).
In the regenerating tail tip, genes involved in phos-

phorus metabolism, phosphorylation, development of
tubular structures, cell motility, cell morphogenesis, lipid
biosynthesis, and kinase activity are highly expressed.
This would be expected in the regenerating tail tip,
where organization of structures with epithelial cell
organization such as the vasculature, ependymal, and car-
tilage tube would require active signal transduction via
phosphorylation (Fig. 4a, c). MicroRNAs that reinforce
this pattern of expression are all putatively novel. In the
regenerating tail base, genes involved in musculoskeletal
development, enzyme catalysis, response to organic sub-
stances, muscle contraction, and extracellular matrix
organization display increased expression, as might be
expected in differentiating skeletal muscle and cartilage
present in that tissue (Fig. 4b, d). MicroRNAs that
reinforce this pattern of expression included many puta-
tive novel microRNAs, including two of the differentially
expressed putative novel microRNAs (5_10675 and
1_16347), as well as let-7b, which is regulates neural stem
cell proliferation and is additionally expressed during lens
regeneration in the newt [18, 19, 55].

Discussion
This study describes the first microRNA transcriptome
analysis of regeneration in the green anole. We identified
546 microRNA precursors from regenerating tail and
adult brain and skeletal muscle, with 411 microRNA
precursors orthologous to families in other vertebrate
species. In addition, we have validated the presence of a
subset of differentially expressed miRNAs detected by
our sequencing efforts, including three putative novel
miRNAs. Given previous analysis finding a distributed
pattern of cell proliferation throughout the regenerating
green anole tail [4], we did not expect that the tail tip
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would be enriched for stem cell proliferation or reveal a
gradient of differentiation. The cellular organization at
the tail tip differs from the base in being enriched for
forming vasculature, growing ependyma, and coalescing
cartilage tube. In addition, we have validated the pres-
ence of a subset of miRNAs detected by our sequencing
efforts, including three putative novel miRNAs. Differen-
tially expressed mRNAs and microRNAs both reflect
this enrichment for those tissues in the tail tip. Con-
versely, the regenerating tail base is enriched for differ-
entiating skeletal muscle groups, and this pattern was
observed in mRNA and microRNA expression. The find-
ing that three putative novel microRNAs are differen-
tially expressed in the regenerating tail is intriguing.
However, these putative novel microRNAs likely have
homologues in other vertebrates, but the lack of reptil-
ian genomes and microRNAs sequenced to date limits
our ability to clearly identify orthology.
Though microRNA target prediction is a useful tool,

prediction algorithms often have varying target lists, and
their false positive and false negative rates are difficult to
assess [56, 57]. While comparing microRNA expression
with the expression of its mRNA target helps resolve
and identify microRNA/mRNA target pairs for further
analysis, it would be beneficial to further verify these
genes for downstream analyses. Since microRNAs are an
example of post-transcriptional regulation, the addition
of proteomic data would provide a unique insight into
verification of microRNA targets. Specifically, proteomic
data would help assess whether certain microRNAs
act at a post-transcriptional or translational level;
aiding in resolution of identifying microRNAs that in-
hibit translation versus false positives in cases where
both a microRNA and its targeted mRNA transcript
are upregulated.
Given that most microRNA precursors expressed in

lizard tail regeneration have orthologs in other verte-
brates, comparison with microRNAs identified in other
regenerative models could be instructive. For example,
the small RNA miR-133 is downregulated during heart
regeneration and in the tip of the regenerating tail in
zebrafish [49]. In the anole, we identified high levels of
miR-133a in the regenerating tail base compared to the
tail tip. The small RNA miR-184, which is differentially
expressed in the tip of anole regenerating tail, has also
been identified in zebrafish tail fin regeneration [20]. In
addition to regulating neural stem cell proliferation and
differentiation, miR-184 targets the RNA-induced silen-
cing complex (RISC) member argonaute2 [51, 58, 59].
During newt lens regeneration, miR-1 and miR-206
regulate cell proliferation [19]. Orthologs of these two
microRNAs are both differentially expressed in the
regenerating anole tail base. While previous studies did
not identify novel microRNA precursors specific to

regeneration, we identified 3 previously unknown differ-
entially expressed microRNAs in the regenerating tail
base. This may reflect the ability of RNA-Seq to iden-
tify novel sequences, while microarray analysis is lim-
ited by probe sets included in the arrays. Comparative
analysis of the role of microRNAs in vertebrate
regeneration would be advanced by further deep se-
quencing of small RNA populations in other model
systems.

Conclusions
Given that microRNAs are able to regulate a large num-
ber of genes, it is possible that microRNA regulation
during the regenerative process can contribute to differ-
ences in regenerative capacity among vertebrates. Diver-
gence in vertebrate microRNA regulation could arise by
a number of possible models including, i.) the deletion
or loss of microRNAs regulating regeneration within the
mammalian lineage, ii.) the change in downstream tran-
scripts targeted by microRNAs in the mammalian
lineage, and iii.) the emergence of novel reptile-specific
microRNAs that promote regeneration. The latter model
appears less parsimonious given the conservation of
regeneration across vertebrates, including teleosts, am-
phibians, and amniotes (in lizards). In addition to
microRNA-based regulation, genomic changes may of
course affect coding genes and non-coding regulatory
sites such as enhancers, silencers, and insulators. Further
analysis in the lizard and comparison with other regen-
erative models will allow us to further distinguish
between these possibilities.

Methods
Animal care and tissue collection
All animals were collected and maintained according to
Institutional Animal Care and Use Committee guidelines
at Arizona State University, which granted ethics ap-
proval for this study (Protocol Number 12-1247R). Adult
A. carolinensis lizards were purchased from Charles D.
Sullivan, Inc. (Nashville, TN) or Marcus Cantos Reptiles
(Fort Myers, FL) and housed as described previously [4,
60]. Autotomy was induced by firmly holding a point on
the tail 5 cm from the base, while the lizard was other-
wise allowed to move on a flat surface. Regenerated tails
were then collected 25 days post autotomy (dpa). For
microRNA isolation for small RNA-Seq, 25 dpa regener-
ating tails were cut into three sections each, representing
the base, middle, and tip of the regenerating tail.
Three tip and base sections were respectively pooled,
leading to three replicates each containing three
pooled tail samples for each tip and base tissue sam-
ple. For microRNA isolation for qRT-PCR, four 25
dpa regenerating tails were sectioned into five equal
segments as in Hutchins et al. [4].
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microRNA sequencing and annotation
Small RNAs were extracted from adult lizard tissues,
including 25 dpa regenerating tail base (n = 3) and tip
(n = 3), brain (n = 1), and skeletal muscle (n = 1), following
the miRVana kit protocol (Ambion). Small RNAs were
then barcoded for multiplexed sequencing on two Illumina
GAIIx lanes, generating single end 40 base pair reads, and
raw sequencing reads from the resulting small RNA librar-
ies were demultiplexed through services provided by LC
Sciences. Using the FASTX-Toolkit (http://hannonlab.csh
l.edu/fastx_toolkit/), the adapters used for sequencing
(TGGAATTCTCGGGTGCCAAGG) were trimmed from
the demultiplexed reads while keeping only reads 18 bp or
greater, and trimmed reads were quality filtered by remov-
ing all sequencing reads with less than 80 % of the bases
with at least a Q20 Illumina quality score. The resulting
adapter trimmed and quality filtered reads for each for the
samples were then mapped to the AnoCar2.0 repeat
masked genome available from Ensembl (Ensembl Build
67) [61] using the miRDeep2 package [24, 25] mapper.pl
script with the following options: d, e, h, i, j, m. This gener-
ated a collapsed set of non-redundant reads while retaining
read counts along with the genomic location of the

mapped reads. miRDeep2 was then used to annotate puta-
tive novel microRNAs in A. carolinensis, as well as validate
predicted microRNAs from miRBase. Specifically, (1)
mapped reads generated by the mapper.pl script, (2) miR-
Base predicted microRNAs for A. carolinensis [26, 27], and
(3) the miRBase microRNA sequence datasets for human,
mouse, chicken, frog, and zebrafish were all passed through
the miRDeep2.pl script [24, 25]. Putative novel microRNA
genes predicted by miRDeep2 are assigned a score based
on 5p and 3p read support and secondary structures con-
sistent with the biogenesis of microRNAs. Putative novel
microRNAs predicted by miRDeep2 were retained for fur-
ther analysis if they had a miRDeep2 score of 5 or above,
corresponding to an estimated false discovery rate of 6 %.

Statistical analysis of microRNA expression
To determine microRNA expression levels, the set of col-
lapsed, non-redundant reads from the mapper.pl mirDeep2
script were first aligned to the miRBase microRNAs and
putative novel microRNAs predicted by miRDeep2 using
the quantifier.pl script as part of the miRDeep2 package.
This step produced a raw counts file that was then used as
input into the DESeq R/Bioconductor package for further
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statistical analysis [62, 63]. Differential expression tests in
DESeq (adjusted p < 0.05) were conducted only for micro-
RNA genes with at least 10 reads of support in each of the
samples being tested, using the following parameters: fit-
Type = “local” and sharingMode = “fit-only”.

Quantitative RT-PCR validation of microRNA differentially
expressed in the regenerating lizard tail
Four 25 dpa regenerating tails were sectioned into five
equal segments, and total RNA from each segment was
extracted using the total RNA protocol for the miRVana
kit (Ambion), as in Hutchins et al. [4]. cDNA for EF1A
was synthesized using a poly-dT primer and SuperScript
III (Thermo-Fisher), and was used for normalization.
Taqman miRNA primers (Thermo-Fisher) were used to
generate cDNA for each mature miRNA with single base
resolution, using Taqman miRNA primers (Thermo-
Fisher; Additional file 7: Table S7). The first strand
primers were pooled, and 100 ng of RNA was used to
generate cDNA with SuperScript III. The qRT-PCR for
EF1A was performed using SYBR Select Master Mix
(Life Technologies) and custom primers (F: CCGTCGT
TCTGGTAAGAAACTGG, R: TTAGCCTTCTGCGCC
TTCTGG). The qRT-PCR for mature miRNAs was
performed using Taqman Fast Advanced Master Mix
(Applied Biosystems). Both the miRNA and EF1A qRT-
PCRs were performed in 384 well plates on a QuantStu-
dio Dx (Applied Biosystems). Each miRNA was assayed
in triplicate for each tail section, totaling 600 qRT-PCR
reactions. Relative expression levels were quantified by
the ΔΔCt method.

microRNA target prediction
The mRNA targets of the known miRBase and putative
novel microRNAs were predicted using RNAhybrid and
miRanda against 3′ UTR sequences extracted from the
ASU_Acar_v2.2.0 gene annotation [60, 64–69]. The
RNAhybrid prediction first calibrates the location and
scale parameters of the extreme value distribution for
each microRNA by using the RNAcalibrate tool against
the 3′ UTR sequences in order to improve the p-value
calculations for each target prediction for each specific
microRNA. These calibrated parameters were then used
as input for the d-option for the final RNAhybrid predic-
tion step. Additionally, the minimum free energy param-
eter was set to -20 kcal/mol with a p-value ≤ 0.01. The
set of miRanda microRNA target predictions was gener-
ated by setting the minimum free energy to -20 kcal/mol
and requiring no mismatch in the seed region. Only
overlapping microRNA target predictions from both
RNAhybrid and miRanda were retained. Additionally,
microRNA targets were filtered for transcripts that were
the target of two or more microRNAs.

Comparison of microRNA expression and mRNA target
expression
Expression of microRNAs in the regenerating tail was
compared to the expression of their mRNA targets, with
a cut-off of 2-fold change between the tip and base of
the regenerating tail. DESeq was used to determine the
expression levels of the known and putative novel
microRNAs as outlined above, while corresponding tran-
script expression levels were determined previously [4].
Transcript-microRNA interactions were then filtered for
co-expression of both the microRNA and mRNA in
either the tip or base of the regenerating tail. All one or
greater DESeq normalized values for expression of micro-
RNAs were retained. Similarly, transcripts were required
to have at least a Cufflinks estimated FPKM of 1 or greater
in at least one section of the regenerating tail to be
retained for further analysis. P-values for Gene Ontology
(GO) analysis of targeted mRNA transcripts were gener-
ated using the Database for Annotation, Visualization, and
Integrated Discovery (DAVID) functional analysis tool
[52, 53]. Significant GO terms (p < 0.05) were mapped
with the REViGO online tool (http://revigo.irb.hr),
which removes redundant GO terms and visualizes
the semantic similarity of remaining terms [70].
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