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Abstract

Background: Vaccines have been one of the most successful public health
interventions to date. The use of vaccination, however, sometimes comes with
possible adverse events. The U.S. FDA/CDC Vaccine Adverse Event Reporting System
(VAERS) currently contains more than 200,000 reports for post-vaccination events that
occur after the administration of vaccines licensed in the United States. Although the
data from the VAERS has been applied to many public health and vaccine safety
studies, each individual report does not necessarily indicate a casuality relationship
between the vaccine and the reported symptoms. Further statistical analysis and
summarization needs to be done before this data can be leveraged.

Methods: This paper introduces our efforts on representing the vaccine-symptom
correlations and their corresponding meta-information extracted from the VAERS
database using Resource Description Framework (RDF). Numbers of occurrences of
vaccine-symptom pairs reported to the VAERS were summarized with corresponding
proportional reporting ratios (PRR) calculated. All the data was stored in an RDF file.
We then applied network analysis approaches to the RDF data to illustrate a use case
of the data for longititual studies. We further dicussed our vision on integrating the
data with vaccine information from other sources using RDF linked approach to
facilitate more comprehensive analyses.

Results: The 1990–2013 data from VAERS has been extracted from the VAERS
database. There are 83,148 unique vaccine-symptom pairs with 75 vaccine types and
5,865 different reported symptoms. The yearly and over PRR values for each reported
vaccine-symptom pair were calculated. The network properties of networks consisting
of significant vaccine-symptom associations (i.e., PRR larger than 1) were then
investigated. The results indicated that vaccine-symptom association network is a dense
network, with any given node connected to all other nodes through an average of
approximately two other nodes and a maximum of five nodes.
Background
Vaccines have been one of the most successful public health interventions to date with

most vaccine-preventable diseases having declined in the United States by at least 95-

99%. However, vaccines are pharmaceutical products that carry risks. They interact

with the human immune systems and could permanently alter gene molecular struc-

tures. “Under the National Childhood Vaccine Injury Act of 1986, over $2 billion has

been awarded to children and adults for whom the risks of vaccine injury were 100%”

[1]. Potential relationships between vaccines and particular vaccine adverse events
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(VAE) may exist, but not well studied yet. The U.S. FDA/CDC Vaccine Adverse Event

Reporting System (VAERS) is a national vaccine safety surveillance program for post-

vaccination adverse events (AE) that occur after the administration of vaccines licensed

in the United States [2]. Currently the VAERS contains more than 200,000 reports in

total. Patients or healthcare providers submit reports about cases of adverse events they

have experienced on the VAERS website by providing information ranging from vaccine

type, gender, age, symptoms and detailed description of occurred symptoms to onset

dates, life-threatening status, hospitalization status, and death-status. The objectives of

VAERS are to detect new, unusual, or rare vaccine adverse events; determine patient

risk factors for particular types of adverse events; identify vaccine lots with increased

numbers or types of reported adverse events; and assess the safety of newly licensed

vaccines [2].

Although a report was submitted into the VAERS system, that by no means is an ab-

solute declaration that the vaccine had direct correlation with the reported symptoms.

The causality relationship between a vaccine and an adverse event cannot be simply as-

sumed by the VAERS report. In this study, we do not only focus on the raw data from

the VAERS system, but also the correlation of vaccines and symptoms. Through statis-

tical analysis, the correlation can be better accessed by relating frequency of a specific

symptom to the corresponding vaccine and the related symptom with all the vaccines

in the system. We represent information obtained and summarized from the VAERS

database in the Resource Description Framework (RDF) format to facilitate further in-

tegration with other vaccine relevant data for more comprehensive analysis. Armed

with such knowledge, the ability to predict adverse events, or to design new vaccine ap-

proaches that minimize or eliminate serious vaccine-related reactions could be devised,

consistent with a more personalized or individual approach to vaccine practice. In the

following sections of this paper, we use “symptom” and “adverse event” in a inter-

changeable manner.

After possible vaccine-adverse event correlations are identified, how to organize these

high-dimensional correlation data and facilitate pattern recognition by clinical re-

searchers is still a big challenge. In recent years, network analysis emerges as a very

promising approach to address this. Network analysis allows simultaneous representa-

tion of complex associations (e.g., protein-protein interactions) among key elements

(e.g., gene or proteins) in a system (e.g., gene regulatory networks). For example in the

social networks, the nodes are individuals, organizations, or even the entire societies,

and the edges are social relationships between the nodes. During last two decades,

network-based computational approaches gained popularity and have become a new

paradigm to investigate associations among biological entities (e.g., drugs, diseases, and

genes). Applications of these approaches include drug repositioning [3,4], disease gene

prioritization [5-7], and identification of disease relationships [8,9]. These network

analysis approaches are usually developed based on the observations from real-world

networks. First, most real-world networks (e.g., WWW network, protein-protein inter-

action network, and social network) are not randomly organized but are driven by pref-

erential attachment and growth (e.g., some nodes have more connections than others).

Such networks are called “scale-free” networks. In the “scale-free” network, the most

highly connected nodes are called “hub’ nodes. Second, most real world networks are

modular, comprised of small, densely connected groups of nodes. Network analysis
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metrics and algorithms have been designed to identify network hub nodes and modules

in a scale-free network. For instance, in our previous work, we developed a network

analysis approach to identify vaccine-related networks and their underlying structural

information from PubMed literature abstracts, which were consistent with that cap-

tured by the Vaccine Ontology (VO) [10]. The modular structure and hub nodes of

these vaccine networks reveal important unidentified knowledge critical to biomedical

research and public health and to generate testable hypotheses for future experimental

verification.

The rest of the paper is organized as follows. In Section 2, we discuss our method-

ology on data collection, summarization, representation, and analysis. In Section 3, we

discuss the result of our preliminary study. In Section 4, we introduce our vision on

further integrating the VAERS data with more vaccine data sources. Finally in Section 5,

we conclude the paper and discuss future directions.
Methods
The VAERS data preparation

All of the VAERS data was downloaded from the reporting system’s website (http://

vaers.hhs.gov/index). The necessary files from 1990 to 2013 were then loaded into a

MySQL relational database. More specifically, three tables are included in the database:

Data, Vaccine, and Symptom. The Data table contains information including VAERS

ID, date the report was received, the state patient was in, age of patient, sex, and de-

tailed description of the symptom (e.g., if the symptom was life threatening, if the pa-

tient in the report died and if-so the date of death, if the patient ever attend the ER for

treatment, and if so, how many days was the patient administered at the hospital.) The

Vaccine table includes information about the vaccine administered to the patient such

as vaccine manufacturer, type of vaccine, dosage of the vaccine, vaccination route, vac-

cination site, and vaccination name. Vaccine types are annotated with Vaccine Code

(https://vaers.hhs.gov/glossary/). The Symptom table contains a list of symptom terms

(MedDRA terms) involved in the report. Completed information about one report can

be jointed from the three tables using VAERS ID.
The VAERS data summarization

As we discussed before, the VAERS is a spontaneous reporting system which contains

unverified reports with inconsistent data quality. Symptoms reported occurring after

vaccination do not necessarily have a causality association with the vaccine. In addition

to the raw data downloaded from VAERS, we also used statistical methods to

summarize meta-level features of vaccine-symptom pairs. For each vaccine-symptom

pair, we calculated the following features (1) each year (from 1990–2013) the number

of reports that contains the pair; (2) the distribution of reports by gender each year (3)

the distribution of reports by age groups; and (4) overall proportional reporting ratio

(PRR) and yearly PRRs [11]. A PRR is the ratio between the frequency with which a

specific symptom (adverse event) occurs for a vaccine of interest (relative to all symp-

toms reported for the vaccine) and the frequency with which the same symptom occurs

for all vaccines reported to the VAERS (relative to all symptoms for all vaccines re-

ported to VAERS) [12]. A yearly PRR is calcuated using the data only for one particular

http://vaers.hhs.gov/index
http://vaers.hhs.gov/index
https://vaers.hhs.gov/glossary/
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year (e.g., reports for year 2013). A PRR greater than 1 suggests that the post-vaccination

symptom (adverse event) is more commonly observed for individuals administrated with

the particular vaccine, relative to all other vaccines reported to the VAERS.

RDF representation

We represented vaccine-symptom pairs as well as the summarization features in Re-

source Description Framework (RDF). RDF is a W3C standard that specifies a graph-

based data model for representing data. Each piece of information is represented as a

triple: subject, predicate and object. The RDF representations will allow efficient query-

ing and visualization of relationships between important biomedical entities. A distin-

guishing characteristic of RDF and ontologies compared to the conventional relational

database is “their degree of connectedness, their ability to model coherent, linked rela-

tionships” [13]. After representing the associations using RDF graphs, it will enable us

to leverage existing Semantic Web tools to explore the Semantic Web Linked Data in a

flexible and scalable way. Moreover, it will enable powerful data integration among het-

erogeneous data sets, which is a well-known challenge in the translational science study

community.

In order to present the information of vaccine-symptom associations, we first created

meta-level classes and properties. OWL classes have been created to represent Vaccine-

SymotomAssociation, Vaccine, and Symptom. OWL object properties such as hasSymptom,

hasVaccine, hasOVerallPRR, hasPRRDetail, hasVAERSAgeDetail, and hasVAERSGender-

Detail have been created to represent the meta information of a vaccine-symptom pair.

OWL data properties such as hasOverallPRR, hasYear, hasAgeGroup, hasGenderGroup,

hasCount, and hasPercentage have been generated to represent the values of the data.

Once the meta-level information has been defined, we can use the defined classes to spe-

cify the semantic type of the entities in the VAERS data set, and use the defined properties

to specify the relations between entities and their associated data values. The text below

shows a partial representation of a vaccine symptom pair in RDF. We first created a new

OWL instance for the pair itself (VaccineSymptomMeta_39777), we then appended more

information for this instance. Lines 2 and 3 defines the symptom and the vaccine involved

in this association respectively. Line 4 shows the value of the overall PRR. Lines 5–7 shows

the detailed information for the PRR value of this pair in year 2009. Lines 8–12 shows the

information about this vaccine-symptom association for a specific age group (less then

one year old) in year 2009. Lines 13–17 shows the detailed information about this

vaccine-symptom association for the male gender in 2009. Information for other years,

age groups, and gender groups can be represented similarly. With this RDF representa-

tion, we can easily append new information about an association. For example, we can

add new detailed information extracted from VAERS when new data is avaliable. The

current version if the data can be downloaded from: https://sbmi.uth.edu/ontology/files/

vaersRDF.ttl

1. vaers:VaccineSymptomMeta_39777

2. vaers:hasSymptom vaers:intussusception;

3. vaers:hasVaccine vaers:PNC;

4. vaers:hasOverallPRR “4.7518”^^xsd:float;

5. vaers:hasPRRDetail [

https://sbmi.uth.edu/ontology/files/vaersRDF.ttl
https://sbmi.uth.edu/ontology/files/vaersRDF.ttl


Ta

O

19

20

20

Tao et al. BioData Mining  (2014) 7:36 Page 5 of 9
6. vaers:hasPRR “7.1539”^^xsd:float;

7. vaers:hasYear “2009”^^xsd:long];

8. vaers:hasVAERSAgeDetail [

9. vaers:hasAgeGroup “LESS_THAN_ONE”^^xsd:string;

10. vaers:hasCount “63”^^xsd:long;

11. vaers:hasPercentage “1.0”^^xsd:float;

12. vaers:hasYear “2009”^^xsd:long];

13. vaers:hasVAERSGenderDetail [

14. vaers:hasCount “31”^^xsd:long;

15. vaers:hasGenderGroup “MALE”^^xsd:string;

16. vaers:hasPercentage “0.4920635”^^xsd:float;

17. vaers:hasYear “2009”^^xsd:long ];
Network analysis

The network analysis and visualization was performed in the Cytoscape tool [14].

Cytoscape is an open-source platform for integration, visualization, and analysis of bio-

logical networks. Its functionalities can be extended through Cytoscape plugins. Scien-

tists from different research fields have contributed more than 160 useful plugins so

far. These comprehensive features allow us to perform thorough network-level analyses,

visualization of our association tables, and integration with other biological networks in the

future. We used NetworkAnalyzer plugin (http://med.bioinf.mpi-inf.mpg.de/netanalyzer//

index.php) to calculate average node degree, average path length, and network diameter

for each vaccine-adverse event network generated from VAERS.
Results
Overall, we have extracted 2,346,367 pairs of vaccine-symptom combinations from the

VAERS system, with 83,148 distinct pairs. Among all these vaccines and adverse events

reposted in the VAERS, we identified 53,742 vaccine-adverse event associations with

overall PPR ratio greater than 1 using all reports submitted to VAERS between 1990

and 2013 (data not shown). Over a 23-year period, 75 different vaccines and 5,865 dif-

ferent adverse events were identified to have 191,027 significant associations, i.e., asso-

ciations reported significant in at least one year report in the system. For the network

consisting of associations with overall significant PPR ratios, the average shortest path

and the network diameter were 2.48 and 5, respectively (Table 1). This demonstrates

that the vaccine-adverse event network is dense, with any given node connected to all

other nodes through an average of approximately two other nodes and a maximum of

five nodes. This is explained partly that many vaccines are coadministered. However,
ble 1 General characteristics of the networks

Nnode Nlink Average degree Average path length Network diameter

verall 5,938 53,742 18.10 2.48 5

90 368 1,312 7.13 2.71 6

00 1,067 5,709 10.7 2.59 5

10 2,641 18,042 13.66 2.62 5

http://med.bioinf.mpi-inf.mpg.de/netanalyzer//index.php
http://med.bioinf.mpi-inf.mpg.de/netanalyzer//index.php
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given that there are more adverse events than vaccines in the network, it is plausible

that many adverse events were reported together.

We further investigated how the vaccine-adverse event network evolves during three

decades. Additional files 1, 2 and 3 contains the vaccine-adverse event networks ex-

tracted from VAERS reports submitted in 1990, 2000, and 2010. The overall network

properties of three networks were shown in Table 1. Among three networks, 14 nodes

were in all three networks, including 6 vaccines and 8 adverse events (Figure 1). Hae-

mophilus B Polysaccharide Vaccine (HBPV) is used for a routine immunization of chil-

dren 24 months to 5 years of age. In three years we investigated, HBPV was associated

with different adverse events with significant PPR ratios, suggesting that HBPV may

cause different adverse events in different years. This could be due to the difference

how this vaccine was manufactured in these years. Such network analysis can help do-

main experts easily identify such differences and design experiments to further investi-

gate the underlying biological mechanisms. The detailed information of Figure 1 is

presented in Additional file 1.
Linking with other resources
One unique benefit of RDF representation is that it provides a flexible way to link data

from different sources together. With current technologic advances such as high

throughput sequencing, transcriptomics, epigenetics, and proteomics, there are big

amount of amount of data available for better understanding associations and mecha-

nisms of VAEs and immunogenicity. With the RDF representation, we can integrate

the VAERS data with data from other sources such as PubMed literature, Vaccine Label

data, and Vaccine ontology to create a Linked VAE data repository. Figure 2 shows the

overview. For PubMed data, we have created the SemMed-RDF repository for repre-

senting associations among genetic factors, diseases, and drugs extracted from

PubMED abstracts [15] based on the Semantic MEDLINE database [16]. This knowl-

edgebase currently contains 843 k disease-disease, 111 k disease-gene, 1277 k disease-

drug, 248 k drug-gene, 1900 k drug-drug, and 49 k gene-gene associations, annotated

with their provenance information. We have the identified vaccine relevant associations

with diseases, symptoms, and genes from SemMed-RDF [10]. This data can be inte-

grated with the VAERS RDF data. In addition, we can also link vaccine relevant
Figure 1 Venn diagram of nodes among 1990, 2000, and 2010 (left) vaccine nodes; (right) adverse
event nodes.
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information from publicly available ontologies such as Vaccine Ontology (VO) [17] and

the Ontology of Vaccine Adverse Event (OVAE) [18]. VO has modeled and classified

various vaccines, including all licensed vaccines used in the USA. For each licensed vac-

cine, VO includes vaccine name, disease or pathogen name, manufacturer, CDC CVX

(Codes for Vaccine Administered), host species (e.g., human), vaccine type based on

preparation (e.g., killed or inactivated vaccine), vaccine antigen component, and vaccin-

ation route). The hierarchy structure of the vaccine in VO classifies the vaccine type

based on pathogen taxonomy. OVAE is an ontology that represents and classifies the

adverse events recorded in package insert (vaccine label) documents of commercial

vaccines licensed by the USA Food and Drug Administration (FDA). Combined these

sources, we can create the linked VAE Data, a centralized comprehensive knowledge-

base for vaccines and their associations with genetic factors, diseases, and AE can be

generated for large-scale computational studies of VAE mechanisms.
Discussion, future directions, and conclusion
PRR is not the only data mining methods for identifying significant association between

vaccines and post-vaccination symptoms [12]. The PRR value > 1 is not an indication

that the pair has a causal relationship. For example if a symptom only appeared once

for one vaccine type, but not for any other vaccine types, the PRR would be a relatively

large number. Given it only happened once, however, it could be a coincidence.
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Therefore we may need to add threshold to the PRR values or the number of occur-

rences to filter out this kind of extreme situations. We may also want to add other stat-

istical indicators beside PRR to faciliate further analysis. In addition, more advanced

network approaches could be applied to identify underlying associations among vac-

cines and adverse events, such as subnetwork analysis and network alignments among

different populations.

There are a few future directions we plan to pursue: (1) identification of network

modules in the vaccine-adverse event network; (2) investigation of vaccine-vaccine as-

sociations by bipartite network projection strategy; (3) incorporation of more vaccine-

disease association databases (e.g., Semantic MEDLINE database, Vaccine Adverse

Event Ontology) to construct more complete vaccine-related networks. Also in this

study, we focused on comparing the overall network properties of the vaccine-adverse

event association networks generated by different years. In the future, we plan to ex-

plore such differences using more advanced network-based computational approaches

at different network level, such as subnetwork level and single association level.

In summary, we discussed our effort on representing data summarized from VAERS

database using RDF. We then applied network analysis on top of the data to illustrate

how network-based analysis can be applied to identify underlying association patterns

among vaccines and adverse events.

Additional files

Additional file 1: Vaccine-adverse event network reconstructed from extracted from VAERS reports in
1990. Green rectangle: vaccine; yellow vee: adverse event. Edge: vaccine-adverse event association with PRR ratio
greater than 1. Edge width denotes the PRR ratio of the edge.

Additional file 2: Vaccine-adverse event network reconstructed from extracted from VAERS reports in
2000. Green rectangle: vaccine; yellow vee: adverse event. Edge: vaccine-adverse event association with PRR ratio
greater than 1. Edge width denotes the PRR ratio of the edge.

Additional file 3: Vaccine-adverse event network reconstructed from extracted from VAERS reports in
2010. Green rectangle: vaccine; yellow vee: adverse event. Edge: vaccine-adverse event association with PRR ratio
greater than 1. Edge width denotes the PRR ratio of the edge.
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