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Abstract

Background: Emergence of multiple drug resistant strains of M. tuberculosis (MDR-TB) threatens to derail global
efforts aimed at reigning in the pathogen. Co-infections of M. tuberculosis with HIV are difficult to treat. To counter
these new challenges, it is essential to study the interactions between M. tuberculosis and the host to learn how
these bacteria cause disease.

Results: We report a systematic flow to predict the host pathogen interactions (HPIs) between M. tuberculosis and
Homo sapiens based on sequence motifs. First, protein sequences were used as initial input for identifying the HPIs
by ‘interolog’ method. HPIs were further filtered by prediction of domain-domain interactions (DDIs). Functional
annotations of protein and publicly available experimental results were applied to filter the remaining HPIs. Using
such a strategy, 118 pairs of HPIs were identified, which involve 43 proteins from M. tuberculosis and 48 proteins
from Homo sapiens. A biological interaction network between M. tuberculosis and Homo sapiens was then constructed
using the predicted inter- and intra-species interactions based on the 118 pairs of HPIs. Finally, a web accessible
database named PATH (Protein interactions of M. tuberculosis and Human) was constructed to store these
predicted interactions and proteins.

Conclusions: This interaction network will facilitate the research on host-pathogen protein-protein interactions,
and may throw light on how M. tuberculosis interacts with its host.
Background
Tuberculosis (TB), caused by Mycobacterium tuberculosis
(MTB), is a major global health concern [1]. According to
the World Health Organization (WHO) report [2], there
were an estimated 8.7 million new cases of TB (13% co-
infected with HIV) and 1.4 million TB-related deaths in
2011. Clearly, the number of TB-related deaths in single
year is alarmingly higher than the roughly 300,000 deaths
reported for the bird flu pandemic in 2009 [3]. Further,
the regimens recommended for the treatment of TB are
complex, often very long and include highly toxic drugs
that have side effects. An antibiotic course consisting of
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four first-line drugs like isoniazid, rifampicin, ethambutol
and pyrazinamide for six months is recommended for
treatment of TB. These first-line drugs were discovered
more than 50 years ago [2,4]. Drug discovery for TB con-
tinues to lag behind. Co-infection with retroviruses like
HIV further complicates TB treatment. Emergence of
multi-drug resistant and extensively-drug resistant strains
of Mycobacterium has threatened to derail global efforts
for reigning in this pathogen [5]. Therefore, there is an ur-
gent need to develop new anti-mycobacterial drugs [4]
through an understanding of the genetics and physiology
of M. tuberculosis.
M. tuberculosis primarily infects the respiratory system

where it encounters alveolar macrophages and dendritic
cells patrolling the lungs. However, the bacterium has an
uncanny ability to survive the onslaught and in fact it
uses the host macrophages for replication [5]. Virulence
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Figure 1 Homologous PPI derived from interactions between
homologs. Protein A’ and B’ are the proteins which have direct
interactions, while Protein A and B are their homologs, respectively.
The interaction between A and B is called homologous
protein-protein interaction.
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factors like an unusual cell wall made up of mycolic acid,
UreC gene that prevents acidification of phagosomes,
and the ability of the pathogen to neutralize reactive ni-
trogen and oxygen intermediates using reductases helps
the bacterium evade the host immune system. In addition
to macrophages, T-cells have been shown to participate in
host cell response against mycobacterium [6,7]. However,
mycobacterium evades elimination by the host immune
response and causes disease. Therefore, it is essential to
study the interactions between M. tuberculosis and the
host to learn how these bacteria cause disease [8]. The
availability of the complete genome sequence of the
pathogen M. tuberculosis [1] and the host Homo sapiens
[9] provides an essential tool for prediction of these host-
pathogen protein interactions.
Host-pathogen protein interactions (HPIs) are often

involved in the pathogen’s strategy to invade the host or-
ganism, breach the host’s immune defenses, as well as
replicate and persist within the organism [10,11]. Experi-
mentally, there are two main approaches for detecting
interacting proteins: binary approaches such as the yeast
two-hybrid (Y2H) system and luminescence-based mam-
malian interactome mapping and co-complex methods
such as co-immunoprecipitation (coIP) coupled with
mass spectrometry (MS) [12]. However, these methods
are time-consuming and expensive, especially when
adopted in high-throughput mode [13]. Therefore, many
computational methods have been developed to improve
the coverage, accuracy, and efficiency in identifying pro-
tein pairs. These methods for predicting protein-protein
interaction (PPI) take advantages of high-throughput
data [14] and are based on protein sequence, structural
and genomic features that are related to interactions and
functional relationships [15,16], including phylogenetic
profile [17,18], gene neighbor and gene cluster methods
[19,20] and interologs [21,22]. Interologs, also referred
to as homologous PPI method, is based on the assump-
tion that homologous proteins preserve their ability to
interact [23]. Recently, it has been applied for not only
recognizing PPIs within an individual organism [24,25],
but has also been used to detect host-pathogen protein
interactions [26,27].
In this work, we developed a systematic flow to predict

the HPIs between M. tuberculosis and Homo sapiens
based on sequence motifs. First, protein sequences were
used as initial input for identifying the HPIs between
M. tuberculosis and Homo sapiens by ‘interolog’ method.
The HPIs were further filtered by domain-domain inter-
actions (DDIs) prediction. Then, protein functional an-
notations and existing experiments results were applied
to remaining HPIs. As a result, 118 pairs of HPI were
identified, which involve 43 proteins from M. tuberculosis
and 48 proteins from Homo sapiens. Intra-species PPIs
were further predicted for the proteins from M. tuberculosis
and proteins from Homo sapiens using VisANT [28], Reac-
tome [29], InteroPorc [30], IntAct [31], DIP [32], MPIDB
[33], MINT [34], and HPRD [35]. A biological interaction
network between M. tuberculosis and Homo sapiens was
then constructed by the predicted inter- and intra-species
interactions. Finally, a database named PATH (Protein in-
teractions of M.tuberculosis and Human) was constructed
to store these predicted interactions and proteins.

Methods
Identifying HPIs by sequence comparison
Figure 1 shows the procedure used to identify HPIs. The
procedure was based on the rationale underlying interolog
[36], which implies that two proteins (A and B) are predicted
to interact if their relative homologs (A’ and B’) interact.
To predict homologs, the basic local alignment search

tool BLAST (Basic local alignment search tool) [37] was
employed to compute sequence similarities. Query protein
sequences were aligned against all sequences with known
interactions stored in the databases BIPS [38] and HPIDB
[39]. BIPS and HPIDB are integrated databases including
several data sources such as DIP [32] and IntAct [31], and
both of the databases allow the users to set the parameters
freely. The e-value and identity parameters were set to 1e-
10 and 30 respectively, and the source of target interactors
was set to Homo sapiens (taxid:9606). The query protein
sequences were obtained from TB database [40].

Detecting domain-domain interactions (DDIs)
Domains play an important role in mediating protein-
protein interactions [41,42]. The studies on DDI (domain-
domain interaction) are based on the assumptions that: (1)
DDIs are independent of each other, and (2) two proteins
interact if at least one pair of domains from two proteins
interacts. DDI were constructed in three steps - 1) the pro-
tein sequences of Homo sapiens and Mycobacterium tuber-
culosis were assigned to families or domains; 2) a whole
domain-domain interaction network was drawn; 3) map-
ping the domain ‘a’ from protein ‘A’ in Homo sapiens and



Figure 2 Domain-domain interaction prediction. Protein ‘A’ was
predicted to interact with protein ‘B’ if A’s domain ‘a’ interacts with
B’s domain ‘b’.
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domain ‘b’ from protein ‘B’ in Mycobacterium tuberculosis
to the whole network. If the domain ‘a’ interacted with do-
main ‘b’, the protein ‘A’ was predicted to interact with the
protein ‘B’ (as in Figure 2).
To identify DDIs, the proteome of M. tuberculosis and

Homo sapiens was aligned with Pfam families or do-
mains with an E-value cut-off of 1e-10 using the Pfam-
map program [43]. Then, protein-domain databases in-
cluding 3DID [44], iPfam [45], DOMINE [46], DAPID
[47] were selected to draw the DDI map.

Filtering HPIs by biological context or functional annotation
The information of each protein in the HPI pairs (in-
cluding subcellular location, tissue specificity, biological
process, molecular function, and cellular component)
was obtained from the Uniprot website (www.unipro-
t.org). If the functional annotation of the pair of interac-
tors in the quasi-credible HPI was found to correspond
with at least one of the defined terms, the quasi-credible
HPI was selected and upgraded as credible HPIs. The
terms were selected from previously published studies
on the infection and pathology of MTB [48-51].

Identifying intraspecific PPI network in Homo sapiens and
Mycobacterium tuberculosis
The protein A from Homo sapiens, and protein B from
Mycobacterium tuberculosis, that were involved in a HPI,
were further screened against PPI databases to identify in-
traspecific PPIs. The resource of the intraspecific PPI for
Mycobacterium tuberculosis included VisANT, Reactome,
InteroPorc, IntAct, DIP, MPIDB, MINT, whereas for
Homo sapiens, IntAct, HPRD, MINT, Reactome, DIP were
included. We also attempted to use more databases such
as virusmint [52], virhostnet [53], and STRING [54], while
the number of PPIs would not be increased due to the
overlaps and redundancy among the databases.

Results and discussion
Figure 3 shows the schematic flow for predicting HPIs
beginning with Homo sapiens and Mycobacterium tuber-
culosis protein sequences. 138842 pairs of HPIs were
obtained after a BLAST search, then 1863 pairs of HPIs
were obtained after DDI filtering, and finally 118 pairs of
HPIs were identified after keyword filtering, which in-
volved 43 TB proteins and 48 human proteins.

The interspecific interactions between Homo sapiens and
Mycobacterium tuberculosis
The HPIs between Homo sapiens and Mycobacterium
tuberculosis (MTB) were predicted based on sequence
motifs, using HPIDB and BIPS. By performing a BLAST
search of the two databases, 3219 HPIs were obtained
between Homo sapiens and Mycobacterium tuberculosis
from HPIDB, and 136664 HPIs from BIPS, with 1041
overlapping HPIs between the two databases. In total,
there were 138842 non-redundant HPIs involving 1168
MTB proteins and 20987 human proteins (Figure 4).
Furthermore, the 138842 HPIs were filtered by applying

the DDI filter. After aligning the 1168 MTB protein se-
quences and 20987 human protein sequences to domain
or family, 3498 host-pathogen (human-MTB) specific DDIs
were extracted (Table 1). Further, by removing redundant
HPIs, 1863 non-redundant HPIs were obtained involving
140 MTB proteins and 452 human proteins (Additional
file 1: Table S1).
Functional annotations of a protein are important and

useful to understand the biological properties. Previous
studies indicated that surface proteins consisting of se-
creted and membrane proteins could play a central role
in the interaction of the pathogen with its environment,
especially in the pathogenicity of MTB [55], and the term
“membrane” was usually used to filter the functional anno-
tation [56-58]. The immune system associated proteins of
Homo sapiens would also contribute to the host-pathogen
interactions [59]. Therefore, functional annotations and
biological properties were used to further filter 1863
pairs of predicted HPIs. The “keyword filter” was applied
to identify the functional annotation of proteins [60].
The keywords used were “membrane” for filtering Myco-
bacterium tuberculosis proteins, whereas “respiration”, “T
cell”, “lymphocyte”, “phagocyte”, “lung”, “macrophage”,
“dendritic cell”, “immune”, “B cell”, “alveol”, “toll-like re-
ceptor”, “bronchial epithelial cells” for filtering Homo sapi-
ens proteins [48-51]. Each pair of HPI was retained only if
both of its interactors corresponded to at least one of the
above keywords. Finally, 118 pairs of HPIs were obtained
by applying this filtering procedure involving 43 Mycobac-
terium tuberculosis proteins and 48 Homo sapiens proteins
(Figure 3). All the proteins from Mycobacterium tubercu-
losis engaged in these 118 interactions were associated with
the membrane, whereas among the 48 Homo sapiens inter-
actors, 8 matched the keyword “T cell”, 5 matched by key-
word “phagocyte”, etc (as in Table 2).
We checked the validity of these predictions by asses-

sing the specificity and sensitivity. Random sets or true

http://www.uniprot.org/
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Figure 3 The systematic flow of HPI prediction. The Homologous HPI (HomoHPI) were obtained from the HPI databases (HPIDB, BIPS) by
BLAST method, followed by applying the DDI filter and keyword filter. After applying these filters, the number of HPIs was trimmed from 138842
to 1863 and then to 118, respectively. The pie charts on the right depict the components of PPIs obtained from each procedure. The intraspecific
interactions were extracted from 8 PPI databases (VisANT, Reactome, InteroPorc, IntAct, DIP, MPIDB, MINT, HPRD) and narrowed down to
non-redundant data.

Huo et al. BMC Bioinformatics  (2015) 16:100 Page 4 of 9
negatives were usually used for calculating the specificity
[38,61]. In our work, we used the negatome database [62]
as a source for non-interactions. 6532 non-interacting
pairs from negatome as a reference set were processed
by our method including sequence comparison and DDI
detection. There were 618 pairs remained after the
BLAST step, and they were further narrowed down to 376
pairs after DDI filter. Specificity was calculated as the per-
centage of correctly predicted true negatives out of 6532
non-interacting pairs. Thus the specificity of our method
was 94.2% ((6532-376)/6532). Since gold-standard datasets
of experimentally verified human-MTB PPIs are not read-
ily available, we compared our predictions with previous
reports to assess the sensitivity and accuracy. Our
predictions included 23 MTB proteins (53.5%) that were
suggested to play a significant role in the infection and
intracellular survival [50,63-65]. In addition, we also enriched
our results with the KEGG pathway and identified more pro-
teins involved in the HPI such as Rv0934, Rv1411c and
Rv3875 [66-68]. The coverage of our method depended on
the previous experimental observations of similar interac-
tions (template PPI), thus the coverage and accuracy would
be increased as more template PPIs were identified.
To improve the accuracy, an increasing number of

approaches have been developed taking advantage of
the information residing in the motifs or structures. A
structure-based interaction network between MTB and
human was constructed recently emphasizing the



Table 2 The “keywords filter” and its number of
corresponding hits

Keywords Number of corresponding
proteins

Membrane (MTB) 43

Respiration (human) 13

T cell (human) 8

Phagocyte (human) 5

Lung (human) 11

Macrophage (human) 3

Dendritic cell (human) 1

Immune (human) 11

B cell (human) 2

Toll-like receptor (human) 3

Figure 4 Procurement of initial data. The original HPI data were
from HPIDB and BIPS database, and it included 1,168 MTB proteins
and 20,987 human proteins.
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importance of physical interactions [69]. This structure-
based prediction could probably eliminate true negatives,
while it was limited by the number of known protein
complexes (templates). However, a simultaneous time-
course microarray method was developed, which aimed
at discovering the HPIs experimentally instead of
solely depending on the known templates [70,71]. The
experiment-based method would make biological sense,
while the application of the microarray may not be easy
and convenient to any species. All in all, each method
would have a good performance in some aspects, and
the credibility of known templates was the key point to
the “interologs” predictions that mainly based on the se-
quence comparison.
The intraspecific interactions among Homo sapiens and
Mycobacterium tuberculosis
For the 43 proteins of Mycobacterium tuberculosis and 48
proteins of Homo sapiens in the host-pathogen interactions,
intraspecific interactions were further studied. The interac-
tions ofMycobacterium tuberculosis originated from 7 data-
bases: VisANT, Reactome, InteroPorc, IntAct, DIP, MPIDB,
and MINT, whereas the Homo sapiens interactions origi-
nated from 5 databases: IntAct, HPRD, MINT, Reactome,
and DIP. By removing the redundancy from various data
sources, there were 587 direct intraspecific interactions in
Mycobacterium tuberculosis containing 374 MTB proteins
and 7157 interactions in Homo sapiens containing 3062
human proteins.
Table 1 The human-MTB specific DDIs in different
databases

DDI databases Number of Host-pathogen DDIs

DOMINE 1928

DAPID 62

3DID 601

iPfam 907
Host-pathogen interaction map and key proteins
By combining inter-specific interactions with intra-
specfic interaction, a host-pathogen interaction map was
constructed (Figure 5A). MTB proteins rv1308 (atpA),
rv1309 (atpG), rv1310 (atpD), which were reported to
play significant roles in MTB resistance [72], formed a
small “island” in the interaction network by sharing
common interactors (Figure 5A), which indicates that
these proteins could cooperate with each other to inter-
act with human proteins. MTB protein rv2299c (HtpG),
which was predicted to have 20 potential interactors in
the network, was previously reported to affect the dor-
mant phase of M. tuberculosis [73]. Its interactors, such
as P09769, Q14164 and Q9UHD2 protein in human,
were identified to be involved in host immune responses
based on the functional annotations, which indicated
that rv2299c may engage the human immune system.
MTB protein rv1997 (ctpF) was detected to be strongly
induced during infection of human macrophages [74].
Four interactors (P40616, P62330, Q969Q4, Q8N4G2) of
rv1997 (ctpF) mapped in the interaction network were
either expressed in the lungs or were involved in im-
mune responses based on the ontology annotation.
Figure 5B shows a subset of the interaction map of pro-
teins rv2299c and rv1997, which were also found to
share 4 common interactors (P40616, Q969Q4, P62330,
and Q8N4G2). These results indicate that proteins
rv2299c and rv1997 are essential to understand how
MTB survives the host immune response. In addition,
human proteins P10809 and P36542 were considered as
significant “hubs” and have more interactions in this
sub-network. P10809 was previously identified as a key
factor, which could influence B cell proliferation, T cell
activation and macrophage activation [75-77]. Further-
more, 10 potential drug targets reported before [78,79]
were also identified in our network (Figure 5A). It was



Figure 5 Host-pathogen interaction map. A) The cyan circles represent MTB proteins, while orange rectangles represent human proteins.
The interactions are drawn as black lines, and the identified drug targets are colored yellow. An enlarged view of an interaction “island” (inset).
B) A subnet involving rv1997, rv2299c, P40616, Q969Q4, P62330, and Q8N4G2. The map on the right was a human intraspecific interaction map.
Points in yellow represent human proteins P40616, Q969Q4, P62330, and Q8N4G2. The other points are the direct interactors of these 4 proteins,
and in these points, P10809 and P36532 as significant “hubs” in this sub-network are drawn in red points. Visualization was done with using
Cytoscape [80].
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noteworthy that 4 MTB targets shared the interactor
P10809, which suggested that the human protein
P10809 was critical in the MTB infection. Therefore, the
predicted HPI map would throw light on how the MTB
proteins affect the human cells.

The structure of PATH
Although there were many predictions focusing on the
HPIs, only a few accessible databases were constructed.
To store the predicted host-pathogen-interaction data,
we developed a web-accessible database named PATH
(Protein interactions of M. tuberculosis and human),
which contains not only all the predicted host-pathogen
interactions, but also the intraspecific interactions
predicted from 7 external databases. Using the web-
interface, users can acquire protein-specific interaction
information by searching MTB’s gene locus (eg. Rv0001)
or Uniprot ID (eg.P49993) and the human protein’s
Ensembl identifier (eg.ENSP00000349142) or Uniprot ID
(eg.P36542) (Figure 6A). The information of interactors



Figure 6 Snapshot of the PATH website. A) The homepage of the website. Users can acquire interactions information by searching the
keywords. B) The information of the interactions. It also includes gene ontology annotations from MTB and humans.
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both from interspecific network and intraspecific network
can also be found during the keyword search (Figure 6B).
In addition, the database will be enriched with new HPIs
as soon as possible. PATH was built on an Nginx with
Python and a MySQL Server as the back-end. HyperText
Markup Language (HTML), JQuery and Cascading Style
Sheets (CSS) were used at the front-end. It is freely access-
ible at http://cadd.pharmacy.nankai.edu.cn/tbdb. The web
server and all parts of the database are hosted at College
of Pharmacy, Nankai University, China.

Conclusion
In this work, we present a specific and integrated database
(PATH), which is publicly available and incorporates the
predicted interspecific and intraspecific interactions be-
tween Homo sapiens and Mycobacterium tuberculosis. To
our knowledge, PATH is the first specialized database for
HPIs on Mycobacterium tuberculosis. Our interactions
prediction model combined in silico algorithms with bio-
logical functional annotations. In this study, 118 credible
HPIs were identified and stored in the PATH database. In
PATH database, users can acquire the interspecific and in-
traspecific interactions between MTB and human and
their related protein interactors by keyword search. The
PATH database might facilitate understanding of mecha-
nisms that causes TB, hence help to develop new thera-
peutic intervention tools for TB.
Additional file

Additional file 1: Table S1. The PPIs derived from DDIs.
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