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Abstract

Background: Genotype imputation is commonly used as an initial step in genomic selection since the accuracy of
genomic selection does not decline if accurately imputed genotypes are used instead of actual genotypes but for a
lower cost. Performance of imputation has rarely been investigated in crossbred animals and, in particular, in pigs.
The extent and pattern of linkage disequilibrium differ in crossbred versus purebred animals, which may impact the
performance of imputation. In this study, first we compared different scenarios of imputation from 5 K to 8 K single
nucleotide polymorphisms (SNPs) in genotyped Danish Landrace and Yorkshire and crossbred Landrace-Yorkshire
datasets and, second, we compared imputation from 8 K to 60 K SNPs in genotyped purebred and simulated
crossbred datasets. All imputations were done using software Beagle version 3.3.2. Then, we investigated the
reasons that could explain the differences observed.

Results: Genotype imputation performs as well in crossbred animals as in purebred animals when both parental
breeds are included in the reference population. When the size of the reference population is very large, it is not
necessary to use a reference population that combines the two breeds to impute the genotypes of purebred animals
because a within-breed reference population can provide a very high level of imputation accuracy (correct rate ≥ 0.99,
correlation ≥ 0.95). However, to ensure that similar imputation accuracies are obtained for crossbred animals, a reference
population that combines both parental purebred animals is required. Imputation accuracies are higher when a larger
proportion of haplotypes are shared between the reference population and the validation (imputed) populations.

Conclusions: The results from both real data and pedigree-based simulated data demonstrate that genotype
imputation from low-density panels to medium-density panels is highly accurate in both purebred and crossbred pigs.
In crossbred pigs, combining the parental purebred animals in the reference population is necessary to obtain high
imputation accuracy.
Background
Implementation of genomic selection (GS) [1] in breed-
ing programs requires dense molecular marker geno-
types since increasing marker density increases the
probability that a marker is in strong linkage disequilib-
rium (LD) with a quantitative trait locus (QTL) [2].
However, the high costs of genotyping are a key con-
straint to efficient implementation of GS [3]. To partly
overcome this problem, it has become current practice
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to genotype candidates for selection using low-density
single nucleotide polymorphism (SNP) chips (up to 10
000 SNPs), while a limited number of individuals chosen
as reference animals are genotyped with a high-density
chip (50 000 SNPs or more). Imputation is then carried
out from low density to high density [4, 5]. Studies on
US Jersey cattle have confirmed that the accuracy of GS
does not decline when using imputed genotypes if the
low-density panel includes more than 3000 evenly dis-
tributed SNPs [4]. Furthermore, missing genotypes that
are not called by some of the standard genotyping
methods must be imputed prior to inclusion in models
for GS [6]. Overall, genotype imputation is generally
considered as an initial step for GS.
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Genomic selection has been successfully applied for
purebred populations [7, 8], but it is also possible to se-
lect purebred animals for crossbred performance by
combining information from crossbred animals with
genomic information from purebred animals [9]. Cross-
breeding is very common in pigs bred for meat produc-
tion because of the increased performance of crossbred
compared to purebred individuals [10]. Due to the
difficulty and high cost of collecting phenotypic and pedi-
gree data on crossbred animals [11] and genotyping costs,
data on both purebred and crossbred animals are rarely
available. Performances of GS in crossbred and purebred
pigs may differ because of dominance effects in combin-
ation with different allele frequencies in the two pure
breeds, and because the extent of LD between SNPs and
QTL may differ between crossbred and purebred popula-
tions. Thus, the effects of SNPs may be breed-specific [9].
Algorithms for genotype imputation (such as that

implemented in Beagle [12]) depend crucially on LD
patterns across markers [13], which may be breed-
specific. Therefore, the performance of genotype imput-
ation might differ between crossbreds and purebreds.
Since genotypes are rarely available for crossbred indi-
viduals in livestock, most studies that have investigated
the critical factors that affect the performance of imput-
ation have been based on purebred plant [14] and livestock
populations [15–18]. Recently, an analysis of imputation
from 6 K to 50 K SNP chip genotypes in crossbred taurine
beef cattle was reported [19], but, to our knowledge, this
has not been evaluated in crossbred pigs.
In this study, different scenarios of imputation from

lower density (5 K) to higher density (8 K) SNP chips were
compared using two Danish pig breeds, Landrace and
Yorkshire, and a two-way crossbred Landrace-Yorkshire
population. Differences in imputation accuracies between
purebred and crossbred animals were investigated to set
up an optimal strategy for imputation from a low-density
(8 K) to a medium-density (60 K) SNP chip in crossbred
pigs and results were validated using a simulated dataset
of crossbred medium-density (60 K) genotypes. Previous
studies indicated that the relationship between imputed
and reference individuals is one of the major factors that
affects performance of imputation [3, 6, 20]; Hayes et al.
[3] reported that it could account for up to 64 % of the
variation in accuracy of imputation in sheep. Thus, to
better understand the results in the current study, we tried
to quantify relationships between animals within and
across datasets, using genomic relationships and indexes
of haplotype similarities.

Methods
Animals and genotypes
All data were provided by the Danish Pig Research Centre.
The numbers of genotyped purebred Danish Landrace
(LL), Danish Yorkshire (YY) and two-way crossbred Danish
Landrace-Yorkshire pigs were 9328, 9393 and 5639, re-
spectively. Crossbred animals that had a Landrace sire
and a Yorkshire dam were referred to as ‘Landrace_York-
shire’, while those that had a Yorkshire sire and a Land-
race dam were referred to as ‘Yorkshire_Landrace’.
Crossbred animals consisted of 4432 Landrace_Yorkshire
(LY) and 1207 Yorkshire_Landrace (YL) pigs. Purebred
and crossbred animals were born between 1998 and 2013
and 2009 and 2012, respectively. All crossbred pigs were
results of matings between the two pure breeds. Pedigrees
of both purebred and crossbred pigs were available and
all crossbred animals could be traced back to their pure-
bred ancestors. Among the 5639 crossbred pigs, 4956 had
genotyped sires (n = 1580) but only nine pigs had
genotyped dams (n = 4). In addition, 1441 maternal
grandsires of the crossbreds were genotyped. Crossbred
animals were divided into two subsets: those that had a
genotyped sire (4956) and those that did not (683).
Both pure breeds were genotyped with the Illumina

PorcineSNP60 Genotyping BeadChip [21]. Two different
versions of the 60 K SNP chip (Illumina PorcineSNP60
v1 and PorcineSNP60 v2) were used to genotype pure-
bred animals, i.e. about 50 % animals with each version.
About 2 % of the SNPs worked in one version but not in
the other version and vice versa. The two different chip
versions should be taken into account when applying a
quality filter on SNPs. Previous unpublished analyses
(Tage Ostersen, Danish Pig Research Centre, personal
communication) on purebred pigs showed that when ap-
plying a quality filter on SNPs, varying the minimum call
rate for individuals from 70 to 90 % did not affect the
accuracy of genomic predictions significantly. This com-
bined with the fact that very few animals had a call rate
between 80 % and 90 %, we chose to set the minimum
call rate of individuals to 80 %. SNP quality controls
were applied for the dataset that consisted of both pure
breeds combined as follows: SNPs with a call rate less
than 90 % were removed; SNPs with a minor allele fre-
quency lower than 0.01 across both purebred populations
were removed; SNPs that showed a strong deviation from
Hardy Weinberg equilibrium within breeds (p < 10−7)
were also excluded. After filtering, a common set of 42
483 SNPs was retained for the two purebred populations
(these are referred to as 60 K). Crossbred individuals were
genotyped with a 8.5 K GGP-Porcine Low Density Illu-
mina Bead SNP chip [22] and very few animals had a call
rate between 80 % and 90 %. Using the same quality con-
trols for the crossbred animals as for purebred animals
(except for Hardy-Weinberg equilibrium, which does not
hold for crossbred animals), 7940 markers were retained,
which represents a subset of the 42 483 SNPs retained for
the purebred animals. SNPs were mapped to pig chromo-
somes using the pig genome build 10.2 [23].
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Imputation scenarios
To mimic an imputation strategy similar to what is rou-
tinely applied in real genetic evaluations, 5162 LL and
5130 YY pigs that were born in 2012 and 2013 were
used as validation animals. The remaining 4166 LL and
4263 YY pigs that were born before 2012 were used as
reference animals for imputation. All 5639 crossbred
pigs were treated as validation animals. Based on pedi-
gree information, the parents of the crossbred animals
were all born before 2012. Thus, if the parental geno-
types of the crossbred individuals were known, they were
included in the reference population.
To compare the performance of imputation between

purebred and crossbred animals, first imputation from
5 K to 8 K was evaluated, which was applied to the com-
mon set of 7940 SNPs. SNPs were sorted by map pos-
ition and then, one of every three SNPs was masked (i.e.
2647 SNPs were masked) and the remaining SNPs were
retained to represent the lower density panel (5 K). To
ensure consistency of imputation results, this was re-
peated three times by shifting the masked SNPs by one
position each time. For the purebred populations, impu-
tations were first done by using one of the pure breeds
as reference population, which consisted of individuals
that were either from their own breed (within-breed sce-
nario) or the other pure breed (external-breed scenario),
i.e., we imputed Landrace animals using Yorkshire ani-
mals as the reference population and vice versa. Then,
each breed was imputed by a combined Landrace and
Yorkshire population (combined-breed scenario). Finally,
for the crossbred population, imputation was done by
using either a single purebred reference population (one
of the two pure breeds) or a combined Landrace and
Yorkshire population (4166 LL + 4263 YY). In order to
eliminate the effect of population size of the reference
panel, its size was fixed to 8429 animals for all scenarios
of imputation of crossbred animals. Thus, when only
one purebred reference population was used, it had to
also contain animals that were born after 2011 in order
to constitute such a large population of genotyped single
purebred animals.
A second strategy of imputation from 8 K to 60 K was

implemented in purebred animals by using a combined
reference population. In the validation dataset, SNPs
that were not present on the low-density chip were
masked and subsequently imputed. However, results of
imputation from 5 K to 8 K for both purebred and
crossbred animals, and those of imputation from 8 K to
60 K for purebred animals could not completely describe
how imputation worked from 8 K to 60 K for crossbred
animals. Therefore, the quality of imputation from 8 K
to 60 K for crossbred animals was validated using simu-
lated data from the 60 K SNP chip for crossbred animals.
Genotypes of crossbred animals were simulated according
to the genotypes of their ancestors based on frequencies
of recombination according to Haldane’s mapping func-
tion [24]. Additional file 1 [see Additional file 1] describes
in more detail the steps used to simulate the 60 K geno-
types for 5639 crossbred animals. All imputations were
done using the software Beagle version 3.3.2 [12].

Evaluation of imputation accuracies
Accuracies of imputation for each strategy are presented
by mean correct rates and mean correlation coefficients
between imputed genotypes and real genotypes. Mean
correct rates were calculated per SNP (across individ-
uals) as the proportion of correctly imputed genotypes,
and then averaged over all imputed SNPs (for details,
see [25]). Correlation coefficients were calculated per
SNP across all imputed individuals and then averaged
over SNPs, following [26].

Genomic relationships across breeds
Genomic relationships among individuals were esti-
mated based on 8 K real genotypes using VanRaden’s

method [27] as G ¼ ZZ
0

2
X

p 1−pð Þ
; Where Z is a matrix of

genotypes coded as {−1, 0, 1}, and p was set to 0.5, so
that a unique reference point was chosen and results
could be compared within and across breeds. Compared
to pedigree-based relationships, all estimated genomic
relationships will be biased upwards, but bias will be the
same across breeds and subgroups of animals. The gen-
omic relationships are thereby comparable both across
and within breeds, which is the objective of our study.
For each individual in the validation population, the
average genomic relationship to individuals in the refer-
ence population was computed by averaging coefficients
from the appropriate section of the genomic relationship
matrix. Furthermore, for each crossbred individual in the
validation population, the average of the top10 relation-
ships between this individual and individuals in the refer-
ence population [28] was also computed. To visualize the
distribution of relationships, density curves of genomic re-
lationships were drawn. In addition, as suggested by [29],
a principal components analysis (PCA) of the matrix of
genomic relationships was conducted for a preliminary
analysis of the genotypes, since PCA can help to investi-
gate ethnic background of individuals [30].

Proportion of shared haplotypes between reference and
validation populations
Following imputation by Beagle, 8 K phased genotypes
were available for all animals in the reference and valid-
ation populations. It was assumed that a haplotype con-
sisted of a specific number of consecutive SNP alleles in
the same phase. Lengths of haplotypes were set to 10,
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20, 30, 50 and 100 SNPs. If a haplotype in the validation
population could exactly match at least one haplotype at
the same position in the reference population, this haplo-
type was considered to be shared between the reference
and validation populations. The number of shared haplo-
types was counted and then divided by the total number
of haplotypes in the validation population, and this was re-
ferred to as the proportion of shared haplotypes (PSH). In
addition, the number of unique haplotypes (NUH) in the
reference populations was counted to represent the num-
ber of different patterns for a specific haplotype length
across all individuals in the reference population. Values
for PSH and NUH were averaged over non-overlapping
windows of a specific size.

Results
Imputation strategy ‘5 K to 8 K’
Performance of purebred imputation
Figure 1 shows imputation accuracies from 5 K to 8 K
across the 18 autosomes for the purebred Landrace and
Yorkshire pigs when using a within-breed reference
population. On the whole, accuracies did not vary much
between chromosomes. Correct rates were larger than
or equal to 0.99, except for chromosomes 3, 10, 12 and
18 for both breeds. No differences in mean correct rate
were observed between the two purebreds. Correlation
coefficients between imputed and true genotypes ranged
from 0.90 (chromosome 10) to 0.97 (chromosome 13)
for the Yorkshire breed and from 0.93 (chromosome 3)
to 0.98 (chromosome 16) for the Landrace breed. Slight
differences in mean correlation coefficients (0.012) were
Fig. 1 Variation in imputation accuracy for the scenario from 5 k to
8 k across different chromosomes using within-breed reference
populations. Within-breed reference means Landrace pigs were
imputed using a reference population that consisted of Landrace
pigs only and Yorkshire pigs were imputed using a reference
population that consisted of Yorkshire pigs only
observed between the two breeds. Overall, the Landrace
breed performed slightly better than the Yorkshire breed,
especially in terms of the correlation coefficients. Varia-
tions of correlation coefficients were generally consistent
with those of correct rates across the whole genome.
Comparison of imputation accuracies that were ob-

tained in the different imputation scenarios from 5 K to
8 K for purebred animals is in Fig. 2. Correct rates for
purebred animals were identical for the within-breed
and combined-breed scenarios for both breeds, but cor-
relation coefficients increased slightly (around 0.01) in
the combined-breed scenario. However, in the external-
breed scenario, both correct rates and correlation coeffi-
cients decreased sharply for both breeds compared with
the within-breed scenario. Landrace animals had marked
lower imputation accuracies than Yorkshire animals in
the external-breed scenario, whereas imputation accur-
acies were similar between the two breeds in the within-
breed and combined-breed scenarios, both in terms of
correct rates and correlation coefficients.

Performance of imputation for crossbred animals and
comparison with that of purebred animals
Table 1 summarizes the performance of imputation from
5 K to 8 K for purebred and crossbred animals when the
Fig. 2 Comparison of imputation accuracies obtained by different
imputation scenarios in Landrace and Yorkshire breeds. 1 indicates
that the reference population consisted of either 4166 LL or 4263
YY, depending on the respective breed (within-breed scenario); 2
indicates that the reference population consisted of 8429 combined
LL and YY (combined-breed scenario) and 3 indicates that the
reference population consisted of animals that belonged to another
purebred breed (external-breed scenario), which means that
Landrace animals were imputed using a reference population that
contained Yorkshire pigs only and Yorkshire animals were imputed
using a reference population that contained Landrace pigs only.
Error bars are standard deviations



Table 1 Accuracy of imputation from 5 K to 8 K for Landrace
(LL), Yorkshire (YY) and crossbred animals

Imputed Reference Correct rate Correlation

LL LL + YY 0.9910 0.9606

YY LL + YY 0.9907 0.9477

Crossbred LL + YY 0.9849 0.9566

Crossbred LL 0.9034 0.7595

Crossbred YY 0.8667 0.6871

Fig. 3 Principal components analysis on the matrix of genomic
relationships within breeds. The first two main principal components
are presented on the x-axis and y-axis, respectively. The proportions
of variability across individuals explained by PC1 and PC2 were
22.92 % and 0.88 %, respectively

Xiang et al. Genetics Selection Evolution  (2015) 47:54 Page 5 of 12
size of the reference populations was fixed to 8249.
When a combined reference population was used,
imputation was better for purebred animals than for
crossbred animals in terms of correct rate, although the
improvement was very small (around 0.006). However,
in terms of correlation coefficient, imputation accuracy
was slightly greater for crossbred animals than for York-
shire pigs, but slightly lower for crossbred animals than
for Landrace pigs. However, if the reference population
used for imputation of crossbred animals was replaced
by a pure breed population, both correct rate and correl-
ation coefficient decreased dramatically by about 0.10 and
0.25, respectively. Imputation of crossbred animals using a
reference population that included only Yorkshire pigs
resulted in a larger decline in accuracies than using a
reference population that included Landrace pigs only.
Table 2 presents imputation accuracies (correlation coeffi-
cients) for the subsets of crossbreds with a genotyped sire
and those with a non-genotyped sire. Regardless of the
reference population used, the differences were small, al-
though the subset of crossbreds with a genotyped sire al-
ways had slightly higher accuracies than the subset of
crossbreds with a non-genotyped sire.

Genomic relationships across breeds
The two main principal components on the matrix of
genomic relationships of each individual across Land-
race, Yorkshire and crossbred Landrace-Yorkshire ani-
mals are in Fig. 3. The first two components explained
22.8 and 0.9 % of variability across individuals, respect-
ively. The first principal component (x-axis) separated
the three populations, whereas the second component
Table 2 Imputation accuracy (correlation coefficients) from 5 K
to 8 K for crossbred animals with genotyped and non-
genotyped sires

Reference Sire non-genotyped Sire genotyped

LL + YY 0.9529 0.9576

LL 0.7596 0.7603

YY 0.6883 0.6911

The first row indicates the components of the reference population whether it
consists of a purebred Landrace (LL), Yorkshire (YY) or a combined population
(LL + YY). There are 4956 crossbred animals with genotyped sires and 683 with
non-genotyped sires in each subset, respectively
(y-axis) could not distinguish between breeds. There was
hardly any connection between the two clouds of points
representing the Landrace and Yorkshire breeds, whereas
the cloud of points representing the crossbred Landrace-
Yorkshire population was generally in between. Connec-
tions between Landrace and crossbred pigs seemed to be
slightly tighter than those between Yorkshire and cross-
bred pigs, since there are many more points distributed in
the interval between Landrace and crossbred pigs than be-
tween Yorkshire and crossbred pigs. Overall, connections
between crossbred and purebred animals were not strong.
Table 3 provides averaged genomic relationships be-

tween individuals in the reference and validation popu-
lations that correspond to the different imputation
scenarios evaluated. The results in Table 3 show that
the mean relationship within breeds was always the lar-
gest for all scenarios. When a breed was imputed using
a reference population that comprised individuals of the
other pure breed (external-breed scenario), the mean
Table 3 Average genomic relationship between reference and
validation populations

LL YY LL + YY

LL 0.6398 0.1388 0.3874

YY 0.1343 0.6442 0.3932

Crossbred 0.3869 0.3943 0.3875

The first row indicates the components of the reference populations, whether
it consists of a purebred breed Landrace (LL), Yorkshire (YY) or a combined
population (LL + YY)



Xiang et al. Genetics Selection Evolution  (2015) 47:54 Page 6 of 12
relationship decreased to approximately one fifth of that
obtained with the within-breed scenario. When a com-
bined reference population was implemented to impute
purebred animals, logically, mean relationships were
intermediate to the values found with the within-breed
and external-breed scenarios. In addition, regardless of
which reference population was used to impute cross-
bred animals, mean relationships were similar. Distribu-
tions of genomic relationships between reference and
validation populations obtained with different scenarios
of imputation are represented by density curves in Fig. 4.
In general, for the Landrace and Yorkshire purebred
pigs, the distributions of relationships were similar re-
gardless of which reference population was used (as
shown in Fig. 4a, b and c). For the crossbred animals,
density curves were highly consistent whether the refer-
ence population consisted of animals from one breed or
from different populations (Fig. 4d). The density curves
of the top10 mean genomic relationships between cross-
bred animals and animals from the three different
Fig. 4 Density curves of genomic relationships between reference and vali
scenario for purebred Landrace and Yorkshire; (b) imputation of purebreds
external-breed scenario for purebred Landrace (LLbyYY) and Yorkshire (YYb
reference population (LYbyYY and LYbyLL) or a combined Landrace and Yo
imputation strategy of ‘5 K to 8 K’
reference populations are in Fig. 5. Landrace pigs had
closer top 10 mean genomic relationships with cross-
bred animals than Yorkshire pigs, and by construction,
animals of the combined-breed population had higher
top10 mean genomic relationships with crossbred ani-
mals than either of the populations that consisted of a
pure breed.

Proportions of shared haplotypes (PSH)
Proportions of haplotypes that were shared between ref-
erence and validation populations for different imput-
ation scenarios are in Table 4. The results show that
PSH decreased as the length of haplotypes increased.
For purebred animals, PSH was always very similar be-
tween Landrace and Yorkshire breeds when a within-
breed or a combined population was used as reference
population, regardless of the length of the haplotypes.
However, PSH decreased dramatically when the refer-
ence population consisted of only of the other breeds
(external-breed). Differences in PSH existed between
dation populations for different imputation scenarios.(a) within-breed
by using a combined Landrace and Yorkshire population; (c) the
yLL) and (d) imputation of crossbreds by using either one purebred
rkshire population (LYbyLL + YY). All scenarios were under the



Fig. 5 Density curves of the top 10 mean genomic relationships
between crossbred animals and three different reference
populations. The reference population consisted either of a single
purebred reference (LYbyLL and LYbyYY) or a combined Landrace
and Yorkshire population (LYbyLL + YY)
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Landrace and Yorkshire breeds in different scenarios: for
the within-breed scenario, LL had slightly higher PSH
than YY when haplotypes were longer than 30 markers,
but slightly lower PSH for shorter haplotypes; for the
external-breed scenario, PSH was consistently lower for
LL than for YY. Among the scenarios for imputation of
crossbred animals, PSH was highest when a combined
population was used as reference population. PSH de-
clined when the reference population was changed from a
combined population to a pure breed population. In par-
ticular, PSH was lowest when the reference population
consisted of only the Yorkshire breed. The number of
Table 4 Proportions of shared haplotypes between the reference
and validation populations for different imputation scenarios

Validation Reference 10a 20a 30a 50a 100a

LL LL 0,9965 0,9814 0,9549 0,8838 0,6417

LL YY 0,5043 0,1836 0,0877 0,0463 0,0141

LL LL + YY 0,9972 0,9832 0,9556 0,8847 0,6606

YY YY 0,9967 0,9817 0,9545 0,8825 0,6295

YY LL 0,6806 0,3419 0,2232 0,1267 0,0364

YY LL + YY 0.9971 0.9829 0.9589 0.8843 0.6579

Crossbred LL 0,8579 0,6758 0,5947 0,5016 0,3280

Crossbred YY 0,8108 0,6132 0,5125 0,4004 0,2765

Crossbred LL + YY 0,9902 0,9606 0,9135 0,8092 0,5357
aNumber of consecutive SNP alleles assumed for each haplotype. LL stands for
Landrace; YY stands for Yorkshire. All the scenarios were under the imputation
strategy of ‘5 K to 8 K’
unique haplotypes (NUH) that existed in the reference
population for different imputation scenarios is in Table 5,
which shows that if only one breed was used as a refer-
ence population, Landrace animals always provided more
haplotypes than Yorkshire animals. Furthermore, if the
reference population consisted of a combined population,
it always had a much larger NUH than if it consisted of
only one breed. However, the NUH in the combined
population was not equal to the sum of the NUH in each
breed and was in fact smaller than this sum. In other
words, some haplotypes were shared by the two breeds.
Imputation strategy ‘8 K to 60 K’
Figure 6 shows the comparison between imputation ac-
curacies from 8 K to 60 K across breeds. The 60 K data-
sets comprised real genotypes for purebred animals and
simulated genotypes for crossbred animals. According to
Fig. 6, in terms of correct rate, performance of imput-
ation for crossbred animals was almost as good as that
for purebred animals. Fig. 6 also shows that crossbred
animals performed even better than purebred animals in
terms of correlation coefficients. Comparison of the re-
sults with the corresponding imputation scenarios in
strategy ‘5 K to 8 K’ (first three lines in Table 1) clearly
indicates that both correct rates and correlation coeffi-
cients are larger for the ‘8 K to 60 K’ strategy. For in-
stance, accuracies of imputation from 8 K to 60 K for
Landrace and Yorkshire pigs were about 0.005 and 0.015
larger than those from 5 K to 8 K for the correct rate
and correlation coefficient, respectively. Before perform-
ing imputation from 8 K to 60 K in the simulated cross-
bred datasets, first we investigated the imputation from
5 K to 8 K in both the simulated and the real genotyped
crossbred datasets. Results (not shown) showed that the
performance of the simulated crossbred dataset was very
close to that of the real crossbred dataset (0.004 greater
correct rates).
Table 5 Numbers of unique haplotypes that existed in the
reference populations for different imputation scenarios

Validation Reference Size of reference 10a 20a 30a 50a 100a

Purebred LL 4166 63 223 441 956 2297

Purebred YY 4263 58 216 445 966 2298

Purebred LL + YY 8429 109 432 880 1916 4585

Crossbred LL 8429 79 314 669 1579 4170

Crossbred YY 8429 74 300 665 1571 4101

Crossbred LL + YY 8429 109 432 880 1916 4585
aNumber of consecutive SNP alleles assumed for each haplotype. LL stands for
Landrace; YY stands for Yorkshire. All the scenarios were under the imputation
strategy of ‘5 K to 8 K’. Numbers in the table are averages over non-
overlapping windows of a specific size



Fig. 6 Comparison of imputation accuracies from 8 K to 60 K across
breeds. Real genotypes were used for purebred Landrace and
Yorkshire animals but simulated genotypes were used for
crossbreds. Error bars are standard deviations
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Discussion
Our aim was to verify the performance of imputation in
Danish purebred and crossbred pigs using different sce-
narios. First, we studied imputation from 5 K to 8 K in
genotyped purebred and crossbred datasets; the per-
formance of imputation for each autosome of the pure-
bred animals was evaluated only in the within-breed
scenario; then imputations in purebred and crossbred
animals were compared in within-breed, external-breed
and combined-breed scenarios. Second, imputation from
8 K to 60 K was evaluated using genotyped purebred
and simulated crossbred data. Overall, across all imput-
ation scenarios, correct rates and correlation coefficients
were consistent with each other, i.e. higher correct rates
were associated with higher correlation coefficients.
The performance of imputation for purebred animals

was high and consistent across the whole genome, which
indicated that the strategy performed well for all pig au-
tosomes. Among the 18 pig autosomes, imputation was,
however, slightly worse on chromosomes 3, 10, 12 and 18,
which is consistent with the results of a study on the aver-
age LD on pig autosomes using a similar dataset [31].
Among the pig autosomes, autosomes 10 and 12 had a
relatively low average LD, which tends to decrease the
length of shared haplotypes and therefore decreases im-
putation accuracy, since Beagle relies crucially on local LD
structure [12]. Moreover, specific SNPs on a chromosome
with an extremely low minor allele frequency (MAF) re-
duce the average correlation coefficient for the chromo-
some. For instance, three SNPs on chromosome 10 had an
extremely low MAF (0.000097, 0.00039 and 0.00029, re-
spectively) in the Yorkshire dataset. Correct rates for these
three SNPs were 0.994, 0.997 and 0.998, but correlations
coefficients were −0.0017, 0.00045 and −0.000027, respect-
ively. When these three SNPs were removed, the correl-
ation coefficient for chromosome 10 increased from 0.90
to 0.93. However, in the Landrace dataset, these SNPs had
a MAF of 0.497, 0.185 and 0.499, respectively, and there-
fore they were retained in the analysis.
Based on Fig. 2, we concluded that pooling two pure-

bred populations did not improve imputation accuracy
compared to using a purebred reference population within
a breed. This is in agreement with some previous studies
in ruminants, which showed that combining reference
populations from different breeds did not improve within-
breed imputation [3, 20]. A possible explanation is that
haplotypes on which imputation relies are less conserved
across pig breeds compared to within breeds and those
that were conserved were already present in the within-
breed reference population. The sharp decrease in imput-
ation accuracies when an external breed was used as
reference population also supports that haplotypes are less
conserved across breeds. However, several other studies
[32, 33] showed that multi-breed reference populations
enhance imputation accuracies compared to a single-
breed reference population, but it should be noted that,
in these studies, the within-breed reference population
was small and imputation was done from high-density
genotyping data to sequence data, which was not the
case in our study. Therefore, to impute genotypes in
purebred pigs, the reference population should include
at least some individuals from the breed itself or a
closely related population.
Based on Table 1, imputation in crossbred animals with

a reference population that combined the two purebred
populations performed almost as well as imputation in
purebred animals, especially in terms of correlation coeffi-
cients. One possible explanation for crossbred animals
having slightly greater correlation coefficients but lower
correct rates compared to purebred animals may be due
to the quality control criterion used (MAF > 0.01) across
both purebred populations. The distribution of MAF of
the masked SNPs in the imputation strategy ‘5 K to 8 K’
for Landrace (LL), Yorkshire (YY) and crossbred animals
is in Fig. 7. This Figure shows that some SNPs had a MAF
equal to 0 within a breed but not in crossbred animals.
Crossbred animals tended to have higher MAF and SNPs
with a very low MAF were more likely to occur for
purebred animals, which decreases the correlation and in-
creases the correct rate [6]. Imputation accuracies of
crossbred animals significantly decreased when the refer-
ence population consisted of animals from only one breed.
A previous study [3] suggested that imputation accuracies
are expected to improve if sires and other ancestors were
in the reference data, because relatives share common and
longer stretches of haplotypes than distantly related
animals [34]. In this study, up to 88 % of the sires of



Fig. 7 Density curves of minor allele frequency of the 2647 masked
SNPs in the 8 K SNP chips. LL and YY represent Landrace and
Yorkshire breeds, respectively. Allele frequency was calculated for
each SNP across all individuals within the validation population
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crossbred animals were present in the combined purebred
reference population. Haplotypes of crossbred animals can
be accurately identified and imputed based on the haplo-
types of their relatives. Logically, crossbred animals that
were imputed using a single breed reference population
had much lower imputation accuracy. One explanation is
that some haplotypes of the breed that is not in the refer-
ence population are not “detected” by the imputation
software which, therefore, tries to impute them based on
the other breed, which has a different LD pattern. In other
words, by removing one breed from the reference popula-
tion, all information from one parent and its ancestors is
removed. This effect is visualized in Fig. 3, which shows
that there were no connections between the two purebred
populations for the first principal component (x-axis), and
both breeds appeared to have almost equally weak con-
nections with crossbred animals. Thus, both contributing
pure breeds should be included in the reference popula-
tion when imputing crossbreds to avoid inaccurately
estimated haplotype blocks due to breed composition. In
general, when imputing crossbred animals, it is desirable
to include as many individuals of their purebred parental
breeds in the reference population as possible.
Interestingly, Fig. 2 and Table 1 show that Landrace

pigs had higher imputation accuracies than Yorkshire pigs
when a reference population that consisted of a within-
breed or a combined population was used, whereas Land-
race pigs performed less well than Yorkshire pigs when
the reference population consisted of an external breed.
Among the factors that can affect imputation accuracies
and were put forward by Iwata and Jannink [14], (gen-
omic) relationships between the validation and reference
populations constitute a major factor. In this study, the
two pure breeds had similar family structures, which
resulted in the distribution of genomic relationships be-
tween validation and reference populations being similar
for the two breeds. As shown in Fig. 4a, b and c, there was
no obvious difference in the density curves of relationship
coefficients for Landrace and Yorkshire animals across
different imputation scenarios. Thus, average genomic re-
lationships between the validation and reference popula-
tions were similar for Landrace and Yorkshire pigs, as
shown in the first two rows of Table 3. However, based on
Table 3, it was not obvious that higher genomic relation-
ships between the validation and reference populations
would lead to higher imputation accuracies, as was pro-
posed in many other studies, such as [3, 25]. Similarly, im-
putation accuracies for crossbred animals were also higher
when imputation was done using a reference population
of Landrace pigs only compared to Yorkshire pigs only,
although the average genomic relationship between the
crossbred validation population and the Landrace refer-
ence population was smaller than that between the
crossbred validation population and the Yorkshire refer-
ence population, as shown in the last row of Table 3. All
of these unexpected results indicate that the average
genomic relationship is not sufficient to completely
characterize the performance of imputation.
A possible explanation why imputation accuracies for

crossbred animals were higher when imputation was
done using a reference population of Landrace pigs only
compared to Yorkshire pigs only is that close relation-
ships play a much greater role in imputation accuracies
than distant relationships [35]. According to Fig. 5, the
density curves of the top10 mean genomic relationships
suggested that crossbreds had a closer relatedness with
Landrace pigs than with Yorkshire pigs. One fact is that
the number of Landrace-Yorkshire crossbreds (4432) in
the crossbred dataset was much larger than the number
of Yorkshire-Landrace (1207) and most of the purebred
sires were genotyped and included in the reference
population. This fact may lead to improved performance
of imputation of crossbred animals, which is consistent
with the result that subsets with genotyped sires had
slightly higher imputation accuracies than subsets with
non-genotyped sires (Table 2). However, a closer exam-
ination of the results in Table 2 shows that the subset of
non-genotyped sires resulted in a higher accuracy when
imputation used a reference population that consisted of
Landrace pigs only compared to Yorkshire pigs only and
that it also resulted in a higher accuracy than the subset
of genotyped sires when imputation used a reference
population that consisted of Yorkshire pigs only. Thus,
we conclude that having a genotyped sire is not the main
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cause of the differences in imputation accuracies for cross-
bred animals when imputation used a reference popula-
tion that consisted of Landrace pigs only compared to
Yorkshire pigs only. Another possible interpretation of
why imputation accuracies for crossbred animals were
higher when imputation used a reference population that
consisted of Landrace pigs only compared to Yorkshire
pigs only is that the Landrace breed contains Yorkshire
haplotypes. The present Danish Landrace population is
based on the old Danish Landrace breed, with some
known imports from other European Landrace breeds in
the 1970s. It is also known that imported Yorkshire ani-
mals were crossed with the original Danish Landrace
stock in the 1890s, but it was later attempted to weed out
these Yorkshire crosses again [36]. Thus, it is possible that
the current Danish Landrace breed contains some York-
shire haplotypes, but not vice versa. Finally, one remark-
able difference between this study and other studies is that
the size of the reference populations was much larger (10
to 20 times) in our study. A large number of reference ani-
mals can provide a large number of haplotype blocks and
increase the possibility that specific haplotypes in the val-
idation population match those in the reference popula-
tion. When the reference population is very large, even a
small proportion of close relationships can provide many
shared haplotypes between reference and validation popu-
lations and thereby improve imputation accuracies.
The proportion of shared haplotypes can explain dif-

ferences in performance of imputation among scenarios
across breeds. A higher PSH indicates that a larger pro-
portion of the haplotypes in the validation population,
which need to be imputed, can be matched to corre-
sponding haplotypes in the reference population and
thereby be more accurately imputed. In general, our re-
sults agree with this hypothesis, as shown in Table 4.
This could be one reason why imputation of a purebred
or crossbred population by using a reference population
that consists of Landrace animals only, always performed
better than by using a Yorkshire reference population,
although all other important factors (such as relation-
ships, LD and MAF) were very similar in the two pure
breeds. The fact that LL had slightly smaller PSH than
YY, when the haplotypes were short (haplotype consisted
of < 30 markers), but larger PSH when the haplotypes
were long, indicates different patterns of sharing: long
haplotypes are from recent ancestors and short haplo-
types are from old ancestors, and there were more geno-
typed Landrace sires than genotyped Yorkshire sires.
Table 5 quantitatively shows that although the combined-
breed scenario provides more diverse haplotypes in the
reference population than the single-breed scenario, these
non-conserved haplotypes would not contribute to im-
prove imputation of purebred animals. Clearly, the corre-
sponding PSH in Table 4 did not increase as the reference
population was changed from a within-breed to a com-
bined population. Likewise, the simultaneous increase in
PSH and NUH illustrates quantitatively the importance of
using a reference population that consists of a combined
population for the imputation of crossbred animals.
The higher accuracies of imputation obtained from

8 K to 60 K than from 5 K to 8 K for purebred animals
confirmed previous studies [6], which showed that in-
creasing the number of SNPs in low-density chips can
improve the performance of imputation, because with
denser SNPs local LD across markers becomes stronger.
Therefore, it can be inferred that the performance of im-
putation for crossbred animals would also be marginally
improved in the 8 K to 60 K scenario. Accuracies of im-
putation from 8 K to 60 K for purebred animals and
simulated 60 K crossbreds were promising. To check
that the simulation gave realistic results, the perform-
ance of imputation from 5 K to 8 K with a simulated
crossbred dataset was compared with the performance
of imputation from 5 K to 8 K with the real crossbred
dataset (results not shown). The performance of imput-
ation with the simulated 8 K dataset was slightly better
than with the real 8 K dataset. The slight increase in
accuracy was due to the simulation using haplotypes
phased by Beagle. Thus, Beagle performed imputation
based on data that had been generated under its own
underlying model. Our results show that the improve-
ment is negligible. Therefore, results from the simulated
crossbred dataset can be trusted. It should be noted that
there was an upper limit to the accuracy of phasing if
the SNPs were sufficiently dense to be in high LD [12].
From an economic point of view, 8 K markers in a low-
density panel seem sufficiently dense for imputation to
medium-density (60 K) panels.
In pig breeding, imputation for purebred animals has

also been done from very low densities (384 SNPs) to
60 K densities [37–39]. Consequently, we also evaluated
the imputation accuracy from very low density (425
SNPs, 1 % of total SNPs retained) to 8 K in a crossbred
dataset with a reference population that combined ani-
mals from both pure breeds. However, the accuracies
were very low, around 0.7 and 0.5 for correct rates and
correlation coefficients, respectively, which seems inad-
equate to implement genomic evaluation for crossbred
performance in pigs.
Our goal was to compare the imputation performance

between purebred and crossbred animals. We used the
Beagle software. Although many other software pro-
grams have been developed for imputation, their com-
parison was beyond the scope of our study. All the
imputation scenarios were executed on a Linux server
with an Intel (R) Xeon (R) E5450@3.00 GHz CPU. The
system is configured to allow computation with a max-
imum of four cores and a total of 32 GB RAM. Running
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time for imputing chromosome 1 of purebred animals in
the within-breed and external-breed scenarios and strat-
egy “5 K to 8 K” was 4 h ± 10 min, while the running
time for imputing chromosome 1 of purebred animals in
the combined-breed scenarios was around 6.5 h. The
running time for imputing chromosome 1 of crossbred
animals was about 6.5 h ± 15 min when different refer-
ence populations were used. For strategy “8 K to 60 K”,
only the combined-breed scenario was implemented in
purebred and crossbred animals and the running time
for imputing chromosome 1 of crossbred animals was
67 h ± 30 min.
Conclusions
Using the software Beagle, imputation performs very
well and consistently across the whole genome and, as
well, in crossbreds as in purebred animals, when the ref-
erence population combines animals from both parental
breeds. For purebred animals, a reference population of
within-breed animals ensures a good performance of
imputation, especially when the size of the reference
population is large. A combined reference population
does not increase imputation accuracy for purebred ani-
mals compared to a within-breed reference population.
A reference population that consists of an external breed
only results in very poor imputation accuracy. For cross-
bred animals, a highly accurate imputed 60 K crossbred
dataset can be achieved from 8 K by using a reference
population that combines both parental breeds. The best
method for imputation of crossbred animals is to include
all purebred parental breeds in the reference population.
Relationships can account for differences in imputation
accuracy, but its effect will be limited by the size of the
reference population. The proportion of shared haplo-
types between the reference and validation populations
gives an appropriate interpretation for the performance
of imputation in both purebred and crossbred pigs.
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