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Abstract

Background: Reversible, depressed cardiac function is frequently encountered
during septic shock and commonly called septic cardiomyopathy. Previous studies
demonstrated reduced ejection fraction and left ventricular dilatation in both
humans and animal models. However, the majority of the studies in humans
excluded pre-existing cardiac disease and animal studies were performed on
healthy specimen and/or without vasopressor support during sepsis. In order to
more closely mimic the actual patients’ conditions on intensive care units and to
assess the influence of both cardiac comorbidity and vasopressor support on
septic cardiomyopathy, we evaluated the left ventricular function in a porcine
model of resuscitated septic shock with pre-existing atherosclerosis.

Methods: Hypercholesterolaemic, atherosclerotic pigs due to homozygous
low-density lipoprotein receptor mutation and high-fat diet were anaesthetised
and surgically instrumented. Faecal peritonitis was induced by inoculation of
autologous faeces into the peritoneal cavity in n = 8 animals; n = 5 pigs underwent
sham procedure. Sepsis resuscitation included administration of fluids and
noradrenaline. Left ventricular function was analysed via pressure-conductance
catheters before, 12 and 24 h after the induction of sepsis.

Results: The main findings were impaired ventricular dilatation (no significant
change in the left ventricular end-diastolic volume) and unchanged ejection
fraction in septic pigs with pre-existing atherosclerosis. The relaxation time
constant τ decreased while dp/dtmax increased. Cardiac nitrotyrosine formation
increased while expression of the endogenous hydrogen sulphide (H2S)-producing
enzyme cystathionine γ-lyase (CSE) decreased.

Conclusions: The data of the present study are in conflict with previously published
data from healthy animal models, most likely as a result of ongoing resuscitation
including noradrenaline treatment or intrinsic pathophysiologic processes of the
pre-existing atherosclerosis. Moreover, increased nitrotyrosine formation and decreased
expression of CSE suggest the implication of augmented oxidative/nitrosative stress
and/or reduced bioavailability of nitric oxide as well as diminished endogenous H2S
release in the pathophysiology of septic cardiomyopathy.
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Background
There is extensive evidence for reversible intrinsic cardiac dysfunction and myocar-

dial depression in patients with sepsis or septic shock, a condition frequently called

septic cardiomyopathy [1]. These cardiac abnormalities can affect the left as well as

the right ventricle and may interfere with both the systolic and the diastolic prop-

erties of the heart [2] with most of the studies focussing on the left ventricular

(LV) systolic function. Parker et al. described a reversible reduction in LV function

as assessed by ejection fraction (EF) in patients with septic shock. Of note, com-

pared to non-survivors, survivors of sepsis presented with a lower EF and a

marked LV dilatation. The authors suggested that LV dilatation might be an adap-

tive response of the heart to maintain stroke volume despite sepsis-induced systolic

cardiac depression [3]. Subsequent studies confirmed LV dilatation in sepsis in ani-

mal models [4, 5] and humans [6]. Nevertheless, the hypothesis of adaptive ven-

tricular dilatation remains controversial. Several more recent studies using

echocardiography did not find LV dilatation in septic patients [7, 8]. Moreover, the

majority of clinical studies in humans evaluating cardiac function in sepsis did not

consider the patients’ comorbidities. Experimental studies also used only healthy

animal models without underlying (cardiac) comorbidity. However, a high propor-

tion of patients with sepsis present with relevant comorbidities [9]. These comor-

bidities significantly influence sepsis-related mortality [10]. Besides, patients in

septic shock on ICUs frequently need haemodynamic support with catecholamines,

whereas the majority of the animal studies did not include vasopressors in their

treatment protocols. Therefore, to appreciate the importance of both the frequently

present pre-existing (cardiac) comorbidity and vasopressor support, we studied car-

diac function in a resuscitated porcine model of septic shock with pre-existing

atherosclerosis.

Methods
Animals

The study was approved by the University of Ulm Animal Care Committee and the

Federal Authorities for Animal Research. The experiments were performed in adher-

ence to the National Institute of Health Guidelines on the Use of Laboratory Animals

and the European Union “Directive 2010/63/EU on the protection of animals used for

scientific purposes”. The present study is a post hoc analysis of the data available from

the vehicle-treated group of a previous study [11] and sham-operated animals studied

simultaneously. Thirteen castrated male familial hypercholesterolemia Bretoncelles

Meishan (FBM) pigs with a median weight of 69 kg (interquartile range 65 to 73 kg)

aged between 15 and 30 months were used. This pig strain is characterised by a homo-

zygous low-density lipoprotein (LDL) receptor mutation and develops marked athero-

sclerosis under atherogenic diet [12, 13]. The pigs were fed with atherogenic diet (1 kg

daily, 1.5 % cholesterol, 20 % bacon fat) for at least 9 months prior to the experiments.

The phenotype has been characterised previously [14]. Briefly, FMB pigs on atherogenic

diet exhibit significantly higher cholesterol levels compared to healthy German landrace

swine of the same age. Plasma levels of 8-isoprostane are significantly increased, plasma

nitrite/nitrate levels are significantly lower and creatinine clearance is also significantly

reduced in contrast to healthy German landrace swine (Additional file 1) [14]. FBM
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pigs are further characterised by altered glucose homeostasis [11], and they present

with modified receptor expression patterns (lower erythropoietin receptor expression

as well as lower PPAR-β/δ expression compared to young healthy German landrace

swine) [11, 14]. Moreover, despite similar organ dysfunction, FBM pigs displayed a dif-

ferent response to kidney ischemia/reperfusion injury with respect to nitrite/nitrate and

8-isoprostane levels (Additional file 2) [14, 15]. Histological examination of coronary

arteries of the FBM pigs on high-fat diet confirmed classical features of atherosclerosis,

such as asymmetric lesion formation, pathological intimal and medial thickening, lipid

accumulation and foam cell formation (Additional files 3, 4, 5 and 6). The pathological

altered intima was strongly positive for adipophilin, a marker for lipid accumulation

[16], whereas unaffected areas of the intima were negative for adipophilin (Additional

file 7). Adipophilin is suggested to be involved in atherogenesis, as it is induced by oxi-

dized LDL in macrophages [17] and further contributes to lipid accumulation [18].

Anaesthesia

Before the experiments, pigs were fasted for 12 h with free access to water. Intra-

muscular premedication consisted of 2.5 mg atropine and 5 mg kg−1 azaperone.

After establishment of an intravenous access via the ear vein, anaesthesia was in-

duced with propofol (1–2 mg kg−1) and ketamine (1–2 mg kg−1). The pigs were

endotracheally intubated, and their lungs were mechanically ventilated (tidal vol-

ume 8 ml/kg, respiratory rate 8–12 adapted to achieve an arterial partial pressure

of carbon dioxide (pCO2) of 35–45 mmHg, inspiratory/expiratory (I/E) ratio 1:1.5,

fraction of inspiratory oxygen (FiO2) 35 %, positive end-expiratory pressure (PEEP)

10 cm H2O, peak airway pressure ≤40 mmHg). Anaesthesia was maintained with

continuous intravenous infusion of pentobarbitone (8–12 mg kg−1 h−1). Buprenor-

phine was used for analgesia (30 μg kg−1 initially, further 10 μg kg−1 every 8 h as

well as prior to surgery and induction of faecal peritonitis). Pancuronium

(0.1 mg kg−1 h−1) ensured appropriate muscle relaxation. Ringer’s solution

(10 ml kg−1 h−1) was infused for fluid homeostasis.

Surgical procedures

Both internal jugular veins were exposed. A heat exchange catheter was inserted in the

left internal jugular vein to control and maintain body core temperature at 37.5–38.5 °C.

A central venous catheter sheath was placed in the right internal jugular vein. The central

venous catheter was subsequently used for infusion therapy and application of intraven-

ous drugs including catecholamines. A balloon-tipped thermodilution pulmonary artery

catheter was inserted via the sheath and used for the measurement of the central venous

pressure (CVP), mean pulmonary arterial pressure (MPAP), pulmonary artery occlusion

pressure (PAOP) and cardiac output (CO). An arterial catheter was inserted into the fem-

oral artery to monitor the arterial blood pressure (MAP). Exposure of the left carotid ar-

tery was followed by the insertion of an arterial catheter sheath for the introduction of a

pressure-conductance catheter allowing the analysis of LV function. A midline mini-

laparotomy allowed the insertion of a catheter into the bladder to collect urine. Two tubes

were placed through the abdominal wall into the peritoneal cavity for subsequent induc-

tion of peritonitis. During surgery, hydroxyethyl starch was infused as needed to maintain

cardiac filling pressures.
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Experimental protocol

After 4 h of surgery, the pigs were allowed to recover for 8 h before baseline data were

collected. Subsequently, faecal peritonitis was induced. For this purpose, 1 g kg−1 au-

tologous faeces was collected during premedication, dissolved in 500 ml 0.9 % saline

and incubated at 38 °C for 12 h. Of the supernatant, 3 ml kg−1 was injected into the

peritoneal cavity via the abdominal tubes. Eight animals received autologous faeces

while five animals underwent sham surgery without inoculation of faeces. Animals were

monitored for 24 h, and additional data sets were acquired 12 and 24 h after the induc-

tion of peritonitis. Ringer’s solution (10 ml kg−1 h−1) was continuously infused. For add-

itional circulatory support, hydroxyethyl starch (10 or 5 ml kg−1 h−1 if PAOP or CVP

>18 mmHg, respectively) was administered. If MAP remained below baseline values

despite volume resuscitation, noradrenaline was used to stabilize MAP at pre-

peritonitis values. However, infusion rates of noradrenaline were not further increased

if the heart rate was higher than 170 beats per minute (bpm) in order to avoid

tachycardia-induced myocardial ischemia. One animal in the sepsis group had a heart

rate of 173 bpm after 24 h, and therefore, noradrenaline application was not further in-

creased. Respirator settings were modified (I/E ratio 1:1, PEEP 12 or 15 cm H2O) dur-

ing the experiments when the Horowitz index (ratio of arterial oxygen partial pressure

(PaO2) to FiO2) dropped below 300 or 200 mmHg, respectively. FiO2 was incrementally

increased to maintain an arterial haemoglobin O2 saturation of ≥90 %. At the end of

the experiment, the pigs were euthanized under deep anaesthesia via injection of potas-

sium chloride.

Measurements

Immediately before, 12 and 24 h after induction of faecal peritonitis, data sets were col-

lected. Measurements included haemodynamics (MAP, MPAP, PAOP, CVP, heart rate,

CO), arterial and mixed venous blood gases (pO2, pCO2), glucose, lactate, base excess

and LV function. For the assessment of LV function, a pressure-volume catheter (CD

Leycom, Hengelo, The Netherlands) was placed via the arterial catheter sheath in the

left carotid artery. Subsequently, the catheter was advanced towards the heart and into

the left ventricle across the aortic valve under the control of the online arterial pressure

signal. The catheter was connected to a Sigma 5 DF signal processor (CD Leycom).

Prior to insertion, the catheter was put into 0.9 % saline at room temperature and cali-

brated according to the manufacturer’s protocol. The principle of the pressure-volume

catheter has been described previously [19]. Briefly, the catheter possesses a tip sensor

allowing the measurement of the left ventricular pressure. Additionally, 12 electrodes

are positioned along the catheter. The four outermost electrodes generate a small elec-

tric field. The remaining inner electrodes measure segmental voltage gradients during

the cardiac cycle. Segmental conductance values are calculated from these voltage sig-

nals measured along the catheter. Each conductance signal represents a segmental vol-

ume of the ventricle. However, the conductance-derived volumes differ from the true

cardiac volumes, as the measured conductance is not solely influenced by ventricular

volumes but also by structures surrounding the ventricular cavity, e.g. the myocardium.

This part of the conductance is called the parallel conductance and can be determined

by the injection of a bolus of hypertonic (20 %) saline via the central venous catheter.

The saline bolus is assumed to temporarily change the blood conductivity without
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affecting the parallel conductance. From this change in conductivity, parallel conduct-

ance can be obtained. Knowing the specific conductance of blood, the electrode spacing

and the parallel conductance, the total volume of the ventricle can finally be calculated.

Thus, the pressure-volume catheter allows continuous online recording of cardiac pres-

sures and volumes. Further analysis of cardiac data from pressure volume loops was

performed using Conduct NT software (CD Leycom).

Immunohistochemistry

Heart specimens were immediately collected post-mortem and analysed for nitrotyro-

sine formation and expression of the endogenous H2S-producing enzyme cystathionine

γ-lyase (CSE). Therefore, the specimen was fixed in formalin, embedded in paraffin,

dewaxed in xylene and rehydrated with a graded series of ethanol. After incubation in

citrate buffer and boiling for heat-induced antigen retrieval, samples were blocked with

goat sera and subsequently incubated with primary anti-nitrotyrosine (Millipore,

Schwalbach, Germany) or anti-CSE antibodies (Abnova, Taipei City, Taiwan). Primary

antibody detection was performed by alkaline phosphatase-conjugated secondary anti-

bodies and visualized with a red chromogen (Dako APAAP REAL; Dako, Hamburg,

Germany) followed by counterstaining with haematoxylin. Slides were visualized using

a Zeiss Axio Imager A1 microscope with a ×10 objective. Quantification for intensity

was performed using the AxioVision 4.8 software (Zeiss, Jena, Germany). Results are

presented as median densitometric sum red. Specimens of coronary arteries were

stained with haematoxylin. Polyclonal anti-adipophilin antibody (Progen, Heidelberg,

Germany) was used for adipophilin staining.

Statistical analysis

All data are expressed as median (IQ range). Differences within each group were tested

by using a Friedman analysis of variance on ranks and a subsequent Dunn’s test for

multiple comparisons with Bonferroni correction. Inter-group differences were analysed

by the Mann-Whitney rank sum test. A p value less than 0.05 was considered statisti-

cally significant. GraphPad Prism 6 software was used for statistical evaluation and

graphical display.

Results
Table 1 summarises the haemodynamic changes. MAP was significantly decreased in

septic animals after 24 h compared to sham-operated pigs (p < 0.05) despite aggressive

supportive volume and vasopressor therapy. Consequently, heart rate (p < 0.005) and

cardiac output (p < 0.005) were significantly increased at 12 and 24 h of sepsis when

compared to pre-shock values. MPAP progressively increased both in septic and

sham animals but was significantly higher in septic animals at the end of the ex-

periment (p < 0.02). Systemic vascular resistance significantly decreased in septic

animals compared to baseline (p < 0.003) and to control group (p < 0.005).

Table 2 demonstrates the acid-base and gas exchange data. Septic shock was as-

sociated with deteriorated pulmonary gas exchange resulting in a significant fall of PaO2

(p < 0.05) and the Horowitz index (p < 0.001) as well as progressive lactic acidosis.

The cardiac function data are summarized in Table 3. In line with a decreasing MAP,

left ventricular end-systolic pressure (LVESP) was lower at the end of the experiment
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in septic pigs compared to pre-shock values. dp/dtmax values significantly increased

after 12 and 24 h in septic pigs compared to baseline values. dp/dtmin, stroke volume,

ejection fraction, left ventricular end-systolic volume (LVESV) and left ventricular end-

diastolic volume (LVEDV) did not reveal significant statistical differences between both

groups and within groups compared to baseline. However, slightly lower LVEDV to-

gether with higher left ventricular end-diastolic pressure (LVEDP) after 24 h of sepsis

indicate increased LV stiffness. The isovolumetric relaxation time constant τ signifi-

cantly decreased in septic pigs compared to control pigs (p < 0.02) and to baseline

values (p < 0.01).

Sepsis significantly increased cardiac nitrotyrosine formation (p < 0.002, Fig. 1). In

contrast, expression of the endogenous H2S-producing enzyme CSE significantly de-

creased during sepsis (p = 0.01, Fig. 2).

Discussion
The aim of the present study was the evaluation of the left ventricular function in a

porcine model of resuscitated septic shock with pre-existing atherosclerosis. The main

findings were (1) impaired LV dilatation (no significant change in LVEDV), (2) un-

changed ejection fraction and (3) increased cardiac nitrotyrosine formation and re-

duced cardiac expression of CSE in septic animals with pre-existing atherosclerosis and

ongoing vasopressor support. Parker et al. initially described a reversible reduction of

Table 1 Hemodynamic data

Baseline 12 h 24 h

MAP (mmHg)

Sham 100 (90; 106) 95 (89; 97) 103 (94; 119)

Sepsis 103 (91; 112) 94 (89; 102)* 71 (62; 101)*, **

MPAP (mmHg)

Sham 22 (20; 25) 26 (24; 28) 28 (24; 31)*

Sepsis 23 (20; 26) 31 (25; 41)* 39 (32; 40)*,**

PAOP (mmHg)

Sham 9 (7; 16) 10 (9; 15) 11 (7; 16)

Sepsis 11 (6; 13) 15 (9; 15) 18 (16; 20)*,**

CVP (mmHg)

Sham 8 (7; 13) 9 (8; 14) 10 (9; 17)*

Sepsis 10 (6; 13) 14 (9; 15) 17 (14; 18)*

HR (beats/min)

Sham 88 (73; 104) 90 (82; 105) 102 (68; 115)

Sepsis 88 (74; 106) 143 (114; 159)*,** 156 (140; 166)*,**

Cardiac output (l/min)

Sham 3.9 (3.4; 6.2) 4.1 (3.7; 6.6) 4.4 (2.9; 6.5)

Sepsis 4.5 (3.5; 5.4) 6.8 (5.8; 8.9)* 6.3 (4.6; 10.8)*

SVR (dyn*s/cm5)

Sham 1870 (1195; 2002) 1636 (1075; 1861) 1883 (1243; 2237)

Sepsis 1734 (1515; 1833) 961 (638; 1245)** 806 (560; 917)*,**

All data are medians (25; 75 percentile). Sham n = 5; sepsis n = 8
MAP mean arterial pressure, MPAP mean pulmonary artery pressure, PAOP pulmonary artery occlusion pressure, CVP
central venous pressure, HR heart rate, SVR systemic vascular resistance
*p < 0.05 compared to baseline; **p < 0.05 compared to sham group
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LV systolic function measured as EF and a marked LV dilatation in patients with septic

shock. Interestingly, these changes only occurred in survivors of sepsis while non-

survivors showed no ventricular dilatation and presented with preserved EF. However,

afterload assessed as systemic vascular resistance index was decreased in non-survivors,

which might have resulted in sustained EF despite possible systolic impairment. LV

dilatation was considered as adaptive response to maintain stroke volume despite car-

diac dysfunction [3]. Subsequently, LV dilatation was also demonstrated in canine [4]

and murine septic shock [5]. Of note, only a proportion of mice (37 %) underwent ven-

tricular dilatation with improved survival. More recent studies in humans also found

LV dilatation, even though less consistent: Bouhemad et al. described LV dilatation in a

subgroup of patients with systolic dysfunction [6]. Other studies reported significantly

larger LVEDVs in survivors of sepsis compared to non-survivors [20–22]. In contrast to

the aforementioned studies, the concept of ventricular dilatation was challenged by

other authors. Although confirming frequent systolic dysfunction in sepsis, no change

in LV volumes was observed [7, 8, 23]. A recent meta-analysis provided significant evi-

dence for non-indexed LV dimensions being larger in survivors of severe sepsis and

septic shock [24]. Several issues need to be addressed to account for the conflicting re-

sults. First, different methods were used for cardiac assessment comprising radionuclide

cineangiography, thermodilution technique and transthoracic and transesophageal

echocardiography. However, invasive and non-invasive techniques may yield different

results [25]. Furthermore, as septic cardiomyopathy is a reversible process [26]; serial

Table 2 Gas exchange, acid-base balance and glucose

Baseline 12 h 24 h

Arterial pH

Sham 7.46 (7.44; 7.46) 7.43 (7.42; 7.45) 7.44 (7.44; 7.46)

Sepsis 7.45 (7.43; 7.48) 7.46 (7.40; 7.48) 7.35 (7.19; 7.42)*,**

PaCO2 (mmHg)

Sham 35 (35; 39) 37 (34; 38) 35 (33; 36)

Sepsis 38 (34; 40) 38 (33; 40) 38 (33; 42)

PaO2 (mmHg)

Sham 158 (142; 180) 160 (144; 185) 159 (138; 178)

Sepsis 170 (161; 183) 155 (129; 163) 110 (71; 144)*,**

Horowitz index (mmHg)

Sham 495 (429; 536) 484 (436; 552) 484 (425; 528)

Sepsis 550 (489; 574) 477 (382; 505) 225 (75; 388)*,**

Glucose (mg/dl)

Sham 128 (114; 141) 74 (69; 131)* 77 (72; 125)

Sepsis 115 (89; 119) 76 (65; 96)* 87 (72; 123)

Lactate (mmol/l)

Sham 1.4 (1.0; 1.6) 0.6 (0.4; 1.0) 0.6 (0.6; 1.2)

Sepsis 0.8 (0.6; 1.5) 1.0 (0.7; 1.7) 4.3 (1.9; 8.6)*, **

Base excess (mmol/l)

Sham 1.1 (0.8; 1.8) -0.3 (-0.7; 0.7)* -0.1 (-1.5; 0.7)

Sepsis 1.5 (0.4; 2.3) 1.7 (-0.7; 4.6) -5.0 (-12.0; -2.9)*, **

All data are medians (25; 75 percentile). Sham n = 5, sepsis n = 8
*p < 0.05 compared to baseline; **p < 0.05 compared to sham group
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investigations are required to capture the dynamic process of LV dilatation. In other

words, the timing of cardiac evaluation plays a crucial role. Depending on the time of

the first assessment, incidence of LV dysfunction ranged from 18 to 65 % [1]. Moreover,

as LV dilatation commonly does not occur in all patients, LV dimensions have to be

addressed for each individual patient. In fact, one individual pig displayed an increase

in LVEDV (110 ml before sepsis, 278 ml after 24 h), while LVEDV remained stable or

even decreased within 24 h in all other animals in our study (Fig. 3).

In our study on hypercholesterolaemic pigs with pre-existing atherosclerosis,

dp/dtmax was significantly elevated in septic animals after 24 h. The increase in

dp/dtmax most likely reflects catecholamine treatment and the positive inotropic

effects of noradrenaline [27] (median dose of noradrenaline 0.82 μg kg−1 min−1

(0.52–2.11) in septic versus 0.06 μg kg−1 min−1 (0.02–0.13) in sham pigs). As dp/dtmax is

essentially heart rate dependent [28], the sepsis- and noradrenaline-induced tachycardia

Table 3 Cardiac data

Baseline 12 h 24 h

LVESP (mmHg)

Sham 102 (92; 117) 99 (91; 114) 112 (87; 123)

Sepsis 105 (86; 114) 100 (89; 110) 90; 67; 101)*

LVEDP (mmHg)

Sham 14 (9; 19) 14 (9; 20) 18 (13; 23)

Sepsis 11 (9; 17) 17 (14; 20) 18 (14; 21)

dp/dtmax (mmHg/s)

Sham 1797 (1675; 2170) 2573 (1412; 4028) 2224 (1857; 3590)

Sepsis 1571 (1341; 2025) 4239 (1817; 4608)* 3150 (1794; 5122)*

dp/dtmin (mmHg/s)

Sham −2222 (−2473; −1904) −2148 (−2423; −1293) −2461 (−2748; −1246)

Sepsis −1971 (−2257; −1735) −2090 (−2436; −1743) −2180 (−2719; −1556)

SV (ml)

Sham 50 (46; 59) 47 (45; 59) 47 (43; 54)

Sepsis 44 (39; 67) 49 (39; 67) 42 (31; 66)

EF (%)

Sham 45 (44; 49) 49 (44; 66) 39 (34; 49)

Sepsis 50 (41; 61) 49 (34; 58) 60 (40; 78)

LVESV (ml)

Sham 59 (52; 65) 49 (24; 75) 75 (46; 104)

Sepsis 37 (30; 80) 53 (41; 109) 31 (24; 44)

LVEDV (ml)

Sham 116 (102; 129) 105 (78; 137) 131 (97; 168)

Sepsis 94 (78; 118) 99 (90; 204) 86 (62; 114)

Tau (ms)

Sham 28 (26; 35) 27 (25; 41) 26 (23; 45)

Sepsis 28 (25; 38) 21 (19; 26) 18 (14; 23)*,**

All data are medians (25; 75 percentile). Sham n = 5; sepsis n = 8
LVESP left ventricular end-systolic pressure, LVEDP left ventricular end-diastolic pressure, dp/dtmax maximal rate of
pressure increase, dp/dtmin maximal rate of pressure decrease, SV stroke volume, EF ejection fraction, LVESV left
ventricular end-systolic volume, LVEDV left ventricular end-diastolic volume
*p < 0.05 compared to baseline; **p < 0.05 compared to sham group
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further contributed to the raise of dp/dtmax. In contrast to dp/dtmax, EF remained largely

unchanged for 24 h in the septic swine. However, EF represents a load-dependent param-

eter of LV function [29], and the significant reduction in systemic vascular resistance after

12 and 24 h of sepsis as well as the high doses of noradrenaline likely contributed to the

sustained EF. It is therefore conceivable that the load as well as the heart rate dependence

of dp/dtmax and EF in combination with NA treatment may have obscured the detection

of impaired LV systolic function. Of note, in a rat model of septic shock with severe myo-

cardial dysfunction, noradrenaline administration 18 h after the induction of sepsis signifi-

cantly improved cardiac performance associated with increased EF and dp/dtmax [30].

The heart-rate-independent relaxation time constant τ was significantly decreased in

septic animals at 24 h. The decline of τ can also be attributed to noradrenaline treat-

ment, as the positive lusitropic effect of catecholamines enables faster diastolic relax-

ation [27]. In contrast to our results in a fluid- and noradrenaline-resuscitated model of

septic shock, dp/dtmax declined and τ increased in septic mice [31] and endotoxemic

pigs [32] without vasopressor support. Although LVEDV and LVEDP did not signifi-

cantly change in septic animals, a trend towards increased LVEDP could be observed,

which is in line with a significantly elevated filling pressure (PAOP). Together with a

stable or even slightly reduced LVEDV, the findings on diastolic function suggest a re-

duction in LV compliance. This rationale is underscored by a study in patients with

sepsis reporting significantly lower indexed LVEDV in patients with coronary artery

disease (CAD) compared to patients without CAD: the authors hypothesized that the

Fig. 1 Nitrotyrosine staining of heart specimen collected at the end of the experiment after 24 h.
a Two representative histological images of sham (left) and septic (right) animals (×10 magnification).
b Quantitative results of densitometric analysis. Data are presented as median (range). Sham n = 5, sepsis
n = 8 animals
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pre-existing atherosclerosis contributed to the impairment of ventricular dilatation

[33]. Furthermore, a study in 40 patients including 12 patients with pre-existing cardiac

disease reported that 7 patients developed reversible cardiac dysfunction during sepsis

with reduced EF and larger LV end-diastolic diameter compared to patients with nor-

mal EF. Interestingly, none of these 7 patients had pre-existing heart disease, and

Fig. 2 CSE (cystathionine γ-lyase) staining of the heart specimen collected at the end of the experiment after
24 h. a Two representative histological images of sham (left) and septic (right) animals (×10 magnification).
b Quantitative results of densitometric analysis. Data are presented as median (range). Sham n = 5, sepsis
n = 8 animals

Fig. 3 Individual time course of the left ventricular end-diastolic volume (LVEDV) of septic animals
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despite an overall mortality of 23 %, all these patients survived [34]. Injection of endo-

toxin in volunteers without comorbidities resulted in reduced ventricular performance

and increased LVEDV index [35].

The underlying mechanisms of septic cardiomyopathy are still a matter of debate

[36]. In our study, sepsis significantly increased cardiac nitrotyrosine formation. Aug-

mented nitrotyrosine formation has also been demonstrated in the heart specimen of

septic patients [37, 38]. Nitrotyrosine is a well-established marker for both augmented

oxidative and nitrosative stress resulting from the nitration of protein tyrosine residues

by peroxynitrite, a product of the reaction of nitric oxide (NO) with superoxide [39].

Therefore, increased nitrotyrosine formation may be associated with reduced bioavailabil-

ity of NO [40], and both elevated nitrotyrosine as well as low levels of NO are implicated

in the pathophysiology of atherosclerosis [41, 42]. However, NO improves diastolic relax-

ation and promotes LV distension [43, 44]. Thus, augmented oxidative as well as nitrosa-

tive stress itself and/or the reduced availability of NO as a consequence of increased

nitrotyrosine formation might be a possible explanation for the lack of LV dilatation.

Additionally, sepsis significantly reduced cardiac expression of CSE, an endogenous

hydrogen sulphide (H2S)-producing enzyme. CSE and endogenous H2S have also been

implicated in atherogenesis: Overexpression of CSE exerted anti-atherosclerotic effects

[45], whereas CSE knockout promoted disease progression in a murine model of diet-

induced atherosclerosis [46]. Plasma levels of H2S have been shown to be significantly

reduced in patients with CAD [47]. Moreover, CSE expression was reduced in a murine

model of heart failure [48], and CSE activity was diminished in a model of myocardial

ischemic injury [49]. Administration of the H2S donor sodium hydrosulphide (NaHS)

improved diastolic heart function by significantly reducing LVEDP and improving dp/

dtmin in isolated rat hearts subjected to I/R [50] as well as in vivo [49]. Thus, consider-

ing LV dilatation as a protective, adaptive response in sepsis [51], reduced availability of

H2S due to decreased expression of CSE in the atherosclerotic pigs in our study might

also be responsible for impaired diastolic cardiac function besides increased nitrotyro-

sine formation.

Limitations

The major limitation of our study represents the lack of healthy control pigs. As men-

tioned above, the present study is a post hoc analysis of the data available from the

vehicle-treated group of a previous study [11] and sham-operated animals studied sim-

ultaneously. Hence, we cannot differentiate between the effects ICU procedures and

ongoing noradrenaline treatment or the underlying atherosclerosis. Determinants of

systolic LV function assessed in the present study did not reflect septic myocardial dys-

function. However, these parameters are strongly influenced by the positive inotropic

effects of noradrenaline [27]. Therefore, it is possible that the high doses of vasopressor

support in the septic pigs might have obscured the detection of systolic LV impairment.

The rationale for the inclusion of continuous noradrenaline infusion in the therapeutic

regimen was (i) to closely mimic the patients’ conditions on ICUs and (ii) to avoid

hypotension-induced coronary hypoperfusion with subsequent cardiac depression due

to ischemia.

In the initial report by Parker et al., only survivors of sepsis displayed the dilatational

response of the left ventricle, whereas LVEDV of non-survivors remained largely
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unchanged. As the experiments of the present study were terminated 24 h after the in-

duction of peritonitis, sepsis mortality could not be assessed. Therefore, we cannot ex-

clude the possibility that the severity of our sepsis model might have impaired possible

LV dilation in line with other human non-survivors data [20, 21]. However, septic pa-

tients with CAD displayed lower indexed LVEDV compared to patients without CAD,

and albeit mortality in both groups did not differ, the severity of sepsis most likely was

much less pronounced than in the present study: no vasopressor treatment was re-

quired [33]. Furthermore, the dilatational response of the left ventricle in sepsis com-

monly occurs only in a proportion of patients, e.g. 37 % in a mouse study [5] or 10

from 20 patients in the initial report by Parker et al. [3]. Hence, the relatively small

number of n = 8 septic animals in our study might have led to the underestimation of

possible dilatory effects in the atherosclerotic animals. However—considering the per-

centages of dilatation in the aforementioned studies—one would expect at least more

than only one dilator described here. It is conceivable that pre-existing CAD does not

completely prevent LV dilatation but rather reduce its incidence. Clearly, further stud-

ies with larger groups are needed to draw valid conclusions on the frequency of the oc-

currence of LV adaption. The duration of our study was only 24 h. We cannot exclude

the possibility that LV dilatation might have occurred at later time points. In awake

dogs with sepsis [4] and in chronic porcine endotoxemia [52, 53], LV dilatation was re-

ported after 48 h. However, in the initial Parker study, myocardial dysfunction was

present already during the first assessment within 24 h and LVEDV was highest at that

time point, and subsequently decreased within the next 7–10 days. Moreover, we de-

tected significantly increased LVEDV in murine model of sepsis after 21 and 24 h [44].

Therefore, we considered the short-term model of 24 h adequate to detect LV alter-

ations due to sepsis. Nevertheless, longer experiments in the future could even better

help to evaluate the dynamic process of septic cardiomyopathy.

Conclusions
We evaluated cardiac function during resuscitated septic shock in a porcine model of

pre-existing atherosclerosis. Neither decreased ejection fraction nor adaptive LV dilata-

tion could be detected. Increased formation of nitrotyrosine and reduced expression of

CSE suggest augmented oxidative/nitrosative stress and/or reduced bioavailability of

NO or H2S to be involved in the impairment of LV distension in septic cardiomyop-

athy. As previous studies describing LV dilatation mainly used healthy animal models

without vasopressor therapy or excluded cardiac comorbidities in humans, ongoing cat-

echolamine therapy or intrinsic pathophysiologic processes of atherosclerosis are most

likely responsible for the opposing results.

Additional files

Additional file 1: Phenotype of familial hypercholesterolemia Bretoncelles Meishan (FBM) pigs. Phenotype of
familial hypercholesterolemia Bretoncelles Meishan (FBM) pigs with atherogenic diet for at least 9 months
compared to healthy German landrace swine. n = 20 for FBM, n = 15 for landrace for cholesterol; n = 19 each for
creatinine clearance, nitrite/nitrate and 8-isoprostane. Data are median (range) or mean ± standard deviation [14].
(DOCX 55 kb)

Additional file 2: Response to ischemia/reperfusion injury of familial hypercholesterolemia Bretoncelles Meishan (FBM)
pigs. Response to kidney ischemia/reperfusion injury with comparable post-ischemic organ dysfunction of familial
hypercholesterolemia Bretoncelles Meishan (FBM) pigs with atherogenic diet for at least 9 months compared to healthy
German landrace swine. n= 7 for FBM, n= 10 for landrace. Data are median (range) [14, 15]. (DOCX 14 kb)
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Additional file 3: Histology of coronary artery of familial hypercholesterolemia Bretoncelles Meishan (FBM) pig.
Haematoxylin staining of the left coronary artery of a FBM pig on atherogenic diet. A. 2.5-fold magnification
demonstrating pronounced pathological intimal thickening with narrowing of the arterial lumen. B–D. Tenfold
magnification of different areas of the vessel. Asterisk (*) indicates areas of strong lipid accumulation. Red arrows
mark the internal elastic lamina (single arrow) and the outer border of the media (double arrow). (JPG 140 kb)

Additional file 4: Histology of coronary artery of familial hypercholesterolemia Bretoncelles Meishan (FBM) pig.
Haematoxylin staining of coronary artery of a FBM pig on atherogenic diet. A 2.5- and B tenfold magnification
demonstrating asymmetric atherosclerotic alterations with an instable plaque containing a large lipid core and
associated thrombus formation. (JPG 52 kb)

Additional file 5: Histology of coronary artery of familial hypercholesterolemia Bretoncelles Meishan (FBM) pig.
Haematoxylin staining of right coronary artery of a FBM pig on atherogenic diet showing intimal thickening with
marked lipid accumulation. ×40 magnification. (JPG 345 kb)

Additional file 6: Histology of coronary artery of familial hypercholesterolemia Bretoncelles Meishan (FBM) pig.
Haematoxylin staining of coronary artery of a FBM pig on atherogenic diet demonstrating asymmetric
atherosclerotic lesion formation with luminal narrowing. Note the coincident medial thickening at sites of intimal
proliferation in contrast to unaffected regions of the vessel. Magnification of 2.5-fold. (JPG 423 kb)

Additional file 7: Adipophilin staining of coronary artery of familial hypercholesterolemia Bretoncelles Meishan
(FBM) pig. Adipophilin staining of the right coronary artery of a FBM pig on atherogenic diet. A 2.5-fold showing
classical asymmetric lesion formation. B Tenfold, C 20-fold and D 40-fold magnification. Adipophilin is a marker of
lipid accumulation. Note the marked expression of adipophilin in the pathologically thickened intimal layer,
whereas the unaffected intimal regions of the vessel are negative for adipophilin. (JPG 150 kb)
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