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Abstract
The concern of this paper is to introduce a Kantorovich modification of
(p,q)-Baskakov operators and investigate their approximation behaviors. We first
define a new (p,q)-integral and construct the operators. The rate of convergence in
terms of modulus of continuities, quantitative and qualitative results in weighted
spaces, and finally pointwise convergence of the operators for the functions
belonging to the Lipschitz class are discussed.
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1 Introduction
The (p, q)-calculus is a generalization of the well-known q-calculus and it is constructed
by the following notations and definitions. Let  < q < p ≤ . For each nonnegative integer
n, the (p, q)-number is denoted by [n]p,q and is given by

[n]p,q =
pn – qn

p – q
.

For each k, n ∈N, n ≥ k ≥ , the (p, q)-factorial [k]p,q! and (p, q)-binomial are defined by

[n]p,q! =
n∏

k=

[k]p,q, n ≥ , []p,q! = ,

[
n
k

]

p,q

=
[n]p,q!

[n – k]p,q![k]p,q!
.

The (p, q)-power basis is defined by

(x ⊕ a)n
p,q = (x + a)(px + qa)

(
px + qa

) · · · (pn–x + qn–a
)

and

(x � a)n
p,q = (x – a)(px – qa)

(
px – qa

) · · · (pn–x – qn–a
)
.
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Let f : R →R then the (p, q)-derivative of a function f , denoted by Dp,qf , is defined by

(Dp,qf )(x) :=
f (px) – f (qx)

(p – q)x
, x �= , (Dp,qf )() := f ′()

provided that f is differentiable at . The following assertions hold true:

Dp,q(x ⊕ a)n
p,q = [n]p,q(px ⊕ a)n–

p,q , n ≥ ,

Dp,q(a ⊕ x)n
p,q = [n]p,q(a ⊕ qx)n–

p,q , n ≥ ,

and Dp,q(x ⊕ a)
p,q = . The formula for the (p, q)-derivative of a product is

Dp,q
(
u(x)v(x)

)
:= Dp,q

(
u(x)

)
v(qx) + Dp,q

(
v(x)

)
u(px).

Let f : C[, a] →R (a > ) then the (p, q)-integration of a function f is defined by

∫ a


f (t) dp,qt = (q – p)a

∞∑

k=

f
(

pk

qk+ a
)

pk

qk+ if
∣∣∣∣
p
q

∣∣∣∣ < ,

∫ a


f (t) dp,qt = (p – q)a

∞∑

k=

f
(

qk

pk+ a
)

qk

pk+ if
∣∣∣∣
p
q

∣∣∣∣ > .

(.)

The formula of the (p, q)-integration by parts is given by

∫ b

a
f (px)Dp,qg(x) dp,qx = f (b)g(b) – f (a)q(a) –

∫ b

a
g(qx)Dp,qf (x) dp,qx. (.)

Here we note that all the notations mentioned above reduce to the q-analogs when p = .
For more details of the (p, q)-calculus, we refer the reader to [–].

The (p, q)-calculus has been used efficiently in many fields of science such as oscillator
algebra, Lie group, field theory, differential equations, hypergeometric series, physical sci-
ences. Therefore, to approximate the functions via polynomials based on (p, q)-integers,
no doubt, would have a crucial role. To fulfill this necessity, very recently the well-known
sequences of linear positive operators of approximation theory have been transferred
to the (p, q)-calculus and the advantages of (p, q) analogs of them have been intensively
investigated. For some recent work devoted to (p, q)-operators, we refer the reader to
[–]. Very recently, Aral and Gupta [] introduced the (p, q)-analog of the well-known
Baskakov operators by

Bn,p,q(f ; x) =
∞∑

k=

bp,q
n,k(x)f

(
pn–[k]p,q

qk–[n]p,q

)
, (.)

where x ∈ [,∞),  < q < p ≤ , and

bp,q
n,k(x) =

[
n + k – 

k

]

p,q

pk+n(n–)/qk(k–)/ xk

( ⊕ x)n+k
p,q

,
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and they calculated that

Bn,p,q(; x) = , Bn,p,q(t; x) = x, Bn,p,q
(
t; x

)
= x +

pn–x
[n]p,q

(
 +

p
q

x
)

. (.)

Another problem in the approximation by linear positive operators is to present an ap-
proximation process for Riemann integrable functions. The main tool to solve this prob-
lem is to consider the Kantorovich modifications of the corresponding operators, which
mainly depends on the replacing the sample values f (k/n) by the mean values of f in the
intervals [k/(n + ), (k + )/(n + )]. Since the (p, q)-integral of f over [a, b] is defined as
follows:

∫ b

a
f (t) dp,qt =

∫ b


f (t) dp,qt –

∫ a


f (t) dp,qt, (.)

one cannot say (.) is positive every time unless it is assumed that f is a nonde-
creasing function. Hence, use of (.) to introduce a Kantorovich modification of any
(p, q)-operators may lead to some problem. Recently Mursaleen et al. [] introduced a
Kantorovich modification of (p, q)-Szász-Mirakjan operators using the (p, q)-integral (.)
for the functions being nondecreasing. However, in this paper we define a new (p, q)-
integral, hence we do not need to impose any condition on f . For the generalizations of
Baskakov operators and Kantorovich operators in classical calculus and q-calculus, we
refer the reader to some recent papers [–].

The aim of this paper is to introduce (p, q)-Baskakov-Kantorovich operators and in-
vestigate their approximation properties. In the next section, we construct the operators,
calculate the moments, central moments of the operators, and give some lemmas which
will be necessary to prove our main results. In Section , we prove a local approximation
theorem for the new operators in terms of Peetre’s K-functional and its equivalent modu-
lus of continuities. In Section , we investigate the uniform convergence of the operators
and present the rate of convergence via the weighted modulus of continuities. In the last
section, we give some pointwise estimates for the functions belonging to Lipschitz space.

2 Construction of operators
To present a method to solve the problem mentioned in the Introduction now we propose
a new definition of the (p, q)-integral. Let a, b ∈R, a < b, and h(x) := f (a + x) be an arbitrary
function and Dp,qH(x) = h(x), where H(x) := F(a + x), then we can write

H(px) – H(qx)
(p – q)x

= h(x),

that is, H(px) – H(qx) = (p – q)xh(x). Hence we get

H
(
pq–x

)
– H(x) = (p – q)q–xh

(
q–x

)
,

H
(
pq–x

)
– H

(
pq–x

)
= (p – q)pq–xh

(
pq–x

)
,

. . . ,

H
(
pn+q–(n+)x

)
– H

(
pnq–nx

)
= (p – q)pnq–(n+)xh

(
pnq–(n+)x

)
,
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which allows us to write

F
(
a + pq–x

)
– F(a + x) = (p – q)q–xf

(
a + q–x

)
,

F
(
a + pq–x

)
– F

(
a + pq–x

)
= (p – q)pq–xf

(
a + pq–x

)
,

. . . ,

F
(
a + pn+q–(n+)x

)
– F

(
a + pnq–nx

)
= (p – q)pnq–(n+)xf

(
a + pnq–(n+)x

)
.

Adding these formulas term by term, we have

F
(
a + pn+q–(n+)x

)
– F(a + x) = (p – q)x

n∑

k=

f
(
a + pkq–(k+)x

) pk

qk+

and taking the limit as n → ∞ with the fact | p
q | <  we have

F(a + x) – F(a) = (q – p)x
∞∑

k=

f
(

a +
pk

qk+ x
)

pk

qk+ .

Similarly we have, for | q
p | < ,

F(a + x) – F(a) = (p – q)x
∞∑

k=

f
(

a +
qk

pk+ x
)

qk

pk+

and if we take x = b – a then we get

F(b) – F(a) = (p – q)(b – a)
∞∑

k=

f
(

a + (b – a)
qk

pk+

)
qk

pk+ .

Definition  Let f be an arbitrary function. The (p, q)-integral of f can be defined by

∫ b

a
f (t) dp,qt = (p – q)(b – a)

∞∑

n=

f
(

a + (b – a)
qn

pn+

)
qn

pn+ when
∣∣∣∣
q
p

∣∣∣∣ < ,

∫ b

a
f (t) dp,qt = (q – p)(b – a)

∞∑

n=

f
(

a + (b – a)
pn

qn+

)
pn

qn+ when
∣∣∣∣
p
q

∣∣∣∣ < .

(.)

Considering the new (p, q)-integral given in (.) we can define the Kantorovich modi-
fications of the operators (.) as follows.

Definition  For x ∈ [,∞),  < q < p ≤ , the (p, q)-analog of the Baskakov-Kantorovich
operators is defined as

B∗
n,p,q(f ; x) = [n]p,q

∞∑

k=

bp,q
n,k(x)q–k

∫ [k+]p,q/[n]p,q

p[k]p,q/[n]p,q

f
(

pn–t
qk–

)
dp,qt. (.)



Acar et al. Journal of Inequalities and Applications  (2016) 2016:98 Page 5 of 14

Lemma  For  < q < p ≤  and n ∈N we have

∫ [k+]p,q/[n]p,q

p[k]p,q/[n]p,q

dp,qt =
qk

[n]p,q
, (.)

∫ [k+]p,q/[n]p,q

p[k]p,q/[n]p,q

t dp,qt =
pqk[k]p,q

[n]
p,q

+
qk

[n]
p,q


(p + q)

, (.)

∫ [k+]p,q/[n]p,q

p[k]p,q/[n]p,q

tdp,qt =
pqk[k]

p,q

[n]
p,q

+ 
p[k]p,q

[n]p,q

qk

[n]
p,q


p + q

+
qk

[n]
p,q


p + pq + q . (.)

Proof The proof easily follows from (.). �

Lemma  For x ∈ [,∞),  < q < p ≤ , n ∈N, the following hold:

B∗
n,p,q(e; x) = , (.)

B∗
n,p,q(e; x) = px +

qpn–

(p + q)[n]p,q
, (.)

B∗
n,p,q(e; x) =

(
px +

pn+x
[n]p,q

(
 +

p
q

x
))

+
qpnx

(p + q)[n]
p,q

+
qpn–

(p + pq + q)[n]
p,q

, (.)

where ei(x) = xi, i = , , .

Proof By the definition of the operators (.) and equality (.) we obtain B∗
n,p,q(e; x) =

Bn,p,q(; x) = . In a similar way, using (.) we can write

B∗
n,p,q(e; x) = [n]p,q

∞∑

k=

bp,q
n,k(x)q–k

∫ [k+]p,q/[n]p,q

p[k]p,q/[n]p,q

(
pn–t
qk–

)
dp,qt

= [n]p,q

∞∑

k=

bp,q
n,k(x)

pn–

qk– q–k
∫ [k+]p,q/[n]p,q

p[k]p,q/[n]p,q

t dp,qt

= [n]p,q

∞∑

k=

bp,q
n,k(x)

pn–

qk– q–k pqk[k]p,q

[n]
p,q

+ [n]p,q

∞∑

k=

bp,q
n,k(x)

pn–

qk– q–k qk

[n]
p,q


(p + q)

= p
∞∑

k=

bp,q
n,k(x)

pn–

qk–
[k]p,q

[n]p,q

+
qpn–

(p + q)[n]p,q

∞∑

k=

bp,q
n,k(x)

= pBn,p,q(e; x) +
qpn–

(p + q)[n]p,q
Bn,p,q(e; x).
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Using the equalities Bn,p,q(e; x) = , Bn,p,q(e; x) = x we immediately have

B∗
n,p,q(e; x) = px +

qpn–

(p + q)[n]p,q
.

Finally, using (.) we have

B∗
n,p,q(e; x) = [n]p,q

∞∑

k=

bp,q
n,k(x)

pn–

qk– q–k
∫ [k+]p,q/[n]p,q

p[k]p,q/[n]p,q

t dp,qt

= [n]p,q

∞∑

k=

bp,q
n,k(x)

pn–

qk– q–k
∫ [k+]p,q/[n]p,q

p[k]p,q/[n]p,q

t dp,qt

= p
∞∑

k=

bp,q
n,k(x)

pn–

qk–

[k]
p,q

[n]
p,q

+
qpn

(p + q)[n]
p,q

∞∑

k=

bp,q
n,k(x)

pn–

qk–
[k]p,q

[n]p,q

+
qpn–

(p + pq + q)[n]
p,q

∞∑

k=

bp,q
n,k(x)

= pBn,p,q(e; x) +
qpn

(p + q)[n]
p,q

Bn,p,q(e; x)

+
qpn–

(p + pq + q)[n]
p,q

Bn,p,q(e; x).

And the equalities (.) give us

B∗
n,p,q(e; x) =

(
px +

pn+x
[n]p,q

(
 +

p
q

x
))

+
qpnx

(p + q)[n]
p,q

+
qpn–

(p + pq + q)[n]
p,q

,

which completes the proof. �

Remark  Using Lemma , we get

B∗
n,p,q

(
(e – x); x

)
= α(n)x + α(n)x + α(n),

where

α(n) = (p – ) +
pn+

q[n]p,q
,

α(n) =
pn+(p[n]p,q + )

q[n]
p,q

,

α(n) =
pn

q[n]
p,q

.

Further, choosing

α∗(n) := max

{
α(n),

α(n)


,α(n)
}

(.)
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we can write

B∗
n,p,q

(
(e – x); x

) ≤ α∗(n)( + x).

Remark  For q ∈ (, ) and p ∈ (q, ] we easily see that limn→∞[n]p,q = /(p – q). Hence,
the operators (.) are not approximation processes with the above form. In order to study
the convergence properties of the sequence of (p, q)-Baskakov-Durrmeyer operators, we
assume that q = (qn) and p = (pn) such that  < qn < pn ≤  and qn → , pn → , qn

n → a,
pn

n → b as n → ∞.
Here we note that with these assumptions α(n) → , α(n) → , α(n) →  as n → ∞,

hence α∗(n) →  as n → ∞.

Let CB[,∞) denote the space of all real valued continuous and bounded functions on
[,∞). In this space we consider the norm

‖f ‖CB = sup
x∈[,∞)

∣∣f (x)
∣∣.

Lemma  Let f ∈ CB[,∞). Then for all g ∈ C
B[,∞), we have

∣∣B̃∗
n,p,q(g; x) – g(x)

∣∣ ≤ ∥∥g ′′∥∥
CB

(
γ ∗(n)( + x) + β

n(p, q, x)
)
, (.)

where B̃∗
n,p,q is an auxiliary operator defined by

B̃∗
n,p,q(g; x) = B∗

n,p,q(g; x) + g(x) – g
(

px +
qpn–

(p + q)[n]p,q

)
(.)

and

βn(p, q, x) = (p – )x +
pn–

[n]p,q
.

Proof By the definition of B̃∗
n,p,q and Lemma , it is obvious that

B̃∗
n,p,q(e – x; x) = . (.)

Since g ∈ C
B[,∞), using the Taylor expansion for x ∈ [,∞) we have

g(t) = g(x) + g(x)(t – x) +
∫ t

x
(t – u)g ′′(u) du.

Applying the operators B̃∗
n,p,q to both sides of the above equality and considering the fact

(.) we obtain

B̃∗
n,p,q(g; x) – g(x)

= B̃∗
n,p,q

(∫ t

x
(t – u)g ′′(u) du; x

)
= B∗

n,p,q

(∫ t

x
(t – u)g ′′(u) du; x

)

–
∫ px+ qpn–

(p+q)[n]p,q

x

(
px +

qpn–

(p + q)[n]p,q
– u

)
g ′′(u) du. (.)
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Also we get

∣∣∣∣
∫ t

x
(t – u)g ′′(u) du

∣∣∣∣ ≤
∣∣∣∣
∫ t

x
|t – u|∣∣g ′′(u)

∣∣du
∣∣∣∣

≤ ∥∥g ′′∥∥
CB

∣∣∣∣
∫ t

x
|t – u|du

∣∣∣∣ ≤ ∥∥g ′′∥∥
CB

(t – x) (.)

and

∣∣∣∣
∫ px+ qpn–

(p+q)[n]p,q

x

(
px +

qpn–

(p + q)[n]p,q
– u

)
g ′′(u) du

∣∣∣∣

≤
(

px +
qpn–

(p + q)[n]p,q
– x

)∥∥g ′′∥∥
CB

=
(

(p – )x +
qpn–

(p + q)[n]p,q

)∥∥g ′′∥∥
CB

≤
(

(p – )x +
pn–

[n]p,q

)∥∥g ′′∥∥
CB

:= β
n(p, q, x)

∥∥g ′′∥∥
CB

. (.)

Using the inequalities (.) and (.) in (.) we immediately have

∣∣B̃∗
n,p,q(g; x) – g(x)

∣∣ ≤ ∥∥g ′′∥∥
CB

(
α∗(n)( + x) + β

n(p, q, x)
)
. �

3 Local approximation
Let us consider the following K functional:

K(f , δ) = inf
g∈W 

{‖f – g‖CB + δ
∥∥g ′′∥∥

CB

}
,

where δ >  and W  = {g ∈ CB[,∞) : g ′, g ′′ ∈ CB[,∞)}. By [], p., Theorem ., there
exists an absolute constant C >  such that

K(f , δ) ≤ Cω(f ,
√

δ), (.)

where

ω(f , δ) = sup
<h≤√

δ

sup
x∈[,∞)

∣∣f (x + h) – f (x + h) + f (x)
∣∣

is the second order modulus of smoothness of f ∈ CB[,∞). The usual modulus of conti-
nuity of f ∈ CB[,∞) is defined by

ω(f , δ) = sup
<h≤δ

sup
x∈[,∞)

∣∣f (x + h) – f (x)
∣∣.

Let us recall the definitions of the weighted spaces and corresponding modulus of conti-
nuity. Let C[,∞) be the set of all continuous functions f defined on [,∞) and B[,∞)
the set of all functions f defined on [,∞) satisfying the condition |f (x)| ≤ M( + x) with
some positive constant M which may depend only on f . C[,∞) denotes the subspace of
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all continuous functions in B[,∞). By C∗
 [,∞), we denote the subspace of all functions

f ∈ C[,∞) for which limx→∞ f (x)
+x is finite. B[,∞) is a linear normed space with the

norm ‖f ‖ = supx≥
|f (x)|
+x .

Theorem  Let f ∈ CB[,∞). Then for every x ∈ [,∞), there exists a constant L >  such
that

∣∣B∗
n,p,q(f ; x) – f (x)

∣∣ ≤ Lω

(
f ;

√
α∗(n)( + x) + β

n(p, q, x)
)

+ ω
(
f ;βn(p, q, x)

)
.

Proof By (.), for every g ∈ C
B[,∞) one can obtain

∣∣B∗
n,p,q(f ; x) – f (x)

∣∣

≤ ∣∣B̃∗
n,p,q(f ; x) – f (x)

∣∣ +
∣∣∣∣f (x) – f

(
px +

qpn–

(p + q)[n]p,q

)∣∣∣∣

≤ ∣∣B̃∗
n,p,q(f – g; x) – (f – g)(x)

∣∣

+
∣∣∣∣f (x) – f

(
px +

qpn–

(p + q)[n]p,q

)∣∣∣∣ +
∣∣B̃∗

n,p,q(g; x) – g(x)
∣∣.

Taking into account (.), (.), and (.) we have

∣∣B̃∗
n,p,q(f ; x)

∣∣ ≤ ‖f ‖CB .

Using this inequality and Lemma  we get

∣∣B∗
n,p,q(f ; x) – f (x)

∣∣ ≤ ‖f – g‖CB +
∣∣∣∣f (x) – f

(
px +

qpn–

(p + q)[n]p,q

)∣∣∣∣

+
∥∥g ′′∥∥

CB

(
α∗(n)( + x) + β

n(p, q, x)
)

and taking the infimum on the right-hand side over all g ∈ C
B[,∞) and using (.), we

deduce

∣∣B∗
n,p,q(f ; x) – f (x)

∣∣

≤ K
(
f ;α∗(n)( + x) + β

n(p, q, x)
)

+ ω
(
f ;βn(p, q, x)

)

≤ ω

(
f ;

√
α∗(n)( + x) + β

n(p, q, x)
)

+ ω
(
f ;βn(p, q, x)

)

= Lω

(
f ;

√
α∗(n)( + x) + β

n(p, q, x)
)

+ ω
(
f ;βn(p, q, x)

)
,

where L = M > . �

Theorem  Let f ∈ C[,∞), pn, qn ∈ (, ) such that  < qn < pn ≤  and ωa+(f , δ) be
its modulus of continuity on the finite interval [, a + ] ⊂ [,∞), where a > . Then the
inequality

∣∣B∗
n,p,q(f ; x) – f (x)

∣∣ ≤ Mf
(
 + a)γ ∗(n)( + x) + ωa+

(
f , ( + x)

√
α∗(n)

)

holds, where Mf is positive constant independent of n and α∗(n) is as indicated in (.).
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Proof By [], ωa+(·, δ) has the property

∣∣f (t) – f (x)
∣∣ ≤ Mf

(
 + a)(t – x) +

(
 +

|t – x|
δ

)
ωa+(f , δ), δ > .

Applying the Cauchy-Schwarz inequality and choosing δ =
√

α∗(n)( + x), we have

∣∣B∗
n,p,q(f ; x) – f (x)

∣∣

≤ Mf
(
 + a)B∗

n,p,q
(
(t – x); x

)

+ ωa+(f , δ)
(

 +

δ

(
B∗

n,p,q
(
(t – x); x

))/
)

≤ Mf
(
 + a)α∗(n)( + x) + ωa+

(
f , ( + x)

√
α∗(n)

)
,

which completes the proof. �

4 Weighted approximation
Theorem  Let q = qn ∈ (, ), p = pn ∈ (q, ] such that qn → , pn →  as n → ∞. Then
for each function f ∈ C∗

 [,∞) we get

lim
n→∞

∥∥B∗
n,pn ,qn f – f

∥∥
 = .

Proof According to the weighted Korovkin theorem proved in [], it is sufficient to verify
the following three conditions:

lim
n→∞

∥∥B∗
n,pn ,qn ei – ei

∥∥
 = , i = , , . (.)

By (.), (.) holds for i = . By (.) and (.) we have

∥∥B∗
n,pn ,qn e – e

∥∥
 = sup

x≥

βn(pn, qn, x)
 + x

≤ ( – pn) sup
x≥

x
 + x +

qpn–
n

(pn + q)[n]p,q

≤ ( – pn) +
pn–

n
[n]p,q

and by a similar consideration we have

∥∥B∗
n,pn ,qn e – e

∥∥
 ≤

(
 – p

n +
pn+

n
qn[n]pn ,qn

)
sup
x≥

x

 + x

+
(

qnpn
n

(pn + qn)[n]
pn ,qn

+
pn+

n
[n]pn ,qn

)
sup
x≥

x
 + x

+
q

npn–
n

(p
n + pnqn + q

n)[n]
pn ,qn

sup
x≥


 + x

≤
(

 – p
n +

pn+
n

qn[n]pn ,qn

)
+

(
pn

n
[n]

pn ,qn

+
pn+

n
[n]pn ,qn

)
+

pn–
n

[n]
pn ,qn

.
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The last two inequalities mean that (.) holds for i = , . Hence, the proof is com-
pleted. �

To obtain the rate of convergence, we consider the weighted modulus of continuity de-
fined by

�(f ; δ) = sup
x≥,<h≤δ

|f (x + h) – f (x)|
 + (x + h)

for f ∈ C∗
x [,∞), and �(·; ·) has the following properties.

Lemma  ([]) If f ∈ C∗
x [,∞) then

(i) �(f ; δ) is monotone increasing function of δ,
(ii) limδ→+ �(f ; δ) = ,

(iii) for any λ ∈ [,∞), �(f ;λδ) ≤ ( + λ)�(f ; δ).

Theorem  Let p = pn and q = qn satisfy  < qn < pn ≤  and for n sufficiently large pn → ,
qn → , and qn

n →  and pn
n → . If f ∈ C∗

x [,∞), then for sufficiently large n we have

∣∣B∗
n,pn ,qn (f ; x) – f (x)

∣∣ ≤ K
(
 + x+λ

)
�

(
f ;

√
α∗(n)

)
, (.)

where λ ≥  and K is a positive constant independent of f and n, α∗(n) is as indicated in
(.).

Proof By the definition of the weighted modulus of continuity and Lemma , we can write

∣∣f (t) – f (x)
∣∣ ≤ (

 +
(
x + |t – x|))

(
 +

|t – x|
δ

)
�(f ; δ)

≤ (
 + (x + t))

(
 +

|t – x|
δ

)
�(f ; δ).

The above inequality allows us to write

∣∣B∗
n,pn ,qn (f ; x) – f (x)

∣∣ ≤
(

B∗
n,pn ,qn

(
 + (x + t); x

)
+ B∗

n,pn ,qn

((
 + (x + t)) |t – x|

δ
; x

))

× �(f ; δ).

Using the Cauchy-Schwarz inequality we have

∣∣B∗
n,pn ,qn (f ; x) – f (x)

∣∣ ≤
(

B∗
n,pn ,qn

(
 + (x + t); x

)
+


δn

√
B∗

n,pn ,qn

((
 + (x + t)

); x
)

×
√

B∗
n,pn ,qn

(
(t – x); x

))
�(f ; δ).

On the other hand, by (.) we get


 + x B∗

n,pn ,qn

(
 + t; x

)

=
(

p
n +

pn+
n

qn[n]pn ,qn

)
x

 + x
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+
(

qnpn
n

(pn + qn)[n]
pn ,qn

+
pn+

n
[n]pn ,qn

)
x

 + x

+
(q

npn–
n + (p

n + pnqn + q
n)[n]

pn ,qn

(p
n + pnqn + q

n)[n]
pn ,qn

)


 + x

≤  + K (.)

for sufficiently large n, where K is a positive constant. From (.), there exists K >  such
that B∗

n,pn ,qn ( + (x + t); x) ≤ K( + x), for sufficiently large n. In a similar way we get


 + x B∗

n,pn ,qn

(
 + t; x

) ≤  + K,

where K is a positive constant. Hence we have
√

B∗
n,pn ,qn (( + (x + t)); x) ≤ K( + x),

for sufficiently large n. Hence we have

∣∣B∗
n,pn ,qn (f ; x) – f (x)

∣∣ ≤ (
 + x)

(
K +


δn

K( + x)
√

α∗(n)
)

�(f ; δ).

Hence choosing δn =
√

α∗(n) we have

∣∣B∗
n,pn ,qn (f ; x) – f (x)

∣∣ ≤ (
 + x)(K + K( + x)

)
�

(
f ;

√
α∗(n)

)

≤ K
(
 + x+λ

)
�

(
f ;

√
α∗(n)

)

for sufficiently large n and x ∈ [,∞), where K := K + K. �

Corollary  With the assumptions of Theorem , if we take the limit as n → ∞ in (.) we
have

lim
n→∞ sup

x∈[,∞)

|B∗
n,pn ,qn (f , x) – f (x)|

( + x)+λ
= .

5 Pointwise estimates
Theorem  Let  < α ≤  and E be any subset of the interval [,∞). Then, if f ∈ CB[,∞)
is locally in Lip(α), i.e., the condition

∣∣f (y) – f (x)
∣∣ ≤ L|y – x|α , y ∈ E and x ∈ [,∞) (.)

holds, then, for each x ∈ [,∞), we have

∣∣B∗
n,p,q(f ; x) – f (x)

∣∣ ≤ L
{(

α∗(n)
)α/( + x)α + 

(
d(x, E)

)α}
,

where L is a constant depending on α and f ; and d(x, E) is the distance between x and E
defined by

d(x, E) = inf
{|t – x| : t ∈ E

}
.
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Proof Let Ē denote the closure of E in [,∞). Then there exists a point x ∈ Ē such that
|x – x| = d(x, E). Using the triangle inequality

∣∣f (t) – f (x)
∣∣ ≤ ∣∣f (t) – f (x)

∣∣ +
∣∣f (x) – f (x)

∣∣

we immediately have by (.)

∣∣B∗
n,p,q(f ; x) – f (x)

∣∣ ≤ B∗
n,p,q

(∣∣f (t) – f (x)
∣∣; x

)
+ B∗

n,p,q
(∣∣f (x) – f (x)

∣∣; x
)

≤ L
{

B∗
n,p,q

(|t – x|α ; x
)

+ |x – x|α
}

≤ L
{

B∗
n,p,q

(|t – x|α + |x – x|α ; x
)

+ |x – x|α
}

= L
{

B∗
n,p,q

(|t – x|α ; x
)

+ |x – x|α
}

.

Using the Hölder inequality with p = /α, q = /( – α), we obtain

∣∣B∗
n,p,q(f ; x) – f (x)

∣∣ ≤ L
{[

B∗
n,p,q

(|t – x|αp; x
)] 

p + 
(
d(x, E)

)α}

= L
{[

B∗
n,p,q

(|t – x|; x
)] α

 + 
(
d(x, E)

)α}

≤ L
{(

α∗(n)( + x)) α
 + 

(
d(x, E)

)α}

= L
{(

α∗(n)
)α/( + x)α + 

(
d(x, E)

)α}
. �

Next we obtain the local direct estimate for the operators B∗
n,p,q, using the Lipschitz type

maximal function of order α introduced by Lenze []:

ω̃a(f , x) = sup
t �=x,t∈[,∞)

|f (t) – f (x)|
|t – x|α , x ∈ [,∞) and α ∈ (, ]. (.)

Theorem  Let f ∈ CB[,∞) and  < α ≤ . Then, for all x ∈ [,∞) we have

∣∣B∗
n,p,q(f ; x) – f (x)

∣∣ ≤ ω̃a(f , x)
(
α∗(n)

)α/( + x)α .

Proof From equation (.), we have

∣∣B∗
n,p,q(f ; x) – f (x)

∣∣ ≤ ω̃a(f , x)B∗
n,p,q

(|t – x|α ; x
)
.

Applying the Hölder inequality with p = /α, q = /( – α), we get

∣∣B∗
n,p,q(f ; x) – f (x)

∣∣ ≤ ω̃a(f , x)
[
B∗

n,p,q
(|t – x|; x

)] α


≤ ω̃a(f , x)
(
α∗(n)

)α/( + x)α . �

Remark  The further properties of the operators such as convergence properties via
summability methods (see, for example, [, ]) can be studied.

Conclusion  To introduce Kantorovich modifications of the approximation operators in
(p, q)-calculus, the existing (p, q)-integral did not meet the purposes since the positivity of
the operators was not guaranteed. In this paper, we solved this problem and presented a
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new Riemann type (p, q)-integral. As an application, we introduced the (p, q)-Baskakov-
Kantorovich operators and investigated their approximation properties. Using the new
(p, q)-integral, one can introduce Kantorovich modifications of other well-known opera-
tors.
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