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Abstract
In this paper, we propose methods to find a Gk-multi-degree reduction of disk Bézier
curves for k = 0, 1. The methods are based on degree reducing the center and radius
curves using Gk-continuity and minimizing the corresponding errors. Some examples
and comparisons are given to illustrate the efficiency and simplicity of the proposed
methods. The examples show that by using our proposed methods, we get G0-, and
G1-degree reductions, while having less errors than existing methods, which are
without any continuity conditions.
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1 Introduction and preliminaries
Lack of robustness is a fundamental issue in computer aided design and solid modeling.
Taking disks in the plane as control points of Bézier curves is an appropriate approach
toward solving this issue because it gives a Bézier curve with tolerance; see []. The degree
reduction of curves is an important issue; in Gk-degree reduction, we approximate a disk
Bézier curve of degree n by a disk Bézier curve of degree m, m < n, under the satisfaction
of boundary conditions and minimum error requirement. The issue of degree reduction of
Bézier curves has been tackled by many researchers; see [–]. Unlikely, degree reduction
of disk Bézier curves has not been tackled by many researchers.

We end this section by addressing related preliminaries like defining the disk Bézier
curves, the Gram matrix, and the delta operator.

Let R be the set of real numbers and R
+ be the set of non-negative real numbers. A disk

centered at p = (x, y) ∈R
 with radius r ∈R

+ is given by

(p) := (x, y)r :=
{

(x, y) ∈R
 : (x – x) + (y – y) ≤ r


}

. ()

For any two disks (p) = (x, y)r and (q) = (x, y)r , addition and scalar multiplication
are defined as follows:

(p) + (q) = (x + x, y + y)(r+r),

s(p) = (sx, sy)|s|r , s ∈R,
()

where |s| is the absolute value of s.
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For constants si and disks (xi, yi)ri , the last definition can be generalized as

n∑

i=

si(xi, yi)ri =

( n∑

i=

sixi,
n∑

i=

siyi

)

∑n
i= |si|ri

. ()

A disk Bézier curve is defined as follows.

Definition  (Disk Bézier curves) A disk Bézier curve of degree n corresponding to n + 
disks (pi) = (xi, yi)ri , i = , , . . . , n, is defined as follows:

(Pn)(t) :=
n∑

i=

(pi)Bn
i (t),  ≤ t ≤ , ()

where

Bn
i (t) =

(
n
i

)
( – t)n–iti, i = , , . . . , n,

are the Bernstein polynomials of degree n.

See Figure  for an example of a cubic disk Bézier curve. For more on Bernstein polyno-
mials and Bézier curves, see [–].

The disk Bézier curve (Pn)(t) can also be written as (Pn)(t) := (p(t))r(t), where

p(t) :=
n∑

i=

piBn
i (t) =

n∑

i=

(xi, yi)Bn
i (t) and r(t) =

n∑

i=

riBn
i (t) ()

are the center and the radius curves of (Pn)(t) with control points pi = (xi, yi), i = , , . . . , n,
and ri, i = , , . . . , n, respectively.

The Gram matrix Gm,n is the (m + ) × (n + )-matrix, whose elements are

gij =
∫ 


Bm

i (t)Bn
j (t) dt =

(m
i
)(n

j
)

(m + n + )
(m+n

i+j
) , i = , . . . , m, j = , . . . , n.

For n = m, the matrix Gm,m is real, symmetric, and positive definite [].
In the sections on G-, and G-continuity, the submatrices of the Gram matrix Gm,n

are defined. Each section uses the same notation for these submatrices, but with different

Figure 1 A cubic disk Bézier curve.
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dimensions. It should be clear that the form used within a section is the one defined within
that section.

The delta operator � on the disks (pi) is defined as follows: �(pi) = (pi), �k(pi) =
�k–(pi+) – �k–(pi), k ≥ , i = , , . . . , n – k.

For more on the disk and interval Bézier curves, see [–].

2 Geometric continuity of disk Bézier curves
Geometric continuity of two disk Bézier curves is independent of their parametrization
and denoted by Gk ; it produces additional free parameters; see [–]. The definition of
Gk-continuity of Bézier curves is generalized to the case of disk Bézier curves. Thus, the
disk Bézier curves (Pn)(t) and (Qm)(t) are said to be Gk-continuous at t = ,  if there exists
a strictly increasing parametrization s(t) : [, ] → [, ] with s() = , s() = , and

(Qm)(i)(t) = (Pn)(i)(s(t)
)
, t = , , i = , , . . . , k. ()

Gk-continuity furnishes the shape of the approximating curve with additional design
parameters that are used in Gk-degree reduction as additional parameters to reduce the
error.

3 Degree reduction of disk Bézier curves
Given a disk Bézier curve (Pn)(t) of degree n, a disk Bézier curve (Qm)(t) of degree m,
m < n, has to be found such that (Qm)(t) bounds (Pn)(t) as tight as possible. Chen and
Yang proposed in [] an algorithm to degree reduce disk Bézier curves; they consider two
cases, constrained degree reduction and non-constrained degree reduction. Hu and Wang
presented in [] a method of degree reduction without any boundary conditions based
on quadratic programming. Jiang and Tan considered in [] degree reduction methods
of disk Said-Ball curves with and without interpolation of the endpoints. In this paper,
geometric continuity conditions between the adjacent disk Bézier curves are considered;
this means that (Qm)(t) has to satisfy the following three conditions:

() (Pn)(t) and (Qm)(t) are Gk-continuous at the end disks, t = , , for k = , ,
() the L-error between (Pn)(t) and (Qm)(t) is minimum, and
() (Pn)(t) ⊆ (Qm)(t),  ≤ t ≤ .
The curves (Pn)(t) and (Qm)(t) can be written in matrix form as

(Pn)(t) =
n∑

i=

(pi)Bn
i (t) =: Bn(Pn), (Qm)(t) =

m∑

i=

(qi)Bm
i (t) =: Bm(Qm), ()

where Bn = (Bn
(t), Bn

 (t), . . . , Bn
n(t)) and (Pn) = ((p), . . . , (pn))t are a row vector formed by

Bernstein polynomials and a column vector formed by the Bézier disks, respectively. Sim-
ilarly, Bm and (Qm) are defined. We have to note the mixed use of the notations. For exam-
ple (Qm) denotes a disk, a disk Bézier curve, or a column vector, as should be clear from
the context.

We degree reduce the disk Bézier curve by first applying geometric continuity condi-
tions at the end disks, i.e. under the satisfaction of one of the conditions: G-continuity or
G-continuity at the boundaries. To minimize

ε =
∫ 



∥∥Bn(Pn) – Bm(Qm)
∥
∥ dt, ()
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we use the L-norm to measure and minimize the distances between the center Bézier
curves p and q, and the radius Bézier curves r and r̃. To ensure that (Pn)(t) ⊆ (Qm)(t), we
can add terms like d(t) = ‖p(t) – q(t)‖ and d(t) = |r̃(t) – r(t)| or both to the radius curve
of (Qm)(t) if needed.

In the following sections, we investigate, in particular, the cases of G-, and G-continuity
with degree reduction of disk Bézier curves.

4 G0-Degree reduction
G-continuity of (Qm)(t) and (Pn)(t) at the disks corresponding to t = , , requires the
satisfaction of the following two conditions:

(Qm)(i) = (Pn)
(
s(i)

)
, i = , . ()

This means that the two curves have to have common end disks, i.e.

(q) = (p), (qm) = (pn).

The disks (q) and (qm) are determined by G-continuity conditions at the boundaries.
The elements of (Qm) are decomposed into two parts. The part of constrained con-
trol disks (Qm)c = [(q), (qm)]t and the part of free control disks (Qm)f = (Qm)\(Qm)c =
[(q), . . . , (qm–)]t . Similarly, Bm is decomposed. Accordingly, the error term between
(Qm)(t) and (Pn)(t) becomes

ε =
∫ 



∥∥Bn(Pn) – Bm(Qm)
∥∥ dt

=
∫ 



∥∥Bn(Pn) – Bc
m(Qm)c – Bf

m(Qm)f ∥∥ dt. ()

In the last equation, the vector (Qm)f is unknown and thus ε attains its minimum when
the partial derivatives of ε are zeros. Differentiating with respect to the unknown control
disks (Qm)f , we get

∂ε

∂(Qm)f = 
∫ 



(
Bf

m
)t(Bn(Pn) – Bc

m(Qm)c – Bf
m(Qm)f )dt.

Evaluating the integrals and equating to zero gives

∂ε

∂(Qm)f = 
(
Gp

m,n(Pn) – Gc
m,m(Qm)c – Gf

m,m(Qm)f ) = , ()

where

Gp
m,n := Gm,n(, . . . , m – ; , , . . . , n),

Gc
m,m := Gm,m(, . . . , m – ; , m),

Gf
m,m := Gm,m(, . . . , m – ; , . . . , m – ),

and Gm,n(. . . ; . . .) is the sub-matrix of Gm,n formed by the indicated rows and columns.
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The system in () consists of both points and univariate variables. The center curve
of the disk Bézier curve is expanded into x and y components together with their radius
curve. Therefore, our system of equations has x̃k , ỹk , r̃k as variables for k = , . . . , m – . The
following vectors are defined to express the linear system in explicit form:

Pn = [x, . . . , xn, y, . . . , yn, r, . . . , rn]t ,

QF
m = [x̃, . . . , x̃m–, ỹ, . . . , ỹm–, r̃, . . . , r̃m–]t ,

QC
m = [x̃, x̃m, ỹ, ỹm, r̃, r̃m]t .

Let ⊕ be the direct sum and define the matrices

GP
m,n = Gp

m,n ⊕ Gp
m,n ⊕ Gp

m,n,

GC
m,m = Gc

m,m ⊕ Gc
m,m ⊕ Gc

m,m, ()

GF
m,m = Gf

m,m ⊕ Gf
m,m ⊕ Gf

m,m.

The matrix GF
m,m inherits the properties of the Gram matrix Gf

m,m. The coordinate form
of the expansion of () becomes

GF
m,mQF

m = GP
m,nPn – GC

m,mQC
m. ()

The last step converts the system () that contains disks into a linear system of coordi-
nates of the disks, namely the x, y, and radius r coordinates. Since the matrix GF

m,m is not
singular; it is real, symmetric, and positive definite; therefore, the solution of the system
always exists and has the form

QF
m =

(
GF

m,m
)–(GP

m,nPn – GC
m,mQC

m
)
. ()

5 G1-Degree reduction
G-continuity of (Qm)(t) and (Pn)(t) at the disks corresponding to t = , , requires the two
curves (Pn)(t) and (Qm)(t) to be G-continuous and satisfy further the following condi-
tions:

(Qm)′(i) = s′(i)(Pn)′
(
s(i)

)
, s′(i) > , i = , . ()

This means that the direction of the tangents at the two end disks of (Qm) and (Pn) should
coincide, but they need not to be of equal lengths. As in [], s′(i) = δi, i = , , are used.
This substitution gives

(Qm)′(i) = δi(Pn)′(i), i = , . ()

We can solve () and () for the two control disks at either end of the curve:

(q) = (p), (qm) = (pn),

(q) = (p) +
n
m

�(p)δ, (qm–) = (pn) –
n
m

�(pn–)δ.
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The disks (q), (q), (qm–), and (qm) are determined by G-continuity conditions at the
boundaries; accordingly, the elements of (Qm) are decomposed into two parts. The part
of constrained control disks (Qm)c = [(q), (q), (qm–), (qm)]t and the part of free control
disks (Qm)f = (Qm)\(Qm)c = [(q), . . . , (qm–)]t . Similarly, Bm is decomposed. Thus, the er-
ror term becomes

ε =
∫ 



∥∥Bn(Pn) – Bm(Qm)
∥∥ dt

=
∫ 



∥∥Bn(Pn) – Bc
m(Qm)c – Bf

m(Qm)f ∥∥ dt. ()

The error ε := ε((Qm)f , δ, δ) is a function of (Qm)f , δ, and δ. Differentiating with respect
to the unknown control disks (Qm)f we get

∂ε

∂(Qm)f = 
∫ 



∥∥Bn(Pn) – Bc
m(Qm)c – Bf

m(Qm)f ∥∥Bf
m dt.

Evaluating the integral and equating to zero gives

Gp
m,n(Pn) – Gc

m,m(Qm)c – Gf
m,m(Qm)f = , ()

where

Gp
m,n := Gm,n(, . . . , m – ; , , . . . , n),

Gc
m,m := Gm,m(, . . . , m – ; , , m – , m),

Gf
m,m := Gm,m(, . . . , m – ; , . . . , m – ),

and Gm,n(. . . ; . . .) is the sub-matrix of Gm,n formed by the indicated rows and columns.
Differentiating () with respect to δi, i = ,  and equating to zero gives

∂ε

∂δ
=

(
G

m,n(Pn) – G;c
m,m(Qm)c – G;f

m,m(Qm)f ) · �(p) = , ()

∂ε

∂δ
=

(
Gm–

m,n (Pn) – Gm–;c
m,m (Qm)c – Gm–;f

m,m (Qm)f ) · �(pn–) = , ()

where, for j = , m – ,

Gj
m,n := Gm,n(j; , , . . . , n),

Gj;c
m,m := Gm,m(j; , , m – , m), ()

Gj;f
m,m := Gm,m(j; , . . . , m – ).

The center curve of the disk Bézier curve is expanded into x and y components together
with the radius curve. Therefore, the variables of our system of equations are x̃k , ỹk , r̃k ,
k = , . . . , m – , δ, and δ. To express the system in a clear form, we have to decompose
each of q and qm– into a constant part and a part involving δ and δ, respectively. Let
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v and vm– be the constant parts of q and qm–, respectively. Similarly r̃ and r̃m– are
decomposed. Let s and sm– be the constant parts of r̃ and r̃m–, respectively. Hence

v = p, vm– = pn, s = r, sm– = rn.

The following vectors are defined to express the linear system in explicit form:

Pn = [x, . . . , xn, y, . . . , yn, r, . . . , rn]t ,

QF
m =

[
x̃, . . . , x̃m–, ỹ, . . . , ỹm–, r̃, . . . , r̃m–, δc

, δc
 , δr

, δr

]t ,

QC
m =

[
x̃, vx

 , vx
m–, x̃m, ỹ, vy

, vy
m–, ỹm, r̃, s, sm–, r̃m

]t .

Define the matrices A, B, Lc
m,n, Lcc

m,m, Lfc
m,m, Lr

m,n, Lcr
m,m, Lfr

m,m as follows:

A =

[
�p 

 �pn–

][
Gm,m(, ) Gm,m(, m – )

Gm,m(m – , ) Gm,m(m – , m – )

][
�p 

 �pn–

]

,

B =

[
�r 

 �rn–

][
Gm,m(, ) Gm,m(, m – )

Gm,m(m – , ) Gm,m(m – , m – )

][
�r 

 �rn–

]

,

Lc
m,n =

[
G

m,n�x G
m,n�y

Gm–
m,n �xn– Gm–

m,n �yn–

]

, Lr
m,n =

[
G

m,n�r

Gm–
m,n �rn–

]

,

Lcc
m,m =

[
G;c

m,m�x G;c
m,m�y

Gm–;c
m,m �xn– Gm–;c

m,m �yn–

]

, Lcr
m,m =

[
G;c

m,m�r

Gm–;c
m,m �rn–

]

,

Lfc
m,m =

[
G;f

m,m�x G;f
m,m�y

Gm–;f
m,m �xn– Gm–;f

m,m �yn–

]

, Lfr
m,m =

[
G;f

m,m�r

Gm–;f
m,m �rn–

]

.

Let ⊕ be the direct sum. Define the matrices

Gp++
m,n = Gp

m,n ⊕ Gp
m,n ⊕ Gp

m,n,

Gc++
m,m = Gc

m,m ⊕ Gc
m,m ⊕ Gc

m,m, ()

Gf ++
m,m = Gf

m,m ⊕ Gf
m,m ⊕ Gf

m,m.

Further define L+
m,n, Lc+

m,m, Lf +
m,m as

L+
m,n = Lc

m,n ⊕ Lr
m,n, Lc+

m,m = Lcc
m,m ⊕ Lcr

m,m, Lf +
m,m = Lfc

m,m ⊕ Lfr
m,m. ()

After some mathematical operations the coordinate form of the expansion of () to-
gether with () and () becomes

GF
m,mQF

m = GP
m,nPn – GC

m,mQC
m, ()

where

GP
m,n =

[
Gp++

m,n

L+
m,n

]

, GC
m,m =

[
Gc++

m,m

Lc+
m,m

]

, GF
m,m =

[
Gf ++

m,m
n
m (Lf +

m,m)t

Lf +
m,m

n
m (A ⊕ B)

]

.
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The square matrix GF
m,m is a block matrix formed by Gf ++

m,m, (Lf +
m,m)t , Lf +

m,m, and A ⊕ B. The
matrix Gf ++

m,m is positive definite, and the matrix A ⊕ B, excluding the �c and �cn– parts,
is also positive definite. Therefore the matrix GF

m,m is non-singular; consequently, the un-
knowns in () are given by

QF
m =

(
GF

m,m
)–(GP

m,nPn – GC
m,mQC

m
)
. ()

In the following section, this method is used to illustrate some examples.

6 Examples and comparisons
In this section, we illustrate four examples to demonstrate the effectiveness of the pro-
posed methods. The first two examples are from [], the third example is from [], and
the last example used is from []. Regarding the error functions, throughout this paper
different kinds of lines are used to represent the cases as follows:

long-dashed: WB-degree reduction without any boundary condition,
short-dashed: G-degree reduction,
dotted: G-degree reduction.

Example  (see []) Consider the disk Bézier curve (Pn)(t) of degree nine with control
disks:

(P) = (, )., (P) = (, ), (P) = (, )., (P) = (, ),

(P) = (, )., (P) = (, ), (P) = (, )., (P) = (, ).,

(P) = (, ), (P) = (, ).

We use WB-, G- and G-degree reduction methods to reduce the degree of (Pn)(t) to de-
gree eight disk Bézier curve. Figure  depicts the original curve and the G-degree reduced
curve. The corresponding G- and WB-degree reduced disk Bézier curves are depicted in
Figure . The error functions for the three methods are shown in Figure .

The methods in [] of linear programming (LP, LPM) and constrained linear program-
ming (CLP, CLPM) degree reductions give errors of ., ., ., ., respectively,

Figure 2 Illustrating Example 1. Left: Disk Bézier curve of degree nine. Right: G1-degree reduction.
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Figure 3 Continuing illustrating Example 1. Left: G0-degree reduction. Right: WB-degree reduction.

Figure 4 Error functions for WB- (long-dashed);
G0- (short-dashed), and G1- (dotted) degree
reductions in Example 1.

while the proposed methods of WB-, G-, and G-degree reductions have errors of .,
., ., respectively. This example shows that the methods proposed in this paper
give better results than existing methods besides satisfying additional boundary condi-
tions.

Example  (see []) Given the disk Bézier curve (Pn)(t) of degree six with control disks:

(P) = (, ), (P) = (, ), (P) = (, ),

(P) = (, ), (P) = (, ), (P) = (, ),

(P) = (, ).

(Pn)(t) is reduced to a disk Bézier curve (Qm)(t) of degree five using WB-, G-, and
G-degree reduction methods. The error functions for the proposed three methods are
shown in Figure .

The methods in [] are based on linear programming (LP, LPM) and constrained linear
programming (CLP, CLPM) degree reduction methods and give errors of ., ., .,
., respectively. They also approached the problem by making each control point of the
degree reducing disk Bézier curve bound the original one and got an error of . The
proposed methods in this paper with WB-, G-, and G-degree reductions have errors of
, ., ., respectively.
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Figure 5 Error functions by WB- (long-dashed);
G0- (short-dashed), and G1- (dotted) degree
reductions in Example 2.

Figure 6 Error functions by WB- (long-dashed);
G0- (short-dashed), and G1- (dotted) degree
reductions in Example 3.

Example  (see []) Consider the disk Bézier curve (Pn)(t) of degree seven with control
disks:

(P) = (, ), (P) = (, ), (P) = (, ),

(P) = (, ), (P) = (, ), (P) = (, ),

(P) = (, ), (P) = (, ).

(Pn)(t) is reduced to degree six. The methods in [] without interpolation (WIDR) and
with interpolation (IDR) degree reductions of Said-Ball curves give errors of , , respec-
tively.

The proposed methods of WB-, G- and G-degree reductions give errors of , ., .,
respectively. The error functions for the three methods are shown in Figure .

Example  (see []) Consider the disk Bézier curve (Pn)(t) of degree eight with control
disks:

(P) = (, ), (P) = (, ), (P) = (, ),

(P) = (, ), (P) = (, ), (P) = (, ),

(P) = (, ), (P) = (, ), (P) = (, ).

We use WB-, G-, G-methods to reduce the degree of (Pn)(t) to a degree five disk Bézier
curve. The error functions for the three methods are shown in Figure  with maximum
errors of , ., , respectively. Hu and Wang used in [] a degree reduction method
based on quadratic programming without any boundary condition and got an error of
..
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Figure 7 Error functions by WB- (long-dashed);
G0- (short-dashed), and G1- (dotted) degree
reductions in Example 4.

Table 1 Comparison with other existing methods

Example [Paper]: Errors Errors of our proposed methods

1 [15]: 0.14, 0.25, 0.15, 0.18 0.04, 0.025, 0.029
2 [15]: 6.2, 6.2, 12.6, 11.6 7, 5.1, 4.9
3 [17]: 3, 4 4, 2.6, 2.5
4 [16]: 9.4 5, 4.5, 14

Examples - show that the proposed WB-, G-, G-degree reduction methods in this
paper give errors that are less than existing methods with and without continuity condi-
tions; moreover, our methods are the first methods of this kind that consider geometric
continuity with degree reductions.

Imposing boundary conditions consumes free parameters that can be used to minimize
the error. That is, using the same method of degree reduction without boundary condi-
tions gives less error than with boundary conditions.

Although it is not fair to compare the numerical results of a method with boundary
conditions to a method without boundary conditions, our proposed methods of degree
reduction give errors that are smaller than existing methods. The numerical results are
summarized in Table .

7 Conclusions
In this paper, we presented WB-, G-, and G-multi-degree reduction methods of disk
Bézier curves. The significance of our work is quite interesting, since the center curve
and the radius of disk Bézier curve are degree reduced simultaneously, unlike other meth-
ods. This reduces the computational expenses. The examples show the effectiveness of the
proposed methods; they tightly bound the original disk Bézier curve very effectively. Our
proposed G- and G-degree reduction methods are better than the existing methods; see
the examples and comparisons with examples in [–]. The benefits and features of the
proposed methods can be summarized as follows:

• Continuity conditions are considered, while most existing methods do not consider
any boundary conditions.

• Geometric conditions are considered with the method of degree reduction for the
first time, which makes the methods novel and new.

• The degree reduction is done for the center Bézier curve and the radius curve
simultaneously, which minimizes the computational cost of degree reducing disk
Bézier curves.

• The numerical results show that our proposed methods have error less than existing
methods besides the advantages mentioned above.
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• Existing methods are impractical because disk Bézier curves do not exist alone; they
are pieces of splines and degree reducing them without boundary conditions gives a
spline that is not continuous.

It worth noting that the proposed methods in this paper are the first to consider geometric
continuity with degree reductions.
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