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Abstract
A new upper bound for the infinity norm of inverse matrix of a strictly diagonally
dominantM-matrix is given, and the lower bound for the minimum eigenvalue of the
matrix is obtained. Furthermore, an upper bound for the infinity norm of inverse
matrix of a strictly α-diagonally dominantM-matrix is presented. Finally, we give
numerical examples to illustrate our results.
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1 Introduction
Let Rn×n denote the set of all n × n real matrices, N = {, , . . . , n} and A = (aij) ∈ Rn×n

(n ≥ ). A matrix A is called a nonsingular M-matrix if there exist a nonnegative matrix B
and some real number s such that

A = sI – B, s > ρ(B),

where I is the identity matrix, ρ(B) is the spectral radius of B. τ (A) denotes the minimum
of all real eigenvalues of the nonsingular M-matrix A.

Very often in numerical analysis, one needs a bound for the condition number of a
square n × n matrix A, Cond(A) = ‖A‖∞ · ‖A–‖∞. Bounding ‖A‖∞ is not usually diffi-
cult, but a bound of ‖A–‖∞ is not usually available unless A– is known explicitly.

However, if A = (aij) ∈ Rn×n is a strictly diagonally dominant matrix, Varah [] bound
‖A–‖∞ quite easily by the following result:

∥
∥A–∥∥∞ ≤ 

mini∈N {|aii| –
∑

j �=i |aij|} . ()

Remark  [] If the diagonal dominance of A is weak, i.e., mini∈N {|aii|–
∑

j �=i |aij|} is small,
then using () in estimating ‖A–‖∞, the bound may yield a large value.

In , Cheng and Huang [] presented the following results.
If A = (aij) is a strictly diagonally dominant M-matrix, then

∥
∥A–∥∥∞ ≤ 

a( – ul)
+

n
∑

i=

[


aii( – uili)

i–
∏

j=

(

 +
uj

 – ujlj

)]

. ()
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If A = (aij) is a strictly diagonally dominant M-matrix, then the bound in () is sharper
than that in Theorem . in [], i.e.,


a( – ul)

+
n

∑

i=

[


aii( – uili)

i–
∏

j=

(

 +
uj

 – ujlj

)]

<
n

∑

i=

[

aii

i
∏

j=

( – uj)

]–

.

In , Wang [] obtained the better result: Let A = (aij) be a strictly diagonally domi-
nant M-matrix. Then

∥
∥A–∥∥∞ <


a( – ul)

+
n

∑

i=

[


aii( – uili)

i–
∏

j=


 – ujlj

]

. ()

In this paper, we present new upper bounds for ‖A–‖∞ of a strictly (α-)diagonally dom-
inant M-matrix A, which improved the above results. As an application, a lower bound of
τ (A) is obtained.

For convenience, for i, j, k ∈ N , j �= i, denote

Ri(A) =
∑

j �=i

|aij|, Ci(A) =
∑

j �=i

|aji|, di =
Ri(A)
|aii| ,

J(A) = {i ∈ N |di < }, ui =
∑n

j=i+ |aij|
|aii| , lk = max

k≤i≤n

{∑

k≤j≤n |aij|
|aii|

}

,

ln = un = , rji =
|aji|

|ajj| –
∑

k �=j,i |ajk| , ri = max
j �=i

{rji},

σji =
|aji| +

∑

k �=j,i |ajk|ri

|ajj| , hi = max
j �=i

{ |aji|
|ajj|σji –

∑

k �=j,i |ajk|σki

}

,

uji =
|aji| +

∑

k �=j,i |ajk|σkihi

|ajj| , ωji =
|aji| +

∑

k �=j,i |ajk|uki

|ajj| .

We will denote by A(n,n) the principal submatrix of A formed from all rows and all
columns with indices between n and n inclusively; e.g., A(,n) is the submatrix of A ob-
tained by deleting the first row and the first column of A.

Definition  [] A = (aij) ∈ Rn×n is a weakly chained diagonally dominant if for all i ∈ N ,
di ≤  and J(A) �= φ, and for all i ∈ N , i /∈ J(A), there exist indices i, i, . . . , ik in N with
air ,ir+ �= ,  ≤ r ≤ k – , where i = i and ik ∈ J(A).

Definition  [] A = (aij) ∈ Rn×n is called a strictly α-diagonally dominant matrix if there
exists α ∈ [, ] such that

|aii| > αRi(A) + ( – α)Ci(A), ∀i ∈ N .

2 Upper bounds for ‖A–1‖∞ of a strictly diagonally dominant M-matrix
In this section, we give several bounds of ‖A–‖∞ and τ (A) for a strictly diagonally domi-
nant M-matrix A.
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Lemma  [] Let A = (aij) be a weakly chained diagonally dominant M-matrix, B = A(,n),
A– = (αij), and B– = (βij). Then, for i, j = , . . . , n,

α =

	 , αi =


	

n
∑

k=

βik(–ak), αj =

	

n
∑

k=

βkj(–ak),

αij = βij + αj

n
∑

k=

βik(–ak), 	 = a –
n

∑

k=

ak

( n
∑

i=

βkiai

)

> .

Furthermore, if J(A) = N , then

	 ≥ a( – dl) ≥ a( – d).

Lemma  [] If A = (aij) is a strictly diagonally dominant M-matrix, then

	 ≥ a( – dl) > a( – d) > .

Lemma  Let A = (aij) be a strictly diagonally dominant M-matrix. Then, for A– = (αij),

αji ≤ ωjiαii, i, j ∈ N , j �= i.

Proof This proof is similar to the one of Lemma  in []. �

Lemma  Let A = (aij) be a strictly diagonally dominant M-matrix. Then, for A– = (αij),


aii

≤ αii ≤ 
aii –

∑

j �=i |aij|ωji
, i ∈ N .

Proof This proof is similar to the one of Lemma . in []. �

Lemma  [] Let A = (aij) be a weakly chained diagonally dominant M-matrix, A– = (αij),
and τ = τ (A). Then

τ ≤ min
i∈N

{aii}, τ ≤ max
i∈N

{
∑

j∈N

aij

}

, τ ≥ min
i∈N

{
∑

j∈N

aij

}

,


M
≤ τ ≤ 

m
,

where

M = max
i∈N

{
∑

j∈N

αij

}

=
∥
∥A–∥∥∞, m = min

i∈N

{
∑

j∈N

αij

}

.

Theorem  Let A = (aij) be a strictly diagonally dominant M-matrix, B = A(,n), A– = (αij),
and B– = (βij). Then

∥
∥A–∥∥∞ ≤ 

a –
∑n

j= |aj|ωj
+


 – dl

∥
∥B–∥∥∞.
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Proof Let

ηi =
n

∑

j=

αij, MA =
∥
∥A–∥∥∞, MB =

∥
∥B–∥∥∞.

Then

MA = max
i∈N

{ηi}, MB = max
≤i≤n

{ n
∑

j=

βij

}

.

By Lemma , Lemma , and Lemma ,

η = α +
n

∑

j=

αj =

	 +


	

n
∑

k=

(–ak)
n

∑

j=

βkj ≤ 
	 +


	adMB

≤ 
	 +

dMB

 – dl
≤ 

a –
∑n

j= |aj|ωj
+

MB

 – dl
. ()

Let  ≤ i ≤ n. Then, by Lemma  and Lemma ,

n
∑

k=

βik(–ak) = 	 · αi ≤ 	ωiα = ωi < ,

αij = βij + αj

n
∑

k=

βik(–ak) ≤ βij + αjωi < βij + αj.

Therefore, for  ≤ i ≤ n, we have

ηi = αi +
n

∑

j=

αij ≤ αωi +
n

∑

j=

(βij + αjωi) = ηωi + MB ≤ ηl + MB

≤
(


	 +

dMB

 – dl

)

l + MB ≤ 
	 +

MB

 – dl
≤ 

a –
∑n

j= |aj|ωj
+

MB

 – dl
. ()

Furthermore, from () and (), we obtain

MA ≤ 
a –

∑n
j= |aj|ωj

+


 – dl

∥
∥B–∥∥∞. ()

The result follows. �

Theorem  Let A = (aij) be a strictly diagonally dominant M-matrix. Then

∥
∥A–∥∥∞ ≤ 

a –
∑n

k= |ak|ωk
+

n
∑

i=

[


aii –

∑n
k=i+ |aik|ωki

i–
∏

j=


 – ujlj

]

. ()

Proof The result follows by applying the principle of mathematical induction with respect
to k on A(k,n) in (). �

By Lemma  and Theorem , we can obtain a new bound of τ (A).
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Corollary  If A = (aij) is a strictly diagonally dominant M-matrix, then

τ (A) ≥
{


a –

∑n
k= |ak|ωk

+
n

∑

i=

[


aii –

∑n
k=i+ |aik|ωki

i–
∏

j=


 – ujlj

]}–

.

Theorem  Let A = (aij) be a strictly diagonally dominant M-matrix. Then the bound in
() is better than that in (), i.e.,


a –

∑n
k= |ak|ωk

+
n

∑

i=

[


aii –

∑n
k=i+ |aik|ωki

i–
∏

j=


 – ujlj

]

≤ 
a( – ul)

+
n

∑

i=

[


aii( – uili)

i–
∏

j=


 – ujlj

]

.

Proof Since A is a strictly diagonally dominant matrix, so  ≤ uj, lj <  for all j. By the
definition of ui, li, ωki, we have ωki ≤ li and aiiui =

∑n
k=i+ |aik| for all i. Obviously, the

result follows. �

3 Upper bounds for ‖A–1‖∞ of a strictly α-diagonally dominant M-matrix
In this section, we present an upper bound of ‖A–‖∞ for a strictly α-diagonally dominant
M-matrix A.

Lemma  [] Let A, B ∈ Rn×n. If A and A – B are nonsingular, then

(A – B)– = A– + A–B
(

I – A–B
)–A–.

Lemma  Let A = (aij) ∈ Rn×n be a strictly diagonally dominant M-matrix, and B = (bij) ∈
Rn×n. If ϕ · ‖B‖∞ < , then ‖A–B‖∞ < , where

ϕ =


a –
∑n

k= |ak|ωk
+

n
∑

i=

[


aii –

∑n
k=i+ |aik|ωki

i–
∏

j=


 – ujlj

]

.

Proof By Theorem , we get

∥
∥A–B

∥
∥∞ ≤ ∥

∥A–∥∥∞‖B‖∞ ≤ ϕ‖B‖∞ < .

The result follows. �

Lemma  [] If ‖A–‖∞ < , then I – A is nonsingular and

∥
∥(I – A)–∥∥∞ ≤ 

 – ‖A‖∞
.

Theorem  Let A = (aij) ∈ Rn×n be a strictly α-diagonally dominant matrix, α ∈ (, ] and
A be an M-matrix. If {i ∈ N |Ri(A) > Ci(A)} �= ∅, and

ϕ <


max≤i≤n α(Ri(A) – Ci(A))
,
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then

∥
∥A–∥∥∞ <

ϕ

 – ϕ max≤i≤n α(Ri(A) – Ci(A))
, ()

where

ϕ =


ν –
∑n

k= |ak|ωk
+

n
∑

i=

[


νi –

∑n
k=i+ |aik|ωki

i–
∏

j=


 – ujlj

]

,

νi = max
≤i≤n

{

aii, aii + α
(

Ri(A) – Ci(A)
)}

.

Proof Let A = B – C, where B = (bij), C = (cij), and

bij =

{

aii + α(Ri(A) – Ci(A)), i = j, Ri(A) > Ci(A),
aij, otherwise,

cij =

{

α(Ri(A) – Ci(A)), i = j, Ri(A) > Ci(A),
, otherwise.

For any i ∈ {i ∈ N |Ri(A) > Ci(A)}, we get

bii = aii + α
(

Ri(A) – Ci(A)
)

> Ri(A) = Ri(B).

For any i ∈ {i ∈ N |Ri(A) ≤ Ci(A)}, we have

bii = aii > αRi(A) + ( – α)Ci(A) ≥ Ri(A) = Ri(B).

Thus, B is a strictly diagonal dominant M-matrix. By Lemma , we get ‖B–C‖∞ < . By
Lemma , Lemma , and Theorem , we have

∥
∥B–∥∥∞ ≤ 

b –
∑n

k= |ak|ωk
+

n
∑

i=

[


bii –

∑n
k=i+ |aik|ωki

i–
∏

j=


 – ujlj

]

=


ν –
∑n

k= |ak|ωk
+

n
∑

i=

[


νi –

∑n
k=i+ |aik|ωki

i–
∏

j=


 – ujlj

]

.

Therefore

∥
∥B–C

∥
∥∞ ≤ ϕ max

≤i≤n
α
(

Ri(A) – Ci(A)
)

.

Furthermore, we have

∥
∥A–∥∥∞ =

∥
∥(B – C)–∥∥∞ =

∥
∥B– + B–C

(

I – B–C
)–B–∥∥∞

≤ ∥
∥B–∥∥∞ +

∥
∥B–C

∥
∥∞ · ∥∥(

I – B–C
)–∥

∥∞ · ∥∥B–∥∥∞

≤ ∥
∥B–∥∥∞ +

‖B–C‖∞
 – ‖B–C‖∞

∥
∥B–∥∥∞
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=
‖B–‖∞

 – ‖B–C‖∞

≤ ϕ

 – ϕ max≤i≤n α(Ri(A) – Ci(A))
.

The result follows. �

4 Numerical examples
In this section, we present numerical examples to illustrate the advantages of our derived
results.

Example  Let

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

 – – – – – – – – –
–  – – – –  – – –
– –  –  – – – – –
– – –  – – – – – –
– –  – . –  – – –
–  – – –  – – – –
 – – – – –  – – –

– – – – – – –  – –
– – – – – – –   –
– –  – – – –  – 

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

It is easy to see that A is a strictly diagonally dominant M-matrix. By calculations with
Matlab ., we have

∥
∥A–∥∥∞ ≤  (by ()),

∥
∥A–∥∥∞ ≤ . (by ()),

∥
∥A–∥∥∞ ≤ . (by ()),

∥
∥A–∥∥∞ ≤ . (by ()),

respectively. It is obvious that the bound in () is the best result.

Example  Let

A =

⎛

⎜
⎝

 – –
–  –

–. –. 

⎞

⎟
⎠ .

It is easy to see that A is a strictly α-diagonally dominant M-matrix by taking α = .,
and A is not a strictly diagonally dominant matrix. Thus the bound of ‖A–‖∞ cannot be
estimated by (), (), and (), but it can be estimated by (). By (), we get

∥
∥A–∥∥∞ ≤ ..
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