RESEARCH

New upper bounds for $||A^{-1}||_{\infty}$ of strictly diagonally dominant *M*-matrices

Feng Wang^{*}, De-shu Sun and Jian-xing Zhao

*Correspondence: wangf991@163.com College of Science, Guizhou Minzu University, Guiyang, Guizhou 550025, P.R. China

Abstract

A new upper bound for the infinity norm of inverse matrix of a strictly diagonally dominant *M*-matrix is given, and the lower bound for the minimum eigenvalue of the matrix is obtained. Furthermore, an upper bound for the infinity norm of inverse matrix of a strictly α -diagonally dominant *M*-matrix is presented. Finally, we give numerical examples to illustrate our results.

MSC: 15A42; 15A45

Keywords: diagonal dominance; *M*-matrix; infinity norm; upper bound; minimum eigenvalue

1 Introduction

Let $\mathbb{R}^{n \times n}$ denote the set of all $n \times n$ real matrices, $N = \{1, 2, ..., n\}$ and $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ $(n \ge 2)$. A matrix A is called a nonsingular M-matrix if there exist a nonnegative matrix Band some real number s such that

$$A = sI - B, \quad s > \rho(B),$$

where *I* is the identity matrix, $\rho(B)$ is the spectral radius of *B*. $\tau(A)$ denotes the minimum of all real eigenvalues of the nonsingular *M*-matrix *A*.

Very often in numerical analysis, one needs a bound for the condition number of a square $n \times n$ matrix A, $\text{Cond}(A) = ||A||_{\infty} \cdot ||A^{-1}||_{\infty}$. Bounding $||A||_{\infty}$ is not usually difficult, but a bound of $||A^{-1}||_{\infty}$ is not usually available unless A^{-1} is known explicitly.

However, if $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ is a strictly diagonally dominant matrix, Varah [1] bound $||A^{-1}||_{\infty}$ quite easily by the following result:

$$\|A^{-1}\|_{\infty} \le \frac{1}{\min_{i \in N}\{|a_{ii}| - \sum_{j \ne i} |a_{ij}|\}}.$$
(1)

Remark 1 [2] If the diagonal dominance of *A* is weak, *i.e.*, $\min_{i \in N} \{|a_{ii}| - \sum_{j \neq i} |a_{ij}|\}$ is small, then using (1) in estimating $||A^{-1}||_{\infty}$, the bound may yield a large value.

In 2007, Cheng and Huang [2] presented the following results. If $A = (a_{ij})$ is a strictly diagonally dominant *M*-matrix, then

$$\|A^{-1}\|_{\infty} \leq \frac{1}{a_{11}(1-u_1l_1)} + \sum_{i=2}^{n} \left[\frac{1}{a_{ii}(1-u_il_i)} \prod_{j=1}^{i-1} \left(1 + \frac{u_j}{1-u_jl_j} \right) \right].$$
 (2)

© 2015 Wang et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

If $A = (a_{ij})$ is a strictly diagonally dominant *M*-matrix, then the bound in (2) is sharper than that in Theorem 3.3 in [3], *i.e.*,

$$\frac{1}{a_{11}(1-u_1l_1)} + \sum_{i=2}^{n} \left[\frac{1}{a_{ii}(1-u_il_i)} \prod_{j=1}^{i-1} \left(1 + \frac{u_j}{1-u_jl_j} \right) \right] < \sum_{i=1}^{n} \left[a_{ii} \prod_{j=1}^{i} (1-u_j) \right]^{-1}.$$

In 2009, Wang [4] obtained the better result: Let $A = (a_{ij})$ be a strictly diagonally dominant *M*-matrix. Then

$$\|A^{-1}\|_{\infty} < \frac{1}{a_{11}(1-u_1l_1)} + \sum_{i=2}^{n} \left[\frac{1}{a_{ii}(1-u_il_i)} \prod_{j=1}^{i-1} \frac{1}{1-u_jl_j} \right].$$
(3)

In this paper, we present new upper bounds for $||A^{-1}||_{\infty}$ of a strictly (α -)diagonally dominant *M*-matrix *A*, which improved the above results. As an application, a lower bound of $\tau(A)$ is obtained.

For convenience, for $i, j, k \in N$, $j \neq i$, denote

$$\begin{split} R_{i}(A) &= \sum_{j \neq i} |a_{ij}|, \qquad C_{i}(A) = \sum_{j \neq i} |a_{ji}|, \qquad d_{i} = \frac{R_{i}(A)}{|a_{ii}|}, \\ J(A) &= \{i \in N | d_{i} < 1\}, \qquad u_{i} = \frac{\sum_{j=i+1}^{n} |a_{ij}|}{|a_{ii}|}, \qquad l_{k} = \max_{k \leq i \leq n} \left\{ \frac{\sum_{k \leq j \leq n} |a_{ij}|}{|a_{ii}|} \right\} \\ l_{n} &= u_{n} = 0, \qquad r_{ji} = \frac{|a_{ji}|}{|a_{jj}| - \sum_{k \neq j, i} |a_{jk}|}, \qquad r_{i} = \max_{j \neq i} \{r_{ji}\}, \\ \sigma_{ji} &= \frac{|a_{ji}| + \sum_{k \neq j, i} |a_{jk}|r_{i}}{|a_{jj}|}, \qquad h_{i} = \max_{j \neq i} \left\{ \frac{|a_{ji}|}{|a_{jj}|\sigma_{ji} - \sum_{k \neq j, i} |a_{jk}|\sigma_{ki}} \right\}, \\ u_{ji} &= \frac{|a_{ji}| + \sum_{k \neq j, i} |a_{jk}|\sigma_{ki}h_{i}}{|a_{jj}|}, \qquad \omega_{ji} = \frac{|a_{ji}| + \sum_{k \neq j, i} |a_{jk}|u_{ki}}{|a_{jj}|}. \end{split}$$

We will denote by $A^{(n_1,n_2)}$ the principal submatrix of *A* formed from all rows and all columns with indices between n_1 and n_2 inclusively; *e.g.*, $A^{(2,n)}$ is the submatrix of *A* obtained by deleting the first row and the first column of *A*.

Definition 1 [3] $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ is a weakly chained diagonally dominant if for all $i \in N$, $d_i \leq 1$ and $J(A) \neq \phi$, and for all $i \in N$, $i \notin J(A)$, there exist indices i_1, i_2, \ldots, i_k in N with $a_{i_r, i_{r+1}} \neq 0, 0 \leq r \leq k - 1$, where $i_0 = i$ and $i_k \in J(A)$.

Definition 2 [5] $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ is called a strictly α -diagonally dominant matrix if there exists $\alpha \in [0, 1]$ such that

$$|a_{ii}| > \alpha R_i(A) + (1 - \alpha)C_i(A), \quad \forall i \in N.$$

2 Upper bounds for $||A^{-1}||_{\infty}$ of a strictly diagonally dominant *M*-matrix

In this section, we give several bounds of $||A^{-1}||_{\infty}$ and $\tau(A)$ for a strictly diagonally dominant *M*-matrix *A*.

Lemma 1 [2] Let $A = (a_{ij})$ be a weakly chained diagonally dominant *M*-matrix, $B = A^{(2,n)}$, $A^{-1} = (\alpha_{ij})$, and $B^{-1} = (\beta_{ij})$. Then, for i, j = 2, ..., n,

$$\begin{aligned} &\alpha_{11} = \frac{1}{\Delta}, \qquad \alpha_{i1} = \frac{1}{\Delta} \sum_{k=2}^{n} \beta_{ik}(-a_{k1}), \qquad \alpha_{1j} = \frac{1}{\Delta} \sum_{k=2}^{n} \beta_{kj}(-a_{1k}), \\ &\alpha_{ij} = \beta_{ij} + \alpha_{1j} \sum_{k=2}^{n} \beta_{ik}(-a_{k1}), \qquad \Delta = a_{11} - \sum_{k=2}^{n} a_{1k} \left(\sum_{i=2}^{n} \beta_{ki} a_{i1} \right) > 0. \end{aligned}$$

Furthermore, if J(A) = N, then

$$\triangle \ge a_{11}(1-d_1l_1) \ge a_{11}(1-d_1).$$

Lemma 2 [2] If $A = (a_{ij})$ is a strictly diagonally dominant *M*-matrix, then

 $\Delta \geq a_{11}(1-d_1l_1) > a_{11}(1-d_1) > 0.$

Lemma 3 Let $A = (a_{ij})$ be a strictly diagonally dominant *M*-matrix. Then, for $A^{-1} = (\alpha_{ij})$,

 $\alpha_{ji} \leq \omega_{ji} \alpha_{ii}, \quad i, j \in N, j \neq i.$

Proof This proof is similar to the one of Lemma 2 in [6].

Lemma 4 Let $A = (a_{ij})$ be a strictly diagonally dominant *M*-matrix. Then, for $A^{-1} = (\alpha_{ij})$,

$$\frac{1}{a_{ii}} \leq \alpha_{ii} \leq \frac{1}{a_{ii} - \sum_{j \neq i} |a_{ij}| \omega_{ji}}, \quad i \in N.$$

Proof This proof is similar to the one of Lemma 2.3 in [7].

Lemma 5 [3] Let $A = (a_{ij})$ be a weakly chained diagonally dominant *M*-matrix, $A^{-1} = (\alpha_{ij})$, and $\tau = \tau(A)$. Then

$$\tau \leq \min_{i \in N} \{a_{ii}\}, \qquad \tau \leq \max_{i \in N} \left\{ \sum_{j \in N} a_{ij} \right\}, \qquad \tau \geq \min_{i \in N} \left\{ \sum_{j \in N} a_{ij} \right\}, \quad \frac{1}{M} \leq \tau \leq \frac{1}{m},$$

where

$$M = \max_{i \in N} \left\{ \sum_{j \in N} \alpha_{ij} \right\} = \left\| A^{-1} \right\|_{\infty}, \qquad m = \min_{i \in N} \left\{ \sum_{j \in N} \alpha_{ij} \right\}.$$

Theorem 1 Let $A = (a_{ij})$ be a strictly diagonally dominant *M*-matrix, $B = A^{(2,n)}$, $A^{-1} = (\alpha_{ij})$, and $B^{-1} = (\beta_{ij})$. Then

$$\left\|A^{-1}\right\|_{\infty} \leq \frac{1}{a_{11} - \sum_{j=2}^{n} |a_{1j}|\omega_{j1}|} + \frac{1}{1 - d_1 l_1} \left\|B^{-1}\right\|_{\infty}$$

Proof Let

$$\eta_i = \sum_{j=1}^n lpha_{ij}, \qquad M_A = \|A^{-1}\|_{\infty}, \qquad M_B = \|B^{-1}\|_{\infty}.$$

Then

$$M_A = \max_{i \in N} \{\eta_i\}, \qquad M_B = \max_{2 \le i \le n} \left\{ \sum_{j=2}^n \beta_{ij} \right\}.$$

By Lemma 1, Lemma 2, and Lemma 4,

$$\eta_{1} = \alpha_{11} + \sum_{j=2}^{n} \alpha_{1j} = \frac{1}{\Delta} + \frac{1}{\Delta} \sum_{k=2}^{n} (-a_{1k}) \sum_{j=2}^{n} \beta_{kj} \le \frac{1}{\Delta} + \frac{1}{\Delta} a_{11} d_{1} M_{B}$$
$$\le \frac{1}{\Delta} + \frac{d_{1} M_{B}}{1 - d_{1} l_{1}} \le \frac{1}{a_{11} - \sum_{j=2}^{n} |a_{1j}| \omega_{j1}} + \frac{M_{B}}{1 - d_{1} l_{1}}.$$
(4)

Let $2 \le i \le n$. Then, by Lemma 1 and Lemma 3,

$$\sum_{k=2}^{n} \beta_{ik}(-a_{k1}) = \triangle \cdot \alpha_{i1} \le \triangle \omega_{i1}\alpha_{11} = \omega_{i1} < 1,$$

$$\alpha_{ij} = \beta_{ij} + \alpha_{1j} \sum_{k=2}^{n} \beta_{ik}(-a_{k1}) \le \beta_{ij} + \alpha_{1j}\omega_{i1} < \beta_{ij} + \alpha_{1j}.$$

Therefore, for $2 \le i \le n$, we have

$$\eta_{i} = \alpha_{i1} + \sum_{j=2}^{n} \alpha_{ij} \le \alpha_{11}\omega_{i1} + \sum_{j=2}^{n} (\beta_{ij} + \alpha_{1j}\omega_{i1}) = \eta_{1}\omega_{i1} + M_{B} \le \eta_{1}l_{1} + M_{B}$$
$$\le \left(\frac{1}{\Delta} + \frac{d_{1}M_{B}}{1 - d_{1}l_{1}}\right)l_{1} + M_{B} \le \frac{1}{\Delta} + \frac{M_{B}}{1 - d_{1}l_{1}} \le \frac{1}{a_{11} - \sum_{j=2}^{n} |a_{1j}|\omega_{j1}|} + \frac{M_{B}}{1 - d_{1}l_{1}}.$$
(5)

Furthermore, from (4) and (5), we obtain

$$M_A \le \frac{1}{a_{11} - \sum_{j=2}^n |a_{1j}| \omega_{j1}} + \frac{1}{1 - d_1 l_1} \left\| B^{-1} \right\|_{\infty}.$$
(6)

The result follows.

Theorem 2 Let $A = (a_{ij})$ be a strictly diagonally dominant *M*-matrix. Then

$$\|A^{-1}\|_{\infty} \leq \frac{1}{a_{11} - \sum_{k=2}^{n} |a_{1k}| \omega_{k1}} + \sum_{i=2}^{n} \left[\frac{1}{a_{ii} - \sum_{k=i+1}^{n} |a_{ik}| \omega_{ki}} \prod_{j=1}^{i-1} \frac{1}{1 - u_j l_j} \right].$$
 (7)

Proof The result follows by applying the principle of mathematical induction with respect to k on $A^{(k,n)}$ in (6).

By Lemma 5 and Theorem 1, we can obtain a new bound of $\tau(A)$.

Corollary 1 If $A = (a_{ij})$ is a strictly diagonally dominant *M*-matrix, then

$$\tau(A) \geq \left\{ \frac{1}{a_{11} - \sum_{k=2}^{n} |a_{1k}| \omega_{k1}} + \sum_{i=2}^{n} \left[\frac{1}{a_{ii} - \sum_{k=i+1}^{n} |a_{ik}| \omega_{ki}} \prod_{j=1}^{i-1} \frac{1}{1 - u_j l_j} \right] \right\}^{-1}.$$

Theorem 3 Let $A = (a_{ij})$ be a strictly diagonally dominant *M*-matrix. Then the bound in (7) is better than that in (3), i.e.,

$$\frac{1}{a_{11} - \sum_{k=2}^{n} |a_{1k}| \omega_{k1}} + \sum_{i=2}^{n} \left[\frac{1}{a_{ii} - \sum_{k=i+1}^{n} |a_{ik}| \omega_{ki}} \prod_{j=1}^{i-1} \frac{1}{1 - u_j l_j} \right]$$
$$\leq \frac{1}{a_{11}(1 - u_1 l_1)} + \sum_{i=2}^{n} \left[\frac{1}{a_{ii}(1 - u_i l_i)} \prod_{j=1}^{i-1} \frac{1}{1 - u_j l_j} \right].$$

Proof Since *A* is a strictly diagonally dominant matrix, so $0 \le u_j$, $l_j < 1$ for all *j*. By the definition of u_i , l_i , ω_{ki} , we have $\omega_{ki} \le l_i$ and $a_{ii}u_i = \sum_{k=i+1}^n |a_{ik}|$ for all *i*. Obviously, the result follows.

3 Upper bounds for $||A^{-1}||_{\infty}$ of a strictly α -diagonally dominant *M*-matrix

In this section, we present an upper bound of $||A^{-1}||_{\infty}$ for a strictly α -diagonally dominant *M*-matrix *A*.

Lemma 6 [8] Let $A, B \in \mathbb{R}^{n \times n}$. If A and A - B are nonsingular, then

$$(A - B)^{-1} = A^{-1} + A^{-1}B(I - A^{-1}B)^{-1}A^{-1}.$$

Lemma 7 Let $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ be a strictly diagonally dominant *M*-matrix, and $B = (b_{ij}) \in \mathbb{R}^{n \times n}$. If $\varphi_0 \cdot \|B\|_{\infty} < 1$, then $\|A^{-1}B\|_{\infty} < 1$, where

$$\varphi_0 = \frac{1}{a_{11} - \sum_{k=2}^n |a_{1k}| \omega_{k1}} + \sum_{i=2}^n \left[\frac{1}{a_{ii} - \sum_{k=i+1}^n |a_{ik}| \omega_{ki}} \prod_{j=1}^{i-1} \frac{1}{1 - u_j l_j} \right]$$

Proof By Theorem 2, we get

$$||A^{-1}B||_{\infty} \le ||A^{-1}||_{\infty} ||B||_{\infty} \le \varphi_0 ||B||_{\infty} < 1.$$

The result follows.

Lemma 8 [8] If $||A^{-1}||_{\infty} < 1$, then I - A is nonsingular and

$$\|(I-A)^{-1}\|_{\infty} \le \frac{1}{1-\|A\|_{\infty}}.$$

Theorem 4 Let $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ be a strictly α -diagonally dominant matrix, $\alpha \in (0, 1]$ and A be an M-matrix. If $\{i \in N | R_i(A) > C_i(A)\} \neq \emptyset$, and

$$\varphi_1 < \frac{1}{\max_{1 \le i \le n} \alpha(R_i(A) - C_i(A))},$$

then

$$\|A^{-1}\|_{\infty} < \frac{\varphi_1}{1 - \varphi_1 \max_{1 \le i \le n} \alpha(R_i(A) - C_i(A))},\tag{8}$$

where

$$\varphi_{1} = \frac{1}{\nu_{1} - \sum_{k=2}^{n} |a_{1k}| \omega_{k1}} + \sum_{i=2}^{n} \left[\frac{1}{\nu_{i} - \sum_{k=i+1}^{n} |a_{ik}| \omega_{ki}} \prod_{j=1}^{i-1} \frac{1}{1 - u_{j} l_{j}} \right],$$
$$\nu_{i} = \max_{1 < i < n} \left\{ a_{ii}, a_{ii} + \alpha \left(R_{i}(A) - C_{i}(A) \right) \right\}.$$

Proof Let A = B - C, where $B = (b_{ij})$, $C = (c_{ij})$, and

$$b_{ij} = \begin{cases} a_{ii} + \alpha (R_i(A) - C_i(A)), & i = j, R_i(A) > C_i(A), \\ a_{ij}, & \text{otherwise,} \end{cases}$$
$$c_{ij} = \begin{cases} \alpha (R_i(A) - C_i(A)), & i = j, R_i(A) > C_i(A), \\ 0, & \text{otherwise.} \end{cases}$$

For any $i \in \{i \in N | R_i(A) > C_i(A)\}$, we get

$$b_{ii} = a_{ii} + \alpha (R_i(A) - C_i(A)) > R_i(A) = R_i(B).$$

For any $i \in \{i \in N | R_i(A) \le C_i(A)\}$, we have

$$b_{ii} = a_{ii} > \alpha R_i(A) + (1 - \alpha)C_i(A) \ge R_i(A) = R_i(B).$$

Thus, *B* is a strictly diagonal dominant *M*-matrix. By Lemma 7, we get $||B^{-1}C||_{\infty} < 1$. By Lemma 6, Lemma 8, and Theorem 2, we have

$$\begin{split} \left\| B^{-1} \right\|_{\infty} &\leq \frac{1}{b_{11} - \sum_{k=2}^{n} |a_{1k}| \omega_{k1}} + \sum_{i=2}^{n} \Bigg[\frac{1}{b_{ii} - \sum_{k=i+1}^{n} |a_{ik}| \omega_{ki}} \prod_{j=1}^{i-1} \frac{1}{1 - u_{j} l_{j}} \Bigg] \\ &= \frac{1}{\nu_{1} - \sum_{k=2}^{n} |a_{1k}| \omega_{k1}} + \sum_{i=2}^{n} \Bigg[\frac{1}{\nu_{i} - \sum_{k=i+1}^{n} |a_{ik}| \omega_{ki}} \prod_{j=1}^{i-1} \frac{1}{1 - u_{j} l_{j}} \Bigg]. \end{split}$$

Therefore

$$\|B^{-1}C\|_{\infty} \leq \varphi_1 \max_{1\leq i\leq n} \alpha (R_i(A) - C_i(A)).$$

Furthermore, we have

$$\begin{split} \left\| A^{-1} \right\|_{\infty} &= \left\| (B - C)^{-1} \right\|_{\infty} = \left\| B^{-1} + B^{-1} C \left(I - B^{-1} C \right)^{-1} B^{-1} \right\|_{\infty} \\ &\leq \left\| B^{-1} \right\|_{\infty} + \left\| B^{-1} C \right\|_{\infty} \cdot \left\| \left(I - B^{-1} C \right)^{-1} \right\|_{\infty} \cdot \left\| B^{-1} \right\|_{\infty} \\ &\leq \left\| B^{-1} \right\|_{\infty} + \frac{\left\| B^{-1} C \right\|_{\infty}}{1 - \left\| B^{-1} C \right\|_{\infty}} \left\| B^{-1} \right\|_{\infty} \end{split}$$

$$= \frac{\|B^{-1}\|_{\infty}}{1 - \|B^{-1}C\|_{\infty}} \le \frac{\varphi_1}{1 - \varphi_1 \max_{1 \le i \le n} \alpha(R_i(A) - C_i(A))}$$

The result follows.

4 Numerical examples

In this section, we present numerical examples to illustrate the advantages of our derived results.

Example 1 Let

$$A = \begin{pmatrix} 37 & -1 & -3 & -1 & -2 & -4 & -2 & -3 & -1 & -5 \\ -4 & 30 & -1 & -2 & -3 & -4 & 0 & -1 & -1 & -3 \\ -1 & -3 & 30 & -4 & 0 & -2 & -3 & -2 & -4 & -5 \\ -3 & -5 & -3 & 40 & -1 & -2 & -3 & -4 & -2 & -4 \\ -5 & -2 & 0 & -5 & 25.01 & -5 & 0 & -1 & -5 & -2 \\ -2 & 0 & -2 & -1 & -4 & 30 & -5 & -2 & -5 & -3 \\ 0 & -3 & -1 & -1 & -2 & -4 & 40 & -2 & -3 & -4 \\ -1 & -3 & -2 & -3 & -2 & -1 & -2 & 40 & -4 & -1 \\ -2 & -4 & -3 & -1 & -3 & -3 & -4 & 0 & 27 & -2 \\ -2 & -1 & 0 & -2 & -4 & -3 & -1 & 0 & -3 & 25 \end{pmatrix}.$$

It is easy to see that A is a strictly diagonally dominant M-matrix. By calculations with Matlab 7.1, we have

$$\begin{split} \left\|A^{-1}\right\|_{\infty} &\leq 100 \quad (\text{by (1)}), \qquad \left\|A^{-1}\right\|_{\infty} \leq 11.2862 \quad (\text{by (2)}), \\ \left\|A^{-1}\right\|_{\infty} &\leq 5.2305 \quad (\text{by (3)}), \qquad \left\|A^{-1}\right\|_{\infty} \leq 1.0003 \quad (\text{by (7)}), \end{split}$$

respectively. It is obvious that the bound in (7) is the best result.

Example 2 Let

$$A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -0.5 & -0.5 & 2 \end{pmatrix}.$$

It is easy to see that *A* is a strictly α -diagonally dominant *M*-matrix by taking $\alpha = 0.5$, and *A* is not a strictly diagonally dominant matrix. Thus the bound of $||A^{-1}||_{\infty}$ cannot be estimated by (1), (2), and (3), but it can be estimated by (8). By (8), we get

$$||A^{-1}||_{\infty} \le 8.0322.$$

Competing interests The authors declare that they have no competing interests.

Authors' contributions

The authors contributed equally to this work. All authors read and approved the final manuscript.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11361074, 71161020) and IRTSTYN, Applied Basic Research Programs of Science and Technology Department of Yunnan Province (2013FD002).

Received: 4 January 2015 Accepted: 17 May 2015 Published online: 30 May 2015

References

1. Varah, JM: A lower bound for the smallest singular value of a matrix. Linear Algebra Appl. 11, 3-5 (1975)

- Cheng, GH, Huang, TZ: An upper bound for ||A⁻¹ ||∞ of strictly diagonally dominant M-matrices. Linear Algebra Appl. 426, 667-673 (2007)
- Shivakumar, PN, Williams, JJ, Ye, Q, Marinov, CA: On two-sided bounds related to weakly diagonally dominant M-matrices with application to digital circuit dynamics. SIAM J. Matrix Anal. Appl. 17, 298-312 (1996)
- Wang, P: An upper bound for ||A⁻¹ ||_∞ of strictly diagonally dominant *M*-matrices. Linear Algebra Appl. 431, 511-517 (2009)
- Zhang, YL, Mo, HM, Liu, JZ: α-Diagonal dominance and criteria for generalized strictly diagonally dominant matrices. Numer. Math. 31, 119-128 (2009)
- Li, YT, Wang, F, Li, CQ, Zhao, JX: Some new bounds for the minimum eigenvalue of the Hadamard product of an M-matrix and an inverse M-matrix. J. Inequal. Appl. 2013, 480 (2013)
- Li, YT, Chen, FB, Wang, DF: New lower bounds on eigenvalue of the Hadamard product of an M-matrix and its inverse. Linear Algebra Appl. 430, 1423-1431 (2009)
- 8. Xu, S: Theory and Methods about Matrix Computation. Tsinghua University Press, Beijing (1986)

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com