RESEARCH

Open Access

On some complex differential and difference equations concerning sharing function

Hua Wang^{1*}, Lian-Zhong Yang² and Hong-Yan Xu¹

*Correspondence: hhhlucy2012@126.com ¹Department of Informatics and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, Jiangxi 333403, P.R. China Full list of author information is available at the end of the article

Abstract

By using the theory of complex differential equations, the purpose of this paper is to investigate a conjecture of Brück concerning an entire function f and its differential polynomial $L(f) = a_k(z)f^{(k)} + \cdots + a_0(z)f$ sharing a function $\alpha(z)$ and a constant β . We also study the problem on entire function and its difference polynomials sharing a function.

MSC: 39A50; 30D35

Keywords: entire function; Brück's conjecture; difference equation

1 Introduction and main results

Let f be a nonconstant meromorphic function in the whole complex plane \mathbb{C} . We shall use the following standard notations of the value distribution theory:

$$T(r,f),$$
 $m(r,f),$ $N(r,f),$ $\overline{N}(r,f),$...

(see Hayman [1], Yang [2] and Yi and Yang [3]). We denote by S(r, f) any quantity satisfying S(r, f) = o(T(r, f)), as $r \to +\infty$, possibly outside of a set with finite measure. A meromorphic function a(z) is called a small function with respect to f if T(r, a) = S(r, f). In addition, we will use the notation $\sigma(f)$ to denote the order of meromorphic function f(z), and $\tau(f)$ to denote the type of an entire function f(z) with $0 < \sigma(f) = \sigma < +\infty$, which are defined to be (see [1])

$$\sigma(f) = \limsup_{r \to \infty} \frac{\log T(r, f)}{\log r}, \qquad \tau(f) = \limsup_{r \to \infty} \frac{\log M(r, f)}{r^{\sigma}}.$$

We use $\sigma_2(f)$ to denote the hyper-order of f(z), $\sigma_2(f)$ is defined to be (see [3])

$$\sigma_2(f) = \limsup_{r \to \infty} \frac{\log \log T(r, f)}{\log r}.$$

In 1976, Rubel and Yang [4] proved the following result.

Theorem 1.1 [4] Let f be a nonconstant entire function. If f and f' share two finite distinct values CM, then $f \equiv f'$.

In 1996, Brück [5] gave the following conjecture.

©2014 Wang et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Conjecture 1.1 [5] Let f be a nonconstant entire function. Suppose that $\sigma(f)$ is not a positive integer or infinite, if f and f' share one finite value a CM, then

$$\frac{f'-a}{f-a} = c$$

for some nonzero constant c.

In 1998, Gundersen and Yang [6] proved that Brück's conjecture holds for entire functions of finite order and obtained the following result.

Theorem 1.2 [6, Theorem 1] Let f be a nonconstant entire function of finite order. If f and f' share one finite value a CM, then $\frac{f'-a}{f-a} = c$ for some nonzero constant c.

The shared value problems relative to a meromorphic function f and its derivative $f^{(k)}$ have been a more widely studied subtopic of the uniqueness theory of entire and meromorphic functions in the field of complex analysis (see [7–12]).

In 2009, Chang and Zhu [13] further investigated the problem related to Brück's conjecture and proved that Theorem 1.2 remains valid if the value *a* is replaced by a function.

Theorem 1.3 [13, Theorem 1] Let f be an entire function of finite order and a(z) be a function such that $\sigma(a) < \sigma(f) < \infty$. If f and f' share a(z) CM, then $\frac{f'-a}{f-a} = c$ for some nonzero constant c.

Thus, there are natural questions to ask:

- (i) What would happen when $\sigma(a) < \sigma(f) < \infty$ is replaced by $0 < \sigma(a) = \sigma(f) < \infty$ in Theorem 1.3?
- (ii) For Theorems 1.1-1.3, what would happen when f' is replaced by differential polynomial

$$L(f) = a_k(z)f^{(k)} + a_{k-1}(z)f^{(k-1)} + \dots + a_1(z)f' + a_0(z)f,$$
(1)

where $a_k(z) \ (\neq 0), \dots, a_0(z)$ are polynomials?

The main purpose of this article is to study the above questions and obtain the following theorems.

Theorem 1.4 Let f(z) and $\alpha(z)$ be two nonconstant entire functions and satisfy $0 < \sigma(\alpha) = \sigma(f) < \infty$ and $\tau(f) > \tau(\alpha)$, and L(f) be stated as in (1) such that

$$\sigma(f)>1+\max\left\{\frac{\deg_z a_j-\deg_z a_k}{k-j},0\right\}.$$

If f(z) *and* L(f(z)) *share* $\alpha(z)$ *CM*, *then*

$$\frac{L(f(z)) - \alpha(z)}{f(z) - \alpha(z)} = c$$

for some nonzero constant c.

Theorem 1.5 Let f(z) be a nonconstant transcendental entire function with $\sigma_2(f) < \infty$, let $\sigma_2(f)$ be not an integer, and let L(f) be stated as in (1). If f and L(f) share a nonzero constant a CM and $\delta(0, f) > 0$, then

$$\frac{L(f(z)) - a}{f(z) - a} = c$$

for some nonzero constant c.

Recently, some papers have studied Brück's conjecture related to difference of entire function (including [14, 15]). In 2009, Heittokangas *et al.* [14] got the following result.

Theorem 1.6 [14, Theorem 1] Let f be a nonconstant meromorphic function of finite order $\sigma(f) < 2$, and let η be a nonzero complex number. If $f(z + \eta)$ and f(z) share a finite complex value a CM, then $f(z + \eta) - a = c(f(z) - a)$ for all $z \in \mathbb{C}$, where c is some nonzero complex number.

In this paper, we further investigate Brück's conjecture related to entire function and its difference polynomial and obtain the following result.

Theorem 1.7 Let f(z) be a nonconstant entire function of finite order $0 < \sigma(f) < \infty$, $L_1(f)$ be difference polynomial of f of the form

 $L_1(f(z)) = f(z + \eta_k) + f(z + \eta_{k-1}) + \dots + f(z + \eta_1),$

where $\eta_k, \eta_{k-1}, \dots, \eta_1$ are nonzero complex numbers. If $L_1(f(z)) = cf(z)$ and $\xi \neq 0$ is a Borel exceptional value of f(z), then $L_1(f) = kf(z)$.

2 Some lemmas

To prove our theorems, we will require some lemmas as follows.

Lemma 2.1 [16] Let f(z) be a transcendental entire function, v(r,f) be the central index of f(z). Then there exists a set $E \subset (1, +\infty)$ with finite logarithmic measure, we choose z satisfying $|z| = r \notin [0,1] \cup E$ and |f(z)| = M(r,f), we get

$$\frac{f^{(j)}(z)}{f(z)} = \left\{\frac{\nu(r,f)}{z}\right\}^j (1+o(1)) \quad \text{for } j \in N.$$

Lemma 2.2 [17] Let f(z) be an entire function of finite order $\sigma(f) = \sigma < \infty$, and let v(r, f) be the central index of f. Then, for any ε (> 0), we have

$$\limsup_{r \to \infty} \frac{\log v(r, f)}{\log r} = \sigma$$

Lemma 2.3 [18] Let f be a transcendental entire function, and let $E \subset [1, +\infty)$ be a set having finite logarithmic measure. Then there exists $\{z_n = r_n e^{i\theta_n}\}$ such that $|f(z_n)| = M(r_n, f)$, $\theta_n \in [0, 2\pi)$, $\lim_{n\to\infty} \theta_n = \theta_0 \in [0, 2\pi)$, $r_n \notin E$ and if $0 < \sigma(f) < \infty$, then, for any given $\varepsilon > 0$ and sufficiently large r_n ,

$$r_n^{\sigma(f)-\varepsilon} < v(r_n, f) < r_n^{\sigma(f)+\varepsilon}.$$

Lemma 2.4 [16] Let $P(z) = b_n z^n + b_{n-1} z^{n-1} + \cdots + b_0$ with $b_n \neq 0$ be a polynomial. Then, for every $\varepsilon > 0$, there exists $r_0 > 0$ such that for all $r = |z| > r_0$ the inequalities

$$(1-\varepsilon)|b_n|r^n \le |P(z)| \le (1+\varepsilon)|b_n|r^n$$

hold.

Lemma 2.5 Let f(z) and A(z) be two entire functions with $0 < \sigma(f) = \sigma(A) = \sigma < \infty$, $0 < \tau(A) < \tau(f) < \infty$, then there exists a set $E \subset [1, +\infty)$ that has infinite logarithmic measure such that for all $r \in E$ and a positive number $\kappa > 0$, we have

$$\frac{M(r,A)}{M(r,f)} < \exp\{-\kappa r^{\sigma}\}.$$

Proof By definition, there exists an increasing sequence $\{r_m\} \to \infty$ satisfying $(1 + \frac{1}{m})r_m < r_{m+1}$ and

$$\lim_{m \to \infty} \frac{\log M(r_m, f)}{r_m^{\sigma}} = \tau(f).$$
⁽²⁾

For any given β ($\tau(A) < \beta < \tau(f)$), there exists some positive integer m_0 such that for all $m \ge m_0$ and for any given ε ($0 < \varepsilon < \tau(f) - \beta$), we have

$$\log M(r_m, f) > (\tau(f) - \varepsilon) r_m^{\sigma}.$$
(3)

Thus, there exists some positive integer m_1 such that for all $m \ge m_1$, we have

$$\left(\frac{m}{m+1}\right)^{\sigma} > \frac{\beta}{\tau(f) - \varepsilon}.$$
(4)

From (2)-(4), for all $m \ge m_2 = \max\{m_0, m_1\}$ and for any $r \in [r_m, (1 + \frac{1}{m})r_m]$, we have

$$M(r,f) \ge M(r_m,f) > \exp\{\left(\tau(f) - \varepsilon\right)r_m^{\sigma}\}$$
$$\ge \exp\{\left(\tau(f) - \varepsilon\right)\left(\frac{m}{m+1}r\right)^{\sigma}\} > \exp\{\beta r^{\sigma}\}.$$
(5)

Set $E = \bigcup_{m=m_2}^{\infty} [r_m, (1 + \frac{1}{m})r_m]$, then

$$m_{l}E = \sum_{m=m_{2}}^{\infty} \int_{r_{m}}^{(1+\frac{1}{m})r_{m}} \frac{dt}{t} = \sum_{m=m_{2}}^{\infty} \log\left(1+\frac{1}{m}\right) = \infty.$$

From the definition of type of entire function, for any sufficiently small $\varepsilon > 0$, we have

$$M(r,A) < \exp\{\left(\tau(A) + \varepsilon\right)r^{\sigma}\}.$$
(6)

By (5) and (6), set $\kappa = \beta - \tau(A) - \varepsilon$, for all $r \in E$, we have

$$\frac{M(r,A)}{M(r,f)} < \exp\left\{-\left(\beta - \tau(A) - \varepsilon\right)r^{\sigma}\right\} = e^{-\kappa r^{\sigma}}.$$

Thus, this completes the proof of this lemma.

Lemma 2.6 [19, Theorem 2.1] Let f(z) be a meromorphic function of finite order σ , and let η be a fixed nonzero complex number, then, for each $\varepsilon > 0$, we have

$$m\left(r,\frac{f(z+c)}{f(z)}\right) + m\left(r,\frac{f(z)}{f(z+c)}\right) = O(r^{\sigma-1+\varepsilon}).$$

Lemma 2.7 [19, Corollary 2.5] Let f(z) be a meromorphic function with order $\sigma = \sigma(f)$, $\sigma < +\infty$, and let η be a fixed nonzero complex number, then, for each $\varepsilon > 0$, we have

 $T(r, f(z + \eta)) = T(r, f) + O(r^{\sigma - 1 + \varepsilon}) + O(\log r).$

Lemma 2.8 [1, 20] Let $g: (0, +\infty) \to R$, $h: (0, +\infty) \to R$ be monotone increasing functions such that $g(r) \le h(r)$ outside of an exceptional set E with finite linear measure, or $g(r) \le h(r)$, $r \notin H \cup (0,1]$, where $H \subset (1,\infty)$ is a set of finite logarithmic measure. Then, for any $\alpha > 1$, there exists r_0 such that $g(r) \le h(\alpha r)$ for all $r \ge r_0$.

3 The proof of Theorem 1.4

Since f(z) is an entire function, and f(z) and L(f(z)) share $\alpha(z)$ *CM*, then there is an entire function $\gamma(z)$ such that

$$\frac{L(f(z)) - \alpha(z)}{f(z) - \alpha(z)} = e^{\gamma(z)}.$$
(7)

Next, we will claim that $\gamma(z)$ is a constant.

Suppose that $\gamma(z)$ is transcendental. It follows that $\sigma(e^{\gamma(z)}) = \infty$. However, since $0 < \sigma(f) = \sigma(\alpha) < \infty$, it follows from the left-hand side of (7) that $\sigma(\frac{L(f(z))-\alpha(z)}{f(z)-\alpha(z)}) < \infty$, a contradiction. Thus, $\gamma(z)$ is not transcendental.

Suppose that $\gamma(z)$ is a nonconstant polynomial, let

$$\gamma(z) = b_m z^m + b_{m-1} z^{m-1} + \dots + b_0,$$

where b_m, \ldots, b_0 are constants and $b_m \neq 0$, $m \ge 1$. Thus, it follows from (7) and Lemma 2.4 that

$$|b_m|r^m(1+o(1)) = |\gamma(z)| = \left|\log\frac{\frac{L(f(z))}{f(z)} - \frac{\alpha(z)}{f(z)}}{1 - \frac{\alpha(z)}{f(z)}}\right|.$$
(8)

Since $L(f) = a_k f^k + a_{k-1} f^{(k-1)} + \cdots + a_0 f$, from Lemma 2.1, then there exists a subset $E_1 \subset (1, +\infty)$ with finite logarithmic measure such that for some point $z = re^{i\theta}$ ($\theta \in [0, 2\pi)$), $r \notin E_1$ and M(r, f) = |f(z)|, we have

$$\frac{f^{(j)}(z)}{f(z)} = \left\{\frac{\nu(r,f)}{z}\right\}^{j} (1+o(1)), \quad 1 \le j \le k.$$

Thus, it follows that

$$\frac{L(f(z))}{f(z)} = a_k \left\{ \frac{\nu(r,f)}{z} \right\}^k (1+o(1)) + \dots + a_1 \left\{ \frac{\nu(r,f)}{z} \right\} (1+o(1)) + a_0$$
$$= \frac{a_k}{z^k} (1+o(1)) \left[\nu(r,f)^k + \sum_{j=1}^k \frac{a_{k-j}}{a_k} z^j \nu(r,f)^{k-j} (1+o(1)) \right].$$
(9)

From Lemma 2.3, there exists $\{z_n = r_n e^{i\theta_n}\}$ such that $|f(z_n)| = M(r_n, f)$, $\theta_n \in [0, 2\pi)$, $\lim_{n \to \infty} \theta_n = \theta_0 \in [0, 2\pi)$, $r_n \notin E_1$, then, for any given ε satisfying

$$0 < \varepsilon < \min_{1 \le j \le k} \frac{j\sigma(f) - j - d_{k-j}}{3k - j},$$

where $d_{k-j} = \deg_z a_{k-j} - \deg_z a_k$, and sufficiently large r_n , we have

$$r_n^{\sigma(f)-\varepsilon} < \nu(r_n, f) < r_n^{\sigma(f)+\varepsilon}.$$
(10)

Since $a_j(z)$, j = 0, 1, ..., k, are polynomials, let $a_j(z) = \sum_{t=0}^{s_j} l_{jt} z^t$, where $s_j = \deg_z a_j$, j = 0, 1, ..., k. Then, from Lemma 2.4 and (10), we have

$$\left|\frac{a_{k-j}}{a_{k}}z^{j}v(r,f)^{k-j}(1+o(1))\right| \leq M \frac{|l_{k-j,s_{k-j}}|r_{n}^{s_{k-j}}}{|l_{k,s_{k}}|r_{n}^{s_{k}}}r_{n}^{j}r_{n}^{(\sigma(f)+\varepsilon)(k-j)}$$
$$= M \frac{|l_{k-j,s_{k-j}}|}{|l_{k,s_{k}}|}r_{n}^{d_{k-j}+j+(\sigma(f)+\varepsilon)(k-j)}$$
$$\leq M \frac{|l_{k-j,s_{k-j}}|}{|l_{k,s_{k}}|}r_{n}^{k\sigma(f)-j\sigma(f)+d_{k-j}+j+(k-j)\varepsilon},$$
(11)

where $d_{k-j} = s_{k-j} - s_k$ and M is a positive constant. Since $-j\sigma(f) + d_{k-j} + j + (k-j)\varepsilon < -2k\varepsilon < 0$, it follows from (11) that

$$\left|\frac{a_{k-j}}{a_k} z^j v(r,f)^{k-j} (1+o(1))\right| < M \frac{|l_{k-j,s_{k-j}}|}{|l_{k,s_k}|} r_n^{k(\sigma(f)-2\varepsilon)}, \quad r_n \notin E_1.$$
(12)

Since $0 < \sigma(\alpha) = \sigma(f) < \infty$ and $\tau(\alpha) < \tau(f) < \infty$, from Lemma 2.5, there exists a set $E \subset [1, +\infty)$ that has infinite logarithmic measure such that for a sequence $\{r_n\}_1^\infty \in E_2 = E - E_1$, we have

$$\frac{M(r,\alpha)}{M(r,f)} < \exp\{-\kappa r_n^{\sigma(f)}\} \to 0 \quad \text{as } n \to \infty.$$
(13)

From (8), (9), (12), (13) and Lemma 2.2, we can get that

$$|b_m|r_n^m(1+o(1)) = |\gamma(z)| = O(\log r_n), \tag{14}$$

which is impossible. Thus, $\gamma(z)$ is not a polynomial.

Therefore, $\gamma(z)$ is a constant, that is, there exists some nonzero constant *c* such that

$$\frac{L(f(z)) - \alpha(z)}{f(z) - \alpha(z)} = c.$$

Thus, this completes the proof of Theorem 1.4.

4 The proof of Theorem 1.5

Since L(f) and f share the constant a *CM*, then there exists an entire function $\varphi(z)$ such that

$$\frac{L(f)-a}{f-a} = e^{\varphi}.$$
(15)

We will consider two cases as follows. Case 1. If a = 0, it follows from (15) that

$$\frac{L(f(z))}{f(z)} = e^{\varphi(z)}.$$
(16)

Since $L(f(z)) = a_k(z)f^{(k)}(z) + \dots + a_1(z)f'(z) + a_0(z)$ and $a_j(z), j = 0, 1, \dots, k$, are polynomials, it follows from (16) that

$$T(r,e^{\varphi}) = m(r,e^{\varphi}) = m\left(r,\frac{L(f)}{f}\right) \leq \sum_{j=1}^{k} m\left(r,\frac{f^{(j)}}{f}\right) + \sum_{i=0}^{k} m(r,a_i) = O\left(\log rT(r,f)\right),$$

outside of an exceptional set E_3 with finite linear measure. Thus, there exists a constant K such that

$$T(r, e^{\varphi}) \leq K \log(rT(r, f)) \quad \text{for } r \notin E_3.$$

By Lemma 2.8, there exists an $r_0 > 0$, and for all $r \ge r_0$, we have

$$T(r, e^{\varphi}) \le K \log(\zeta r T(\zeta r, f)) \quad \text{for any } \zeta > 1.$$
(17)

Thus, we can deduce from (17) that $\sigma(e^{\varphi}) \leq \sigma_2(f) < \infty$, that is, $\varphi(z)$ is a polynomial.

By using the same argument as in [21, Theorem 1.1], we can get that $\sigma_2(f) = \deg_z \varphi$, which is a contradiction to $\sigma_2(f)$ is not a positive integer. Thus, $\varphi(z)$ is only a constant, it follows from (15) that L(f(z)) = cf(z), where *c* is a nonzero constant.

Case 2. If $a \neq 0$, from the derivation of (15) and eliminating e^{φ} , we can get

$$\varphi'(z) = \frac{L'(f(z))}{L(f(z)) - a} - \frac{f'(z)}{f(z) - a}.$$
(18)

If $\varphi'(z) \equiv 0$, that is, $\varphi(z) \equiv c$, *c* is a constant. Thus, we can prove the conclusion of Theorem 1.5 easily.

If $\varphi'(z) \neq 0$, then it follows from (18) that

$$m(r,\varphi') = S(r,f). \tag{19}$$

We can rewrite (18) in the following form:

$$\varphi' = f \left[\frac{L(f)}{f} \frac{1}{L(f)} \frac{L'(f)}{L(f) - a} - \frac{1}{f} \frac{f'}{f - a} \right]$$

= $\frac{f}{a} \left[\frac{L(f)}{f} \frac{L'(f)}{L(f) - a} - \frac{L'(f)}{f} - \frac{f'}{f - a} + \frac{f'}{f} \right].$ (20)

Since $\varphi' \neq 0$ and *f* is transcendental, set

$$\Psi := \frac{L(f)}{f} \frac{L'(f)}{L(f) - a} - \frac{L'(f)}{f} - \frac{f'}{f - a} + \frac{f'}{f},$$
(21)

then we have $m(r, \Psi) = S(r, f)$. Thus, it follows from (20) and (21) that

$$\frac{a}{f(z)} = \frac{\Psi(z)}{\varphi'(z)}.$$
(22)

Since $\varphi(z)$ is an entire function, from (18)-(22), then we have

$$\begin{split} m\!\left(r,\frac{1}{f}\right) &\leq m(r,\Psi) + m\!\left(r,\frac{1}{\varphi'}\right) \leq S(r,f) + T\!\left(r,\varphi'\right) \\ &= S(r,f) + m\!\left(r,\varphi'\right) = S(r,f). \end{split}$$

It follows that

$$\delta(0,f) = \liminf_{r \to \infty} \frac{m(r,\frac{1}{f})}{T(r,f)} = 0,$$

which is a contradiction to the assumption of Theorem 1.5.

Thus, from Case 1 and Case 2, we complete the proof of Theorem 1.5.

5 The proof of Theorem 1.7

Since f(z) is an entire function of finite order $0 < \sigma(f) < \infty$ and $\xi \neq 0$ is a Borel exceptional value of f(z), then f(z) can be written in the form

$$f(z) = \xi + p(z)e^{h(z)},$$
 (23)

where h(z) is a polynomial of degree l and p(z) is an entire function satisfying $\sigma(p(z)) < \sigma(f(z)) = \deg_z h(z) = l$. Thus, we have

$$f(z+\eta_j) = \xi + p(z+\eta_j)e^{h(z+\eta_j)}, \quad j = 1, 2, \dots, k.$$
(24)

From Lemma 2.7, we have $\sigma(p(z+\eta_j)) < \sigma(f(z+\eta_j)) = \sigma(f(z))$ and $\deg_z h(z+\eta_j) = \deg_z h(z) = l$ for j = 1, 2, ..., k. Since $L_1(f(z)) = cf(z)$, it follows from (23) and (24) that

$$\sum_{j=1}^{k} p(z+\eta_j) e^{h(z+\eta_j)} = (c-k)d + cp(z)e^{h(z)}.$$
(25)

Set $h(z) = \mu_l z^l + \cdots$ and $\mu_l \neq 0$, then we can deduce from (25) that

$$\sum_{j=1}^{k} p(z+\eta_j) e^{\mu_{m-1}^{j} z^{m-1} + \dots} = \frac{(c-k)d + cp(z)e^{h(z)}}{e^{\mu_l z^l}}.$$
(26)

Let $\Phi := \sum_{j=1}^{k} p(z + \eta_j) e^{\mu_{m-1}^{j} z^{m-1} + \cdots}$, it is easy to see that $\Phi \neq 0$ and $\sigma(\Phi) < \sigma(f)$, that is, $T(r, \Phi) = o(T(r, f)) = o(T(r, e^{h(z)}))$.

Suppose that $c \neq k$. Since $\xi \neq 0$, it follows from (26) that

$$N\left(r,\frac{1}{e^{h(z)}-\frac{(c-k)\xi}{cp(z)}}\right)=N\left(r,\frac{1}{\Phi}\right)\leq T(r,\Phi)=S\left(r,e^{h(z)}\right).$$

By the second fundamental theorem concerning small functions, for any $\varepsilon > 0$, we have

$$T(r, e^{h(z)}) \le N\left(r, \frac{1}{e^{h(z)} - \frac{(c-k)\xi}{cp(z)}}\right) + \varepsilon T(r, e^{h(z)}) + S(r, e^{h(z)})$$
$$= \varepsilon T(r, e^{h(z)}) + S(r, e^{h(z)}).$$

Since ε is arbitrary, we can get a contradiction from the above inequality. Thus, we can get that c = k.

Therefore, we prove that $L_1(f(z)) = kf(z)$, that is, the conclusion of Theorem 1.7 holds.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

HW, L-ZY and H-YX completed the main part of this article, HW, H-YX corrected the main theorems. All authors read and approved the final manuscript.

Author details

¹Department of Informatics and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, Jiangxi 333403, P.R. China.
²Department of Mathematics, Shandong University, Jinan, Shandong 250100, P.R. China.

Acknowledgements

The authors thank the referee for his/her valuable suggestions to improve the present article. The first author was supported by the NSF of China (11301233, 61202313), the Natural Science Foundation of Jiang-Xi Province in China (20132BAB211001), and the Foundation of Education Department of Jiangxi (GJJ14644) of China. The second author was supported by the NSF of China (11371225, 11171013).

Received: 24 June 2014 Accepted: 6 October 2014 Published: 27 Oct 2014

References

- 1. Hayman, WK: Meromorphic Functions. Clarendon, Oxford (1964)
- 2. Yang, L: Value Distribution Theory. Springer, Berlin (1993)
- 3. Yi, HX, Yang, CC: Uniqueness Theory of Meromorphic Functions. Kluwer Academic, Dordrecht (2003); Chinese original: Science Press, Beijing (1995)
- Rubel, L, Yang, CC: Values shared by an entire function and its derivative. In: Complex Analysis (Proc. Conf., Univ. Kentucky, Lexington, Ky., 1976). Lecture Notes in Mathematics, vol. 599, pp. 101-103. Springer, Berlin (1977)
- Brück, R: On entire functions which share one value CM with their first derivative. Results Math. 30, 21-24 (1996)
 Gundersen, GG, Yang, LZ: Entire functions that share one value with one or two of their derivatives. J. Math. Anal. Appl. 223, 85-95 (1998)
- Mues, E, Steinmetz, N: Meromorphe funktionen, die mit ihrer ersten und zweiten Ableitung einen endlichen Wert teilen. Complex Var. Theory Appl. 6, 51-71 (1986)
- Zhang, JL, Yang, LZ: A power of a meromorphic function sharing a small function with its derivative. Ann. Acad. Sci. Fenn., Math. 34, 249-260 (2009)
- 9. Zhang, QC: Meromorphic function that shares one small function with its derivative. J. Inequal. Pure Appl. Math. 6, Article 116 (2005)
- Ai, LJ, Yi, CF: The growth for solutions of a class of higher order linear differential equations with meromorphic coefficients. J. Jiangxi Norm. Univ., Nat. Sci. 38(3), 250-253 (2014)
- Tu, J, Huang, HX, Xu, HY, Chen, CF: The order and type of meromorphic functions and analytic functions in the unit disc. J. Jiangxi Norm. Univ., Nat. Sci. 37(5), 449-452 (2013)
- 12. He, J, Zheng, XM: The iterated order of meromorphic solutions of some classes of higher order linear differential equations. J. Jiangxi Norm. Univ., Nat. Sci. **36**(6), 584-588 (2012)
- Chang, JM, Zhu, YZ: Entire functions that share a small function with their derivatives. J. Math. Anal. Appl. 351, 491-496 (2009)
- Heittokangas, J, Korhonen, R, Laine, I, Rieppo, J, Zhang, JL: Value sharing results for shifts of meromorphic functions, and sufficient conditions for periodicity. J. Math. Anal. Appl. 355, 352-363 (2009)
- Li, XM, Yi, HX: Entire functions sharing an entire function of smaller order with their shifts. Proc. Jpn. Acad., Ser. A, Math. Sci. 89, 34-39 (2013)
- 16. Laine, I: Nevanlinna Theory and Complex Differential Equations. de Gruyter, Berlin (1993)
- 17. He, YZ, Xiao, XZ: Algebroid Functions and Ordinary Differential Equations. Science Press, Beijing (1988)
- Mao, ZQ: Uniqueness theorems on entire functions and their linear differential polynomials. Results Math. 55, 447-456 (2009)
- Chiang, YM, Feng, SJ: On the Nevanlinna characteristic of f(z + η) and difference equations in the complex plane. Ramanujan J. 16, 105-129 (2008)
- Barnett, DC, Halburd, RG, Korhonen, RJ, Morgan, W: Nevanlinna theory for the *q*-difference operator and meromorphic solutions of *q*-difference equations. Proc. R. Soc. Edinb., Sect. A, Math. 137, 457-474 (2007)
- 21. Li, XM, Yi, HX: An entire function and its derivatives sharing a polynomial. J. Math. Anal. Appl. 330, 66-79 (2007)

10.1186/1687-1847-2014-274 Cite this article as: Wang et al.: On some complex differential and difference equations concerning sharing function. Advances in Difference Equations 2014, 2014:274

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com