
EURASIP Journal on Advances
in Signal Processing

Zhao et al. EURASIP Journal on Advances in Signal
Processing (2016) 2016:106
DOI 10.1186/s13634-016-0406-3

RESEARCH Open Access

Self-organizing kernel adaptive filtering
Songlin Zhao1, Badong Chen2*, Zheng Cao1, Pingping Zhu1 and Jose C. Principe1

Abstract

This paper presents a model-selection strategy based on minimum description length (MDL) that keeps the kernel
least-mean-square (KLMS) model tuned to the complexity of the input data. The proposed KLMS-MDL filter adapts its
model order as well as its coefficients online, behaving as a self-organizing system and achieving a good compromise
between system accuracy and computational complexity without a priori knowledge. Particularly, in a nonstationary
scenario, the model order of the proposed algorithm changes continuously with the input data structure.
Experiments show the proposed algorithm successfully builds compact kernel adaptive filters with better accuracy
than KLMS with sparsity or fixed-budget algorithms.

Keywords: Kernel method, Model selection, Sparsification, Minimal description length

1 Introduction
Owing to their universal modeling capability and convex
cost, kernel adaptive filters (KAFs) are attracting renewed
attention. Even though these methods achieve power-
ful classification and regression performance, the model
order (system structure) and computational complexity
grows linearly with the number of processed data, for
example, the model order of kernel least-mean-square
(KLMS) [1] and kernel recursive-least-square (KRLS) [2]
scales as O(n) with respect to the number of samples,
where n is the number of processed data. The computa-
tional complexity are O(n) and O(n2) at each iteration,
respectively. This characteristic hinders widespread use of
KAFs unless the filter growth is constrained. To curb their
growth to sublinear rates, not all samples are included
in the dictionary and a number of different criteria for
online sparsification techniques are adopted: the novelty
criterion [3, 4], approximate linear dependency (ALD)
criterion [2, 5], coherence [6], the surprise criterion [7],
and quantization [8, 9]. Alternatively, pruning criteria dis-
card redundant centers from the existing large dictionary
[10–17].
Even though these techniques obtain a compact filter

representation and even a fixed-budget model, they still
have drawbacks. For example, sparsification algorithms
make growth sublinear but cannot constrain network size

*Correspondence: chenbd@mail.xjtu.edu.cn
2Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University, Xi’an,
China
Full list of author information is available at the end of the article

(model order) in a predefined range in nonstationary
environments. Fixed-budget algorithms [12, 14–16] still
require presetting the network size a priori, which also is
a major drawback in nonstationary environments. Indeed,
in such environments, the complexity of the time series as
seen by a filter increases during the transitions because of
the mixture of modes and can switch to a very low com-
plexity in the next mode. Online adjustment of the filter
order in infinite impulse filter (IIR) or finite impulse filter
(FIR) is unreasonable because all filter coefficients need
to be recomputed when the filter order is increased or
decreased, which will cause undesirable transients. How-
ever, this is trivial in KLMS because of one major reason:
the filter grows at each iteration, while the past parame-
ters remain fixed. Hence, the most serious disadvantage
of KLMS, its continuous growth, may become a feature
that allows unprecedented exploration of the design space,
creating effectively a filter topology optimally tuned to
the complexity of the input, both in terms of adaptive
parameters and model order. The model order selection
can be handled by searching an appropriate compromise
between accuracy and network size [18]. We adopt the
minimum description length (MDL) criterion as the cri-
terion to adaptively decide the model structure of KAFs.
The MDL principle, first proposed by Rissanen in [19], is
related to the theory of algorithmic complexity [20]. Ris-
sanen formulated model selection as data compression,
where the goal is to minimize the length of the combined
bit stream of the model description concatenated with the

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/195056595?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-016-0406-3-x&domain=pdf
mailto: chenbd@mail.xjtu.edu.cn
http://creativecommons.org/licenses/by/4.0/

Zhao et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:106 Page 2 of 12

bit stream describing the error. MDL utilizes the descrip-
tion length as a measure of the model complexity and
selects the model with the least description length.
Besides MDL, several other criteria have been pro-

posed to deal with the accuracy/model order compromise.
The pioneering work of the Akaike information crite-
rion (AIC) [21] was followed by the Bayesian Information
Criterion (BIC, which is also known as the “Schwarz infor-
mation criterion (SIC)”) [22, 23], the predictive minimum
description length (PDL) [24], the normalized maximum
likelihood [25], and the Bayesian Ying-Yang (BYY) infor-
mation criterion [26]. The utilization of the MDL in our
work is based on the fact that it is robust against noise and
relatively easy to estimate online, which is a requirement
of our design proposal. Compared with others, MDL also
has the great advantage of relatively small computational
costs [27, 28].
The paper structure is as follows: in Section 2, we

present a brief review of theMDL principle and the related
kernel adaptive filter algorithms, KLMS and quantized
KLMS (QKLMS). Section 3 proposes a novel KLMS spar-
sification algorithm based on an online version of MDL.
Because this algorithm utilizes quantization techniques,
it is called QKLMS-MDL. The comparative results of the
proposed algorithms are shown in Section 4, and final
conclusions and discussion are given in Section 5.

2 Foundations
2.1 Minimum description length
The MDL principle addresses a system model as a data
codifier and suggests choosing the model which provides
the shortest description length. The basic principle of
MDL estimates both the cost of specifying the model
parameters and the associated model prediction errors
[27].
Let f represent the model to be estimated. The model

parameters θ are chosen from a parametric family �
{
f (χ(n))|θ : θ ∈ � ⊂ R

k
}

(1)

based on the observation χ(n) =[x(1), . . . x(n)]T , where
k is the dimension of θ . MDL is a two-stage coding
scheme: the model description length L(θ̂) (in bits1) for
the estimated member θ̂ (system complexity) and the
error description length L(χ(n)|θ̂) (in bits) based on θ̂

(system accuracy). According to Shannon’s entropy prin-
ciple,

L(χ(n)|θ̂) = − logP(χ(n)|θ̂) (2)

where P(χ(n)|θ̂) is the conditional distribution of χ(n)

given θ̂ . There are several methods to estimate L(θ̂), for
example, simple description [29] or mixture description
lengths [30]. Since the simple description length is easy
to implement (assigns the same number of bits to each

model parameter) and has been successfully utilized in
many practical problems [31–33], it is used in this paper.
Therefore, we have

L(θ̂) = k
2
log n (3)

Combining the description lengths from these two
stages, we establish the two-stage MDL formulation

Lmodel(n) = − logP(χ(n)|θ̂) + k
2
log n (4)

Intuitively, this criterion penalizes large models by
taking into consideration the requirement of specify-
ing a large number of weights. The best model accord-
ing to MDL is the one that minimizes the sum of
the model complexity and the number of bits required
to encode their errors. MDL has rich connections
with other model-selection frameworks. Obviously, min-
imizing − logP(χ(n)|θ̂) is equivalent to maximizing
P(χ(n)|θ̂). Therefore, in this sense, MDL coincides with
the penalized maximum likelihood (ML) [34] in the para-
metric estimation problem, as well as AIC. The only
difference is the penalty term (AIC uses k, the model order
instead of Eq. 3). Furthermore, MDL has close ties to
Bayesian principles (MDL approximates BIC asymptoti-
cally). Therefore, the MDL paradigm serves as an objec-
tive platform from which we can compare Bayesian and
non-Bayesian procedures alike, even though the theoreti-
cal underpinnings behind them are much different.
The superiority of MDL has been indicated in various

applications. In neural networks, MDL was adopted to
determine the number of units that mimic the underlying
dynamic property of the system [27, 35]. After that, as an
improvement, the MDL criterion was utilized to directly
determine an optimal neural network model and suc-
cessfully applied to prediction problems [36] and control
systems [37]. Furthermore, the embedding dimension of
an artificial neural network is decided based on construct-
ing a global model with a least description length [38].
Starting from an overly complex model and then prun-
ing unneeded basis function according toMDL, Leonardis
and Bischof [39] proposed a radial basis function (RBF)
network formulation to balance accuracy performance,
training time, and network complexity. Besides neural net-
works, MDL has also been successfully used in vector
quantization [40], clustering [31, 41, 42], graphs [43, 44],
and so on. In most cases, MDL is used for supervised
learning as a penalty term on the error function or as a cri-
terion for model selection [40]. One exception is the work
of Zemel [33] who applied MDL to determine a suitable
data-encoding schema. Compared with MDL, AIC crite-
rion tends to select a model that is too complex and is not
appropriate for small data sets.

Zhao et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:106 Page 3 of 12

In this work, MDL, as described by Eq. 4, will be utilized
in a very specific and unique scenario, which can be best
described as a stochastic extension of MDL (MDL-SE) to
preserve compatibility with online learning. Recall that we
are interested in continuously estimating the best filter
order (the dictionary length) online when the statistical
properties of the signals change in short windows (locally
stationary environments). The KAF provides a simple
update of the parameter vector on a sample-by-sample
basis; the error description length can be estimated from
the short-term sequence of the local error, but we have
to estimate appropriately the error sequence probability.
Both estimations seem practical. Also recall that a KAF
using a stochastic gradient descent with a small step size
always reduces locally the a priori error [1]. Therefore,
there is an instantaneous feedback mechanism linking the
local error and the local changes in the filter weights,
which also simplifies the performance testing of the algo-
rithm. In these conditions, we cannot work anymore with
statistical operators (expected value) and will use instead
temporal average operators on samples in the recent past
of the current sample. Moreover, estimating the probabil-
ity of the error in Eq. 4 must also be interpreted as a local
operation in a sliding time window over the time series,
with a length relevant to reflect the local statistics of the
input. So MDL-SE creates a new parameter, the window
length that needs to be selected a priori, and its influence
in performance needs to be appropriately quantified and
compared with alternative KAF approaches.

2.2 Kernel least-mean-square algorithm
KLMS utilizes gradient-descent techniques to search for
the optimal solution in reproducing kernel Hilbert space
(RKHS). Specifically, the learning problem of KLMS is to
find a high-dimensional weight vector � in RKHS H by
minimizing the empirical risk:

min
�

Remp[� ∈ H, S ∈ Zn]=
n∑

i=1

(
d(i) − �Tϕ(u(i))

)2

(5)

where {S = (u(1), d(1)), . . . , (u(n), d(n))} ∈ Zn is a
sequence of learning samples. ϕ(·) is a nonlinear map-
ping to transform data from the input space to a RKHS.
Assume the initial weight is�(0) = 0, then using the LMS
algorithm in RKHS yields

ε(n) = d(n) − �(n − 1)Tϕ(u(n))

�(n) = η

n∑
i=1

ε(i)ϕ(u(i))

=
n∑

i=1
α(i)ϕ(u(i))

(6)

where ε(n) and�(n) are, respectively, the prediction error
and weight vector at time index n. η is the step size. α(i)
is the ith element of α(n) to simplify the notation in this
section. α(n) =[ηε(1), ηε(2), . . . ηε(n)] is the coefficient
vector of KLMS at n.
According to the “kernel trick,” the system output for the

new input u(n + 1) can be expressed as

�(n)Tϕ(u(n + 1)) =
[n∑
i=1

α(i)ϕ(u(i))
]T

ϕ(u(n + 1))

=
n∑

i=1
α(i)κ(u(i),u(n + 1))

(7)

where κ(·, ·) is a Mercer kernel. In this work, the
default kernel is the Gaussian kernel, κ(x, x′) =
exp

(−||x − x′||2/2σ 2), where σ is the kernel size. The
set of samples u(i), used to position the positive defined
function, constitutes the dictionary of centers C(n) =
{u(i)}ni=1, which grows linearly with the input samples.
KLMS provides a well-posed solution with finite data
[1]. Moreover, as an online learning algorithm, KLMS is
much simpler to implement, in terms of computational
complexity and memory storage, than other batch-model
kernel methods because all weights (the errors) remain
fixed during the weight update.

2.3 Quantized kernel least-mean-square algorithm
Quantization techniques have been introduced to KLMS
to develop a sparsified kernel filter, called QKLMS. This
algorithm quantizes the input space with a simple vec-
tor quantization (VQ) algorithm to curb the network size.
Every time a new sample arrives, the QKLMS algorithm
checks if its distance to the available centers is less than
the predefined minimal distance. If there is an existing
center sufficiently close to the new sample, the center dic-
tionary and network size remain unchanged but the coef-
ficient of the closest center will be updated. Otherwise, the
new sample is included in the dictionary. For online kernel
learning, most of the existing VQ algorithms are not suit-
able because the center dictionary is usually trained offline
and the computational burden is heavy. Therefore, a very
simple and greedy online VQ method is used here based
on the Euclidean distance in the input space between the
sample and the existing centers.2 QKLMS has been shown
to be superior to all the other methods of curbing the dic-
tionary growth [8], and the major difference is that the
information available in the input is never discarded, it is
used to update the VQ coefficients with each new input
sample. Because of nonstationarity, it is unclear how one
can cross-validate this parameter, so the minimal distance
needs to be selected a priori for each application on a
representative data segment, and experience shows that

Zhao et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:106 Page 4 of 12

performance changes smoothly around the optimum [8].
The sufficient condition for QKLMS mean-square con-
vergence and a lower and upper bound on the theoretical
value of the steady-state excess mean square error (EMSE)
are studied in [8]. The summary of the QKLMS algorithm
with online VQ is presented in Algorithm 1.

Algorithm 1 QKLMS Algorithm
Initialization: stepsize η, quantization threshold ξU >

0, center dictionary C(1) = {u(1)} and coefficient
vector α(1) =[ηd(1)]
while {u(n), d(n)} is available do

ε(n) = d(n) −
M(n−1)∑
i=1

αi(n − 1)κ(u(n), Ci(n − 1))

dis(u(n), C(n − 1)) = min
1≤i≤M(n−1)

‖u(n) − Ci(n − 1)‖
i∗ = argmin

1≤i≤M(n−1)
‖u(n) − Ci(n − 1)‖

if dis(u(n), C(n − 1)) ≤ ξU then
C(n) = C(n − 1), αi∗(n) = αi∗(n − 1) + ηε(n)

else
C(n) = {C(n−1),u(n)}, α(n)T =[α(n−1)T , ηε(n)]

end if
end while

(where Ci(n − 1) and M(n − 1) are the ith element and
size of C(n− 1) respectively, αi(n− 1) is the ith element of
α(n − 1), and ‖.‖ denotes the Euclidean norm in the input
space.)

3 MDL-based quantized kernel
least-mean-square algorithm

The basic idea of the proposed algorithm, QKLMS-MDL,
is as follows: once a new datum is received, the cost of
adding this datum as a new center ormerging it to its near-
est center is calculated. Here, the distance measure for the
merge operation is the same as the QKLMS [8]. Then the
procedure with smaller description length is adopted: the
proposed algorithm compares the strategy of discarding
an existing center with the one of keeping it according
to the MDL criterion. This process is repeated until all
existing centers are scanned, such that the network size
can be adjusted adaptively for every sample particularly in
nonstationary situations. We show next how to estimate
the MDL-SE criterion sufficiently well in these nonsta-
tionary conditions and that KAF MDL filters outperform
conventional techniques of sparsification or fixed budget
presented in the literature.

3.1 Objective function
In QKLMS-MDL, the adaptive model Lmodel(n) has two
parts: the quantized centers C(n) = {ci}M(n)

i=1 and the cor-
responding filter coefficients α(n), each of size M(n), the

filter order, augmented by the other free parameters, the
step size η and kernel size σ . Notice we are assuming that
all the centers are mapped to the same RKHS and that
we are using the Gaussian kernel fully defined by one free
parameter, the kernel size. Equation 4 in this particular
case is expressed as

Lmodel(n) = − logP(ε(n)|C(n),α(n)) + L(n)

2
log n (8)

where the local error sequence is ε(n) =[ε(1), . . . , ε(n)]T ,
and L(n) = 2M(n)+2 is the number of themodel’s param-
eters at sample n. If M(n) is far greater than 2, that is
M(n) � 2, we can approximate L(n)

2 byM(n), yielding

Lmodel(n) ≈ − logP(ε(n)|C(n),α(n)) + M(n) log n
(9)

The problem is how to estimate P(ε(n)|C(n),α(n)).
Because we assume local stationary conditions, it makes
more sense to utilize only a window of the latest sam-
ples than taking the full history of errors to estimate the
description length. Therefore, a sliding window method-
ology is adopted here. Only the latest Lw errors εLw(n) =
[ε(n − Lw + 1), . . . , ε(n)]T are utilized to estimate the
system performance, where Lw is the free-parameter win-
dow length. Hence, the objective function for MDL is
expressed as

Lmodel(n) = − logP(εLw(n)|C(n),α(n)) + M(n) log Lw
(10)

We still need to find a reasonable estimator for the error
log likelihood in the window. As usual, we can choose
between a nonparametric or a parametric estimator of the
probability of the errors in the window. Given the stochas-
tic approximation nature of the proposed approach, creat-
ing and updating a histogram of the errors in the window
or using Parzen estimators [45] makes sense but it will be
noisy because the window is small. And how to select the
histogram bin size or kernel for Parzen estimators brings
new difficulties, another free parameter. Alternatively, we
can estimate the error log likelihood in the window simply
by the log of the empirical error variance for each sample
in the window as shown in Eq. 11, which worked better in
our tests and has no free parameter.

− logP(εLw(n)|C(n),α(n)) = Lw
2

log

⎛
⎝

n∑
i=n−Lw+1

ε(i)2
⎞
⎠

(11)

This corresponds to an implicit Gaussian model for the
probability density function (pdf) of the local error; how-
ever, we are not attempting to justify theoretically that
the Gaussian is the best pdf to fit local errors in this sce-
nario; we are just estimating the log likelihood as required

Zhao et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:106 Page 5 of 12

by MDL-SE. Note also that the intrinsic sample by sam-
ple feedback of the QKLMS helps here, because if the
estimate is not correct, this simply says that the deci-
sion of decreasing or increasing the filter order will be
wrong, the local error will increase, and the filter will self-
correct the order for the next sample. This will create
added error power with regard to the optimal perfor-
mance, and since we are going to compare QKLMS-MDL
with the conventional KAF approaches, this will show up
as noncompetitive performance.

3.2 Formulation of MDL-based quantized kernel
least-mean-square algorithm

When a new center is received, the description length
costs of adding this data into the center dictionary or
merging it into the nearest center are compared. That is,
we calculate �Lmodel_1(n) as shown in Eq. 12.

�Lmodel_1(n) =Ladd(n) − Lmerge(n)

=Lw
2

log

⎛
⎝

n∑
i=n−Lw+1

ε̂(i)2
⎞
⎠+(M(n)+1)

log Lw− Lw
2

log

⎛
⎝

n∑
i=n−Lw+1

ε̄(i)2
⎞
⎠−M(n) log Lw

=Lw
2

log

⎛
⎝

n∑
i=n−Lw+1

ε̂(i)2
⎞
⎠− Lw

2
log

⎛
⎝

n∑
i=n−Lw+1

ε̄(i)2
⎞
⎠ + log Lw

(12)

where ε̂(i) expresses the estimated prediction error after
adding a new center and ε̄(i) is the approximated predic-
tion error after merging. If �Lmodel_1(n) > 0, the cost of
adding a new center is larger than the cost of merging.
Therefore, this new data should be merged to its nearest
center according to the MDL criteria. Otherwise, a new
center is added into the center dictionary.
As shown in Algorithm 1, the beauty of QKLMS is that

its coefficients are a linear combination of current predic-
tion errors. This fact leads to an easy estimate of ε̂(i) and
ε̄(i). Taking ε̂(i) as an example,

ε̂(i) =d(i) −
M(n)∑
j=1

αj(n)κ(u(i),Cj(n))

=d(i) −
M(n−1)∑
j=1

αj(n − 1)κ(u(i),Cj(n − 1)) − ηε(n)κ(u(i),u(n))

=ε(i) − ηε(n)κ(u(i),u(n))

(13)

Assume ci∗ is the nearest center of u(n),

ε̄(i) = ε(i) − ηε(n)κ(u(i), ci∗) (14)

Substituting these two equations into Eq. 12, it is
straightforward to obtain �Lmodel_1(n).

Similar to QKLMS, QKLMS-MDLmerges a sample into
its nearest center in the input space. The difference is that
QKLMS-MDL quantizes the input space according to not
only the input data distance but also the prediction error,
which results in higher accuracy.
We have just solved the problem of how to increase the

network size efficiently. But this is insufficient in a non-
stationary condition where older centers should also be
discarded. General methods to handle this situation uti-
lize a nonstationary detector, like the likelihood ratio test
[46], M-estimators [47], and spectra analysis, to check
whether the true system or the input data shows different
statistical properties. However, the computational com-
plexity of these detectors is high and their accuracy is
not good enough. The ability of MDL to estimate system
complexity according to the data complexity inspired us
to also apply MDL as the criterion for adaptively discard-
ing existing centers. After checking whether a new datum
should be added to the center dictionary, the proposed
algorithm compares the description length costs between
discarding an existing center and keeping the datum, and
the strategy with the smaller description length is taken.
This procedure is repeated until all existing centers are
scanned.
Similar to Eq. 12, the description length difference

between discarding and keeping a center is shown in
Eq. 15,

�Lmodel_2(n) =Ldiscard(n) − Lkeep(n)

=Lw
2

log

⎛
⎝

n∑
i=n−Lw+1

ε̂(i)2
⎞
⎠+(M(n)−1) log

Lw− Lw
2

log

⎛
⎝

n∑
i=n−Lw+1

ε̄(i)2
⎞
⎠−M(n) log Lw

=Lw
2

log

⎛
⎝

n∑
i=n−Lw+1

ε̂(i)2
⎞
⎠− Lw

2
log

⎛
⎝

n∑
i=n−Lw+1

ε̄(i)2
⎞
⎠ − log Lw

(15)

where ε̂(i) expresses the estimated prediction error
after discarding an existing center, while ε̄(i) is the
approximated prediction error of keeping this center. If
�Lmodel_2(n) > 0, the cost of discarding an existing cen-
ter is larger than the cost of keeping it. Therefore, the
center dictionary does not change. Otherwise, an existing
center should be discarded. Assume ck is the center to be
examined,

ε̂(i) =ε(i) + αk(n − 1)κ(u(i), ck)
ε̄(i) =ε(i)

(16)

Notice that as long as an existing center is discarded,
the value of ē(i) for the next iteration should be changed
correspondingly. Let cj be the discarded center, so

ε(i) = ε(i) + αk(n)κ(u(i), cj) (17)

Zhao et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:106 Page 6 of 12

Otherwise, ε(i) doesn’t change.
Algorithm 2 gives a summary of the proposed QKLMS-

MDL algorithm. Compared with traditional KLMS, the
computational complexity of the proposed method is
improved. At each iteration, the computational complex-
ity to deciding whether a new center should be added or
not is O(Lw) and it is O(MLw) for deciding whether an
existing center should be discarded or not.

Algorithm 2 QKLMS-MDL Algorithm
Initialization: window length Lw, stepsize η, center
dictionary C(1) = {u(1)} and coefficient vector α(1) =
[ηd(1)];
Computing
while {u(n), d(n)} is available do

ε(n) = d(n) −
M(n−1)∑
i=1

αi(n − 1)κ(u(n), Ci(n − 1));

% check whether a new center is added or not
Calculate �Lmodel_1(n) according to Eq.12;
if �Lmodel_1(n) > 0 then
C(n) = {C(n−1),u(n)}, α(n)T=[α(n−1)T , ηε(n)];

else
i∗ = argmin

1≤i≤M(n−1)
‖u(n) − Ci(n − 1)‖;

C(n) = C(n − 1), αi∗(n) = αi∗(n − 1) + ηε(n);
end if
% check whether the existing centers are discarded
while ck ∈ C(n) do
Calculate �Lmodel_2(n) according to Eq.15;
if �Lmodel_2(n) > 0 then
C(n) doesn’t change;

else
C(n) = {C(n)\ck}, throw away the corresponding
coefficient and update prediction error en,Lw
according to Eq.17;

end if
end while

end while

The above derivation assumes that model accuracy and
simplicity are equally important, as in the stationary case.
In practice, when the system model order is low, the
performance accuracy plays a more important role than
model simplicity. In fact, in this case, the instantaneous
errors may be frequently small by chance and QKLMS-
MDL will wrongly interpret that the model order is high
and needs to be decreased. This is dangerous when the
filter order is low, because the filer has few degrees of free-
dom and the penalty in accuracy will be high. Therefore,
we adopt a strategy that privileges system accuracy, i.e.,
if the network size is smaller than a predefined minimal
model order threshold N, no matter what is the value of

Eq. 15, the corresponding center should be kept in the cen-
ter dictionary. The disadvantage of this heuristic is that it
creates an extra free parameter in the modeling besides
the window size Lw. In our simulations, we kept N = 5
because the experiments show good results.
The other free parameter Lw adjusts the compromise

between system accuracy and network size, and it is more
important. Note that in Eq. 10 with the estimator of Eq. 11
Lw enters linearly in the error term and as a log in the
model complexity term. Therefore, long windows put a
higher constraint on the error than on the model order,
which indirectly emphasizes model accuracy. When Lw =
1, we are just using maximum likelihood. We experimen-
tally verified the effect of Lw in simulations because we still
do not have a systematic approach to select this parame-
ter based on the data but can advance some experimental
observations: (a) the larger the Lw, the more emphasis
is given to system accuracy instead of model complexity.
Otherwise, a smaller Lw yields simpler (fewer parameters)
models. (b) If the model order changes frequently, the
value of Lw should be reduced, such that the data utilized
to estimate the description length has a higher probabil-
ity of being in the stationary regime. Finally, even though
the procedure of discarding existing centers scales pro-
portionally to the window size only, there is no need to
check it at every sample in local stationary environments
because they do not occur that fast nor all the time. We
suggest that the update be done associated with the local
stationary of the input data, i.e., at a rate at least twice the
inverse of Lw.

4 Simulation
In this section, we test the QKLMS-MDL in three signal-
processing applications.We begin by exploring the behav-
ior of QKLMS-MDL in a simple environment. Next, we
move to a real-data time-series prediction problem , and
we finalize with an application in speech processing. The
tests presented are online learning tests when the weights
are learned from an initial zero state and never fixed, and
so, they represent performance in unseen data, similar to
test set results, except that the free model parameters have
been set a priori at their best values. To gauge the effect
of the free parameters of the algorithms, we also present
results across a set of their possible values around the
optimum. Monte Carlo tests are in some conditions con-
ducted to illustrate the effect of variability across different
conditions.

4.1 Systemmodel
In this section, the underlying dynamic system is governed
by

z(n)=a(n)
z(n−1)z(n−2)z(n−3)x(n−2)(z(n−3)−1)+x(n−1)

1 + z(n − 2)2 + z(n − 3)2 (18)

Zhao et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:106 Page 7 of 12

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

time index

a

H
1

H
2

H
12

−0.2

0

0.2

0.4

0.6

0.8

time index

th
e

m
ea

n
of

 x

H
1

H
2H

12

(a) (b)

Fig. 1 Evolution curves of system parameters: a coefficient a; bmean of x

where the system input x(n) is a random signal distributed
as N (μ, 1) and a(n) is a time-varying system coefficient.
The noisy system output is given by y(n) = z(n) + v(n),
where the noise v(n) is Gaussian distributed with zero
mean and standard deviation 0.1. We change the value of
a(n) and the mean of x(n) with time to simulate a non-
stationary scenario: a = 1.0 in the first 1000 samples
(segment H1) and decreases to 0.5 with different change
rates (segment H12) then is fixed to a = 0.5 (segment H2).
Similarly, the mean of x(n) is set at 0 in segment H1 and
then linearly increase to 0.8, as shown in Fig. 1. The prob-
lem setting for system identification is as follows: the input
vector of the kernel filter is

u(n) =[y(n−1), y(n−2), y(n−3), x(n−1), x(n−2)]T

and the corresponding design signal is y(n). In this
section, both the kernel size and the step size are set at
1.0. The online MSE is calculated based on the mean of
the prediction error averaged in a running window of 100
samples.
At first, we compare the performance of QKLMS and

QKLMS-MDL when the true system or the input data
change slowly, for example, the length of transition area
H12 is 1000. The quantization factor γ of QKLMS is set
as 0.75 and the window length of QKLMS-MDL is 100

such that both QKLMS and QKLMS-MDL have relatively
good compromise between system complexity and accu-
racy performance. The simulation results over 200 Monte
Carlo runs are shown in Fig. 2. As shown in Fig. 2, the net-
work size of QKLMS-MDL is much smaller than QKLMS
while their MSE are almost the same. Furthermore, the
QKLMS-MDL adjusts the network size adaptively accord-
ing to the true system complexity. For example, during the
transition of a(n), the system parameters change which
increases the signal complexity, but after iteration 2000,
the network size decreases gradually signaling that the
input signal complexity is reduced. Older centers are dis-
carded, and new important centers are added to the center
dictionary. On the contrary, QKLMS keeps all existing
centers which results in a network size always growing
larger.
In order to verify the superiority of QKLMS-MDL,

in Table 1, we list the final network sizes of QKLMS
and QKLMS-MDL for different transition length condi-
tions. The parameter settings are shown in Table 2 where
all parameters are selected such that both algorithms
yield similar MSE. The final network size of QKLMS-
MDL is noticeably smaller than QKLMS. Furthermore,
in these different conditions, the final QKLMS-MDL net-
work sizes are similar to each other. This fact also testifies

0 500 1000 1500 2000 2500 3000
10

−2

10
−1

10
0

time index

M
S

E

QKLMS
QKLMS−MDL

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

80

90

time index

ce
nt

er
 n

um
be

r

QKLMS
QKLMS−MDL

(a) (b)

Fig. 2 Performance comparison for QKLMS and QKLMS-MDL in a system identification problem with transition area length 1000. a Convergence
curves in terms of MSE. b Network size evolution curves

Zhao et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:106 Page 8 of 12

Table 1 The final network size comparison of QKLMS and
QKLMS-MDL in a system identification problem

Abrupt change 1
500

1
5000

QKLMS 118.4 ± 4.22 95.08 ± 3.47 124.37 ± 3.52

QKLMS-MDL 12.77 ± 7.55 14.89 ± 9.19 14.23 ± 10.85

All of these results are summarized in the form of “average ± standard
deviation”

that the network size chosen by QKLMS-MDL is decided
by the local complexity of current input data.

4.2 Santa Fe time-series prediction
In this experiment, the chaotic laser time series from
the Santa Fe time-series competition, data set A [48] is
used [49]. This time series is particularly difficult to pre-
dict, due both to its chaotic dynamics and to the fact
that only three “intensity collapses” occur in the data set
[2], as shown in Fig. 3. After normalizing all data to lie
in the range [0, 1], we consider the simple one-step pre-
diction problem. The previous 40 points u(i) =[x(i −
40), . . . , x(i − 1)]T are used as the input vector to predict
the current value x(i) which is the desired response.
At first, we verify the superiority of QKLMS-MLD ver-

sus the QKLMS, the novelty criterion (NC), and surprise
criterion (SC), denoted, respectively, as KLMS-NC and
KLMS-SC. In the simulation below, the free parameters
related to KLMS are set as follows: the Gaussian kernel
with kernel width equaling to 0.6 is selected and step size
η is set to 0.9, which were cross-validated in a training set.
Performance comparisons between these algorithms are
presented in Figs. 4 and 5. In Fig. 4, the parameters of the
four sparse algorithms are chosen such that the algorithms
yield almost the same maximum network size, while in
Fig. 5, the parameters of the sparse algorithms are chosen
such that they produce almost the same MSE at the end
of adaptation. Table 3 lists the specific parameter settings.
Simulation results clearly indicate that the QKLMS-MDL
exhibits much better performance, i.e., achieves either a
much smaller network size or much smaller MSE than
QKLMS, KLMS-NC, and KLMS-SC. Owing to coarse
quantization, most of the useful information is discarded
by KLMS-NC which results in its learning curve not
decreasing after 190 iterations as shown in Fig. 4. Differ-
ent fromQKLMS,QKLMS-MDL considers the prediction
error into quantization and, consequently, has better per-
formance.More importantly, the network size of QKLMS-
MDL varies. For example, as shown in Fig. 4, the network

Table 2 Parameter settings in a channel equalization problem to
achieve almost the same final MSE in each condition

Abrupt change 1
500

1
5000

QKLMS γ = 0.65 γ = 0.7 γ = 0.65

QKLMS-MDL Lw = 100 Lw = 100 Lw = 100

size of QKLMS-MDL peaks when the collapse occurs
because of local nonstationarity and decreases between
time indexes 300 and 400 because the input data com-
plexity in this range is well predicted by a lower model.
This experiment shows the proposed method has good
tracking ability even for data with local nonstationarity.
Then we investigate how the window length affects the

system performance. The effect of window length on final
MSE and final network size are shown in Figs. 6 and 7,
respectively. As shown in Fig. 6, when the window length
increases, the final MSE of KLMS-MDL is closer to that
of KLMS (for comparison, the final MSE of KLMS also is
plotted in the figure). Figure 7 indicates that the increase
of the window length results in an increase of the final
network size. Fortunately, this growth trend gradually sta-
bilizes, such that the network size is limited in a range no
matter how long the window length is. In this sense, the
window length is also affecting the compromise between
system accuracy and network complexity as we can expect
from Eqs. 12 and 15, since the window length appears in
log form in one of the terms and not in the other.

4.3 Speech signal analysis
Prediction analysis is a widely used technique for the
analysis, modeling, and coding of speech signals [1]. A
slowly time-varying filter could be used to model the
vocal tract, while a white noise sequence (for unvoiced
sounds) represents the glottal excitation. Here, we use
the kernel adaptive filter to establish a nonlinear pre-
diction model for the speech signal. Ideally, for each
different phoneme, which represents a window of time
series with the same basic statistics, the prediction

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration

Fig. 3 Santa Fe time-series data

Zhao et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:106 Page 9 of 12

0 100 200 300 400 500 600 700 800 900
0

0.02

0.04

0.06

0.08

0.1

0.12

time index

M
S

E

QKLMS
KLMS−NC
KLMS−SC
KLMS
QKLMS−MDL

0 100 200 300 400 500 600 700 800 900
0

5

10

15

20

25

30

time index

ce
nt

er
 n

um
be

r

QKLMS
QKLMS−MDL
KLMS−NC
KLMS−SC

(a) (b)

Fig. 4 Performance comparison in the Santa Fe time-series prediction (the same maximum network size). a Convergence curves in terms of MSE.
b Network size evolution curves

model of speech should adjust accordingly to “track”
such change. Therefore, we can conjecture to iden-
tify the phonetic changes through observing the kernel
adaptive filter behavior. For example, when the filter
order has local peaks, the phonetics should be chang-
ing because the filter observes two different stationary
regimes, as demonstrated in Section 4.2. Therefore, such
abrupt filter change can be used for phoneme segmenta-
tion, which is rather difficult to do even for the human
observer.
A short whole voiced sentence from a male is used as

the source signal. The original voice file can be down-
loaded from [50]. To increase the MDL model accuracy
when the stationary window is short, this signal is upsam-
pled to 16,000 Hz from the original 10,000 Hz. Then
QKLMS is applied by the previous 11 samples u(i) =
[x(i − 11), . . . , x(i − 1)]T . In this section, the Gaussian
kernel with σ = 0.3 is selected. The step size is 0.7 accord-
ing to the cross-validation test. The quantization factor of
QKLMS is set as 0.67 and the window length of QKLMS-

MDL is 50, such that both QKLMS and QKLMS-MDL
have relatively similar prediction MSE performance.
Figure 8 shows how the network size of QKLMS-MDL

varies with the input speech signal. The phonetic bound-
aries are obtained from SPPAS, which is a free audio
annotation tool [51, 52]. As show in this plot, the net-
work size changes close to the phonetic boundary, like
[W] to [e:r] and [j] to [i]. After adapting to the speech (first
couple of phonemes), the network size of QKLMS-MDL
only changes dramatically during the phoneme transi-
tions [e:r], [ei], [i], and [r], because the signal statistics
change and the QKLMS-MDL initially increases the pre-
diction model due to co-articulation and then decreases
it again too much (with an undershoot) until it stabilizes
for the remaining of the phoneme. On the other hand,
we see that the QKLMS is always increasing size, with
the largest rate of increase again during the phoneme
transitions. So both respond to the changes in the signal
statistics, but QKLMS-MDL preserves a low filter order,
with comparable error during the full sentence.

0 100 200 300 400 500 600 700 800 900
0

0.02

0.04

0.06

0.08

0.1

0.12

time index

M
S

E

QKLMS
KLMS−NC
KLMS−SC
KLMS
QKLMS−MDL

0 100 200 300 400 500 600 700 800 900
0

50

100

150

200

250

300

350

400

time index

ce
nt

er
 n

um
be

r

QKLMS
QKLMS−MDL
KLMS−NC
KLMS−SC

(a) (b)

Fig. 5 Performance comparison in the Santa Fe time-series prediction (the same MSE at the final stage). a Convergence curves in terms of MSE.
b Network size evolution curves

Zhao et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:106 Page 10 of 12

Table 3 Parameter settings for different algorithms in a
time-series prediction

Same network size Same final MSE

QKLMS γ = 1.97 γ = 1.54

QKLMS-MDL Lw = 150 Lw = 150

KLMS-NC
σ1 = 1.38 σ1 = 0.85

σ2 = 0.001 σ2 = 0.001

KLMS-SC
λ = 0.005 λ = 0.005

T1=90, T2=−0.085 T1=300, T2=−1.6

σ1 the distance threshold, σ2 the error threshold, λ the regularization
parameter, T1 the upper threshold of the surprise measure, T2 the lower
threshold of the surprise measure

5 Conclusions
This paper proposes for the first time a truly self-
organizing adaptive filter where all the filter weight and
order are adapted online from the input data. How to
choose an efficient kernel model to make a trade-off
between computational complexity and system accuracy
in nonstationary environments is the ultimate test for
an online adaptive algorithm. Based on the popular and
powerful MDL principle, a sparsification algorithm for
kernel adaptive filters is proposed. Experiments show
that the QKLMS-MDL successfully adjusts the network
size according to the input data complexity while keep-
ing the accuracy in an acceptable range. This property is
very useful in nonstationary conditions while other exist-
ing sparsification methods keep increasing the network
size. Fewer free parameters and an online model makes
QKLMS-MDL practical in real-time applications.
We believe that many applications will benefit from

QKLMS-MDL. For example, speech signal processing is
an extremely interesting area. Nonstationary behavior is
the nature of speech. Furthermore, owing to a sufficient

100 150 200 250 300 350 400
0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

window length L
w

fin
ia

l M
S

E

MDL−QKLMS
KLMS

Fig. 6 Effect of the window length on the final MSE in the Santa Fe
time-series data

100 150 200 250 300 350 400
4

5

6

7

8

9

10

11

12

13

14

window length L
w

fin
ia

l n
et

w
or

k
si

ze

Fig. 7 Effect of the window length on the final network size in the
Santa Fe time-series data

number of samples to quantify short-term stationar-
ity, front-end signal processing (acoustic level) based
on QKLMS-MDL seems to be a good methodology to
improve the quantification of speech recognition because
of its fast response. However, this is still a very prelimi-
nary paper, and many more results and better arguments
for the solutions are required. Although self-organization
solves some problems, it also brings new ones in the
processing. In fact, as described in Section 3, the QKLMS-
MDL algorithm “forgets” in nonstationary conditions the
previous learning results and needs to relearn the input-
output mapping when the system switches to a new
state. First, the filter weights would have to be read and
clustered to identify the sequence of phonemes. Sec-
ond, the MDL strategy keeps the system model at the
simplest structure, but when a previous state appears

0 0.5 1 1.5 2 2.5 3

x 10
4

−10

0

10

20

30

40

50

60

Time index

C
en

te
r

nu
m

be
r

w i: w e:r a w ei a j i r a g ou

Speech signal
Phoneme boundary
QKLMS−MDL Size
QKLMS Size

Fig. 8 Adaptive filter performance in a speech signal

Zhao et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:106 Page 11 of 12

again, QKLMS-MDL must relearn from scratch because
the former centers are removed from the center dictio-
nary. This relearning should be avoided, and increas-
ingly accurate modeling techniques should be developed.
Future work will have to address this aspect of the
technique.

Endnotes
1The unit of description length also could be nat, which

is calculated by ln rather than log2 as we do here. For sim-
plification, we use log to present log2 in the following part
of this paper.

2A translation invariant kernel establishes a continu-
ous mapping from the input space to the feature space.
As such, the distance in feature space is monotonically
increasing with the distance in the original input space.
Therefore, for a translation invariant kernel, the VQ in
the original input space also induces a VQ in the feature
space.

Acknowledgments
This work was supported by NSF Grant ECCS0856441, NSF of China Grant
61372152, and the 973 Program 2015CB351703 in China.

Authors’ contributions
SZ conceived of the idea and drafted the manuscript. JP, BC, and PZ have
contributed in the supervision and guidance of the manuscript. CZ
participated in the simulation and experiment. All authors did the research
and data collection. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Electrical and Computer Engineering, University of Florida,
Gainesville, USA. 2Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong
University, Xi’an, China.

Received: 20 June 2016 Accepted: 28 September 2016

References
1. W Liu, PP Pokharel, JC Príncipe, The kernel least mean square algorithm.

IEEE Trans. Sig. Process. 56(2), 543–554 (2008)
2. Y Engel, S Mannor, R Meir, The kernel recursive least-squares algorithm.

IEEE Trans. Sig. Process. 52(8), 2275–2285 (2004)
3. J Platt, A resource-allocating network for function interpolation. Neural

Comput. 3(4), 213–225 (1991)
4. P Bouboulis, S Theodoridis, Extension of Wirtinger’s calculus to

reproducing kernel Hilbert spaces and the complex kernel LMS. J. IEEE
Trans. Sig. Process. 59(3), 964–978 (2011)

5. K Slavakis, S Theodoridis, Sliding window generalized kernel affine
projection algorithm using projection mappings. EURASIP J. Adv. Sig.
Process. 1, 1–16 (2008)

6. C Richard, JCM Bermudez, P Honeine, Online prediction of time series
data with kernels. IEEE Trans. Sig. Process. 57(3), 1058–1066 (2009)

7. W Liu, Il Park, JC Príncipe, An information theoretic approach of designing
sparse kernel adaptive filters. IEEE Trans. Neural Netw. 20(12), 1950–1961
(2009)

8. B Chen, S Zhao, P Zhu, JC Príncipe, Quantized kernel least mean square
algorithm. IEEE Trans. Neural Netw. Learn. Syst. 23(1), 22–32 (2012)

9. B Chen, S Zhao, P Zhu, JC Príncipe, Quantized kernel recursive least
squares algorithm. IEEE Trans. Neural Netw. Learn. Syst. 24(9), 1484–1491
(2013)

10. SV Vaerenbergh, J Via, I Santamana, A sliding-window kernel RLS
algorithm and its application to nonlinear channel identification. IEEE Int.
Conf. Acoust. Speech Sig. Process, 789–792 (2006)

11. SV Vaerenbergh, J Via, I Santamana, Nonlinear system identification using
a new sliding-window kernel RLS algorithm. J. Commun. 2(3), 1–8 (2007)

12. SV Vaerenbergh, I Santamana, W Liu, JC Príncipe, Fixed-budget kernel
recursive least-squares. IEEE Int. Conf. Acoust. Speech Sig. Process,
1882–1885 (2010)

13. M Lázaro-Gredilla, SV Vaerenbergh, I Santamana, A Bayesian approach to
tracking with kernel recursive least-squares. IEEE Int. Work. Mach. Learn.
Sig. Process. (MLSP), 1–6 (2011)

14. S Zhao, B Chen, P Zhu, JC Príncipe, Fixed budget quantized kernel
least-mean-square algorithm. Sig. Process. 93(9), 2759–2770 (2013)

15. D Rzepka, in 2012 IEEE 17th Conference on Emerging Technologies & Factory
Automation (ETFA). Fixed-budget kernel least mean squares, (Krakow,
2012), pp. 1–4

16. K Nishikawa, Y Ogawa, F Albu, in Signal and Information Processing
Association Annual Summit and Conference (APSIPA). Fixed order
implementation of kernel RLS-DCD adaptive filters, (Asia-Pacific, 2013),
pp. 1–6

17. K Slavakis, P Bouboulis, S Theodoridis, Online learning in reproducing
kernel Hilbert spaces. Sig. Process. Theory Mach. Learn. 1, 883–987 (2013)

18. W Gao, J Chen, C Richard, J Huang, Online dictionary learning for kernel
LMS. IEEE Trans. Sig. Process. 62(11), 2765–2777 (2014)

19. J Rissanen, Modeling by shortest data description. Sig. Process. 14(5),
465–471 (1978)

20. M Li, PMB Vitányi, An introduction to Kolmogorov complexity and its
applications. (Publisher, Springer-Verlag, New York Inc, 2008)

21. H Akaike, A new look at the statistical model identification. IEEE Trans.
Autom. Control. 19(2), 716–723 (1974)

22. G Schwarz, Estimating the dimension of a model. Ann. Stat. 6(2), 461–464
(1978)

23. A Barron, J Rissanen, B Yu, The minimum description length principle in
coding and modeling. IEEE Trans. Inf. Theory. 44(6), 2743–2760 (1998)

24. J Rissanen, Universal coding, information, prediction, and estimation. IEEE
Trans. Inf. Theory. 30(4), 629–636 (1984)

25. J Rissanen, MDL denoising. IEEE Trans. Inf. Theory. 46(7), 2537–2543 (2000)
26. L Xu, Bayesian Ying Yang learning (II): a new mechanism for model

selection and regularization. Intell. Technol. Inf. Anal, 661–706 (2004)
27. Z Yi, M Small, Minimum description length criterion for modeling of

chaotic attractors with multilayer perceptron networks. IEEE Trans. Circ.
Syst. I: Regular Pap. 53(3), 722–732 (2006)

28. T Nakamura, K Judd, AI Mees, M Small, A comparative study of
information criteria for model selection. Int. J. Bifurcation Chaos Appl. Sci.
Eng. 16(8) (2153)

29. T Cover, J Thomas, Elements of information theory. (Wiley, 1991)
30. M Hansen, B Yu, Minimum description length model selection criteria for

generalized linear models. Stat. Sci. A Festschrift for Terry Speed. 40,
145–163 (2003)

31. K Shinoda, T Watanabe, MDL-based context-dependent subword
modeling for speech recognition. Acoust. Sci. Technol. 21(2), 79–86 (2000)

32. AA Ramos, The minimum description length principle and model
selection in spectropolarimetry. Astrophys. J. 646(2), 1445–1451 (2006)

33. RS Zemel, Aminimum description length framework for unsupervised
learning, Dissertation. (University of Toronto, 1993)

34. AWF Edwards, Likelihood, (Cambridge Univ Pr, 1984)
35. M Small, CK Tse, Minimum description length neural networks for time

series prediction. Astrophys. J. 66(6), 066701 (2002)
36. A Ning, H Lau, Y Zhao, TT Wong, Fulfillment of retailer demand by using

the MDL-optimal neural network prediction and decision policy. IEEE
Trans. Ind. Inform. 5(4), 495–506 (2009)

37. JS Wang, YL Hsu, An MDL-based Hammerstein recurrent neural network
for control applications. Neurocomputing. 74(1), 315–327 (2010)

38. YI Molkov, DN Mukhin, EM Loskutov, AM Feigin, GA Fidelin, Using the
minimum description length principle for global reconstruction of
dynamic systems from noisy time series. Phys. Rev. E. 80(4), 046207 (2009)

39. A Leonardis, H Bischof, An efficient MDL-based construction of RBF
networks. Neural Netw. 11(5), 963–973 (1998)

Zhao et al. EURASIP Journal on Advances in Signal Processing (2016) 2016:106 Page 12 of 12

40. H Bischof, A Leonardis, A Selb, MDL principle for robust vector
quantisation. Pattern Anal. Appl. 2(1), 59–72 (1999)

41. T Rakthanmanon, EJ Keogh, S Lonardi, S Evans, MDL-based time series
clustering. Knowl. Inf. Syst., 1–29 (2012)

42. H Bischof, A Leonardis, in 15th International Conference on Pattern
Recognition. Fuzzy c-means in an MDL-framework, (Barcelona, 2000),
pp. 740–743

43. I Jonye, LB Holder, DJ Cook, MDL-based context-free graph grammar
induction and applications. Int. J. Artif. Intell. Tools. 13(1), 65–80 (2004)

44. S Papadimitriou, J Sun, C Faloutsos, P Yu, Hierarchical, parameter-free
community discovery. Mach. Learn. Knowl. Discov. Databases., 170–187
(2008)

45. E Parzen, On estimation of a probability density function and mode. Ann.
Math. Stat. 33(3), 1065–1076 (1962)

46. AM Mood, FA Graybill, DC Boes, Introduction to the Theory of Statistics.
(McGraw-Hill, USA, 1974)

47. SA Geer, Applications of empirical process theory. (The Press Syndicate of
the University of Cambridge, Cambridge, 2000)

48. The Santa Fe time series competition data. http://www-psych.stanford.
edu/~andreas/Time-Series/SantaFe.html, Accessed June 2016

49. AS Weigend, NA Gershenfeld, Time series prediction: forecasting the future
and understanding the past. (Westview Press, 1994)

50. Sound files obtained from system simulations. http://www.cnel.ufl.edu/~
pravin/Page_7.htm, Accessed June 2016

51. B Bigi, in The eighth international conference on Language Resources and
Evaluation. SPPAS: a tool for the phonetic segmentations of Speech,
(Istanbul, 2012), pp. 1748–1755

52. SPPAS: automatic annotation of speech. http://www.sppas.org, Accessed
June 2016

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://www-psych.stanford.edu/~{a}ndreas/Time-Series/SantaFe.html
http://www-psych.stanford.edu/~{a}ndreas/Time-Series/SantaFe.html
http://www.cnel.ufl.edu/~{p}ravin/Page_7.htm
http://www.cnel.ufl.edu/~{p}ravin/Page_7.htm
http://www.sppas.org

	Abstract
	Keywords

	Introduction
	Foundations
	Minimum description length
	Kernel least-mean-square algorithm
	Quantized kernel least-mean-square algorithm

	MDL-based quantized kernel least-mean-square algorithm
	Objective function
	Formulation of MDL-based quantized kernel least-mean-square algorithm

	Simulation
	System model
	Santa Fe time-series prediction
	Speech signal analysis

	Conclusions
	Acknowledgments
	Authors' contributions
	Competing interests
	Author details
	References

