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1 Introduction and preliminaries
Over the last decades, the fixed point theory has become increasingly useful in the study
of nonlinear phenomena. In fact, the fixed point theorems and techniques have been de-
veloped in pure and applied analysis, topology and geometry. It is well known that a funda-
mental result of this theory is Banach’s contraction principle []. Consequently, in the last
 years, it has been extensively studied and generalized to many settings; see for example
[–].
In , Dutta and Choudhury proved the following theorem.

Theorem . (See []) Let (X,d) be a complete metric space and f : X → X be such that

ψ
(
d(fx, fy)

) ≤ ψ
(
d(x, y)

)
– φ

(
d(x, y)

)
, ∀x, y ∈ X,

where ψ ,φ : [, +∞[→ [, +∞[ are continuous, non-decreasing, and ψ(t) = φ(t) =  if and
only if t = . Then f has a unique fixed point x∗ ∈ X.

Note that the above theorem remains true if the hypothesis on φ is replaced by φ is lower
semi-continuous and φ(t) =  if and only if t =  (see e.g. [, ]).
Eslamian and Abkar stated the following theorem as a generalization of Theorem ..

Theorem . Let (X,d) be a complete metric space and f : X → X be such that

ψ
(
d(fx, fy)

) ≤ α
(
d(x, y)

)
– β

(
d(x, y)

)
, ∀x, y ∈ X,
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where ψ ,α,β : [, +∞) → [, +∞) are such that ψ is continuous and non-decreasing, α is
continuous and β is lower semi-continuous,

ψ(t) =  if and only if t = , α() = β() =  and

ψ(t) – α(t) + β(t) >  for all t > .

Then f has a unique fixed point x∗ ∈ X.

Aydi et al. [] proved that Theorem . is a consequence of Theorem .
On the other hand, Ran and Reurings [] initiate the fixed point theory in the metric

spaces equipped with a partial order relation. Let X be a nonempty set equipped with a
partial order relation � such that the function d : X × X → [,∞) is a metric on X, then
the triple (X,d,�) is called a partially ordered metric space. Two elements x, y ∈ X are
comparable if either x � y or y � x. We write x ≺ y if x � y but x 
= y. A sequence {xn}
in X is said to be non-decreasing with respect to � if xn � xn+ for all n ∈ N. A mapping
f : X → X is said to be non-decreasing with respect to � if x � y implies fx � fy. In further
discussion, if there is no confusion, for the mappings on X and sequences in X, we use the
phrase ‘non-decreasing’ instead ‘non-decreasing with respect to �’.
Harjani and Sadarangani [] extended Theorem . in the framework of partially or-

dered metric spaces in the following way.

Theorem . Let (X,d,�) be a partially ordered complete metric space. Let f : X → X be
a continuous non-decreasing mapping such that

ψ
(
d(fx, fy)

) ≤ ψ
(
d(x, y)

)
– φ

(
d(x, y)

)
, ∀x� y,

where ψ ,φ : [, +∞[→ [, +∞[ are continuous and non-decreasing and ψ(t) = φ(t) =  if
and only if t = . If there exists x ∈ X such that x � fx, then f has a fixed point x∗ ∈ X.

Choudhury and Kundu [] generalized Theorems . and . as follows.

Theorem . Let (X,d,�) be a partially ordered complete metric space. Let f : X → X be
a non-decreasing mapping such that

ψ
(
d(fx, fy)

) ≤ α
(
d(x, y)

)
– β

(
d(x, y)

)
, ∀x� y,

where ψ ,α,β : [, +∞[→ [, +∞[ are such that ψ is continuous and non-decreasing, α is
continuous, β is lower semi-continuous,

ψ(t) =  if and only if t = , α() = β() =  and

ψ(t) – α(t) + β(t) >  for all t > .

If there exists x ∈ X such that x � fx, then f has a unique fixed point x∗ ∈ X.

Aydi et al. [] proved that Theorem . is a consequence of Theorem ..
Karapinar and Salimi [] proved the following theorem as a generalization of Theo-

rems . and . where the approach of Aydi et al. [] cannot be modified for it.
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Theorem . Let (X,d,�) be an ordered metric space such that (X,d) is complete and let
f : X → X be a non-decreasing self mappings. Assume that there exist ψ ∈ � , α ∈ �α , and
β ∈ �β such that

ψ(t) – α(s) + β(s) >  for all t >  and s = t or s = 

and

ψ
(
d(fx, fy)

) ≤ α
(
d(x, y)

)
– β

(
d(x, y)

)

for all comparable x, y ∈ X where

� =
{
ψ : [,∞)→ [,∞) such that ψ is non-decreasing and lower semicontinuous

}
,

�α =
{
α : [,∞)→ [,∞) such that α is upper semicontinuous

}

and

�β =
{
β : [,∞) → [,∞) such that β is lower semicontinuous

}
.

Suppose that either
(a) f is continuous, or
(b) if a non-decreasing sequence {xn} is such that xn → x, then xn � x for all n ∈N.
If there exists x ∈ X such that x � fx, then f has a fixed point.

On the other hand, in , Samet et al. [] introduced the concepts of α-ψ-contractive
and α-admissible mappings and established various fixed point theorems for such map-
pings in complete metric spaces. More recently, Salimi et al. [] modified the notions of
α-ψ-contractive and α-admissible mappings and established fixed point theorems which
are proper generalizations of the recent results in [, ]. Formore on α-admissible map-
pings, see [–] and the references therein.
Samet et al. [] defined the notion of α-admissible mappings as follows.

Definition . Let T be a self-mapping on X and α : X ×X → [, +∞) be a function. We
say that T is an α-admissible mapping if

x, y ∈ X, α(x, y)≥  �⇒ α(Tx,Ty)≥ .

In [] the authors consider the family � of non-decreasing functions ψ : [, +∞) →
[, +∞) such that

∑+∞
n= ψn(t) < +∞ for each t > , where ψn is the nth iterate of ψ and

give the following theorem.

Theorem . Let (X,d) be a complete metric space and T be an α-admissible mapping.
Assume that

α(x, y)d(Tx,Ty)≤ ψ
(
d(x, y)

)
(.)

for all x, y ∈ X, where ψ ∈ � . Also, suppose that the following assertions hold:

http://www.fixedpointtheoryandapplications.com/content/2014/1/117
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(i) there exists x ∈ X such that α(x,Tx) ≥ ,
(ii) either T is continuous or for any sequence {xn} in X with α(xn,xn+) ≥  for all

n ∈N∪ {} and xn → x as n→ +∞, we have α(xn,x) ≥  for all n ∈N∪ {}.
Then T has a fixed point.

Recently, Hussain et al. [] obtained the following Geraghty type [] fixed point the-
orems via α-admissible mappings.

Theorem . Let (X,d) be a complete metric space and f : X → X be an α-admissible
mapping. Assume that there exists a function β : [,∞)→ [, ] such that for any bounded
sequence {tn} of positive reals, β(tn) →  implies tn →  and

(
d(fx, fy) + �

)α(x,fx)α(y,fy) ≤ β
(
d(x, y)

)
d(x, y) + �

for all x, y ∈ X where � ≥ . Suppose that either
(a) f is continuous, or
(b) if {xn} is a sequence in X such that xn → x and α(xn,xn+) ≥  for all n, then

α(x, fx)≥ .
If there exists x ∈ X such that α(x, fx) ≥ , then f has a fixed point.

Theorem . Let (X,d) be a complete metric space and f : X → X be an α-admissible
mapping. Assume that there exists a function β : [,∞)→ [, ] such that for any bounded
sequence {tn} of positive reals, β(tn) →  implies tn →  and

(
α(x, fx)α(y, fy) + �

)d(fx,fy) ≤ β(d(x,y))d(x,y)

for all x, y ∈ X where  < � ≤ . Suppose that either
(a) f is continuous, or
(b) if {xn} is a sequence in X such that xn → x and α(xn,xn+) ≥  for all n, then

α(x, fx)≥ .
If there exists x ∈ X such that α(x, fx) ≥ , then f has a fixed point.

Theorem . Let (X,d) be a metric space such that (X,d) is complete and f : X → X be
an α-admissible mapping. Assume that there exists a function β : [,∞)→ [, ] such that
for any bounded sequence {tn} of positive reals, β(tn) →  implies tn →  and

α(x, fx)α(y, fy)d(fx, fy)≤ β
(
d(x, y)

)
d(x, y)

for all x, y ∈ X. Suppose that either
(a) f is continuous, or
(b) if {xn} is a sequence in X such that xn → x and α(xn, fxn) ≥  for all n, then

α(x, fx)≥ .
If there exists x ∈ X such that α(x, fx) ≥ , then f has a fixed point.

For more details on α-admissible mappings and related fixed point results we refer the
reader to [–].
More recently, Salimi et al. []modified and generalized the notions of α-ψ-contractive

mappings and α-admissible mappings by the following ways.

http://www.fixedpointtheoryandapplications.com/content/2014/1/117
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Definition . [] Let T be a self-mapping on X and α,η : X × X → [, +∞) be two
functions. We say that T is an α-admissible mapping with respect to η if

x, y ∈ X, α(x, y)≥ η(x, y) �⇒ α(Tx,Ty) ≥ η(Tx,Ty).

Note that if we take η(x, y) =  then this definition reduces to Definition .. Also, if we
take, α(x, y) =  then we say that T is an η-subadmissible mapping.

The following result properly contains Theorem ., and Theorems . and . of [].

Theorem . [] Let (X,d) be a complete metric space and T be an α-admissible map-
ping with respect to η. Assume that

x, y ∈ X, α(x, y)≥ η(x, y) �⇒ d(Tx,Ty) ≤ ψ
(
M(x, y)

)
, (.)

where ψ ∈ � and

M(x, y) =max

{
d(x, y),

d(x,Tx) + d(y,Ty)


,
d(x,Ty) + d(y,Tx)



}
.

Also, suppose that the following assertions hold:
(i) there exists x ∈ X such that α(x,Tx) ≥ η(x,Tx),
(ii) either T is continuous or for any sequence {xn} in X with α(xn,xn+) ≥ η(xn,xn+) for

all n ∈N∪ {} and xn → x as n→ +∞, we have α(xn,x) ≥ η(xn,x) for all
n ∈N∪ {}.

Then T has a fixed point.

For more details on modified α-ψ-contractive mappings and related fixed point results
we refer the reader to [, ].

2 Main results
In this section, motivated by the work of Hussain et al. [] and Salimi et al. [] we state
and prove the following fixed point results in the setting of partially orderedmetric spaces.

Theorem . Let (X,d,�) be a partially ordered metric space such that (X,d) is complete.
Assume f : X → X and γ : X×X → [,∞) be twomappings such that f is a non-decreasing
and γ -admissible mapping. Assume that there exist ψ ∈ � , α ∈ �α , and β ∈ �β such that

ψ(t) – α(s) + β(s) >  for all t >  and s = t or s =  (.)

and

γ (x, fx)γ (y, fy) ≥ 

�⇒ (
ψ

(
d(fx, fy)

)
+ �

)γ (x,x)γ (y,y) ≤ α
(
d(x, y)

)
– β

(
d(x, y)

)
+ � (.)

for all comparable x, y ∈ X where � ≥ . Suppose that either
(i) f is continuous, or

http://www.fixedpointtheoryandapplications.com/content/2014/1/117
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(ii) if a non-decreasing sequence {xn} is such that xn → x as n → ∞, γ (xn, fxn) ≥ , and
γ (xn,xn) ≥  for all n, then γ (x,x)≥ , γ (x, fx) ≥ , and xn � x for all n ∈N.

If there exists x ∈ X such that γ (x,x) ≥ , γ (x, fx) ≥ , and x � fx, then f has a
fixed point.

Proof Let x � fx. We define an iterative sequence {xn} in the following way:

xn = f nx = fxn– for all n ∈N.

Since f is non-decreasing and x � fx, we have

x � x � x � · · · , (.)

and hence {xn} is a non-decreasing sequence. Let γ (x,x) ≥ . Since f is a γ -admissible
mapping and γ (x,x) ≥ , we deduce that γ (x,x) = γ (fx, fx) ≥ . By continuing this
process, we get γ (xn,xn) ≥  for all n ∈ N ∪ {}. Also, assume γ (x, fx) ≥ . Similarly we
get γ (xn, fxn) ≥  for all n ∈N∪ {}. If xn = xn+ = fxn for some n ∈N, then the point x
is the desired fixed point of f which completes the proof. Hence, we suppose that xn 
= xn+,
that is, d(xn–,xn) >  for all n. Hence, (.) implies

x ≺ x ≺ x ≺ · · · . (.)

We want to show that the sequence {dn := d(xn,xn+)} is non-increasing sequence of reals.
Suppose, to the contrary, that there exists some n ∈ N such that

d(xn–,xn )≤ d(xn ,xn+). (.)

Since ψ is non-decreasing, we obtain

ψ
(
d(xn–,xn )

) ≤ ψ
(
d(xn ,xn+)

)
. (.)

Taking x = xn– and y = xn in (.) we derive

ψ
(
d(xn,xn+)

)
+ � = ψ

(
d(fxn–, fxn)

)
+ �

≤ (
ψ

(
d(fxn–, fxn)

)
+ �

)γ (xn–,xn–)γ (xn ,xn)

≤ α
(
d(xn–,xn)

)
– β

(
d(xn–,xn)

)
+ �.

Hence

ψ
(
d(xn,xn+)

) ≤ α
(
d(xn–,xn)

)
– β

(
d(xn–,xn)

)
(.)

for all n ∈N. Now, by taking x = xn– and y = xn in (.) and applying (.) we have

ψ
(
d(xn–,xn )

) ≤ α
(
d(xn–,xn )

)
– β

(
d(xn–,xn )

)
,

which contradicts (.). Therefore, we conclude that dn < dn– holds for all n ∈N. Hence
{dn} is a non-increasing sequence of positive real numbers. Thus, there exists r ≥  such

http://www.fixedpointtheoryandapplications.com/content/2014/1/117
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that limn→∞ dn = r. We shall show that r =  by method of reductio ad absurdum. For this
purpose, we assume that r > . By (.) together with the properties of α, β , ψ we have

ψ(r) ≤ lim inf
n→∞ ψ(dn) ≤ lim sup

n→∞
ψ(dn)

≤ lim sup
n→∞

[
α(dn–) – β(dn–)

] ≤ α(r) – β(r),

which is a contradiction. Hence

lim
n→∞dn = lim

n→∞d(xn,xn+) = . (.)

We shall show that the sequence {xn} is a Cauchy sequence. Suppose that it is not. Then
there are ε >  and sequencesm(k) and n(k) such that for all positive integers k with n(k) >
m(k) > k

d(xn(k),xm(k))≥ ε. (.)

Additionally, corresponding tom(k), wemay choose n(k) such that it is the smallest integer
satisfying (.) and n(k) >m(k)≥ k. Thus,

d(xn(k),xm(k)–) < ε.

Now, for all k ∈N we have

ε ≤ d(xn(k),xm(k)) ≤ d(xn(k),xm(k)–) + d(xm(k)–,xm(k)) < ε + dm(k)–.

So

lim
k→∞

d(xn(k),xm(k)) = ε. (.)

Again, we have

d(xn(k),xm(k))≤ d(xm(k),xm(k)+) + d(xm(k)+,xn(k)+) + d(xn(k)+,xn(k))

and

d(xn(k)+,xm(k)+)≤ d(xm(k),xm(k)+) + d(xm(k),xn(k)) + d(xn(k)+,xn(k)).

By taking the limit as k → +∞ in the above inequalities and applying (.) and (.), we
deduce

lim
k→∞

d(xn(k)+,xm(k)+) = ε. (.)

Now, from (.) with x = xm(k) and y = xn(k) we have

ψ
(
d(xm(k)+, fxn(k)+)

)
+ �

≤ (
ψ

(
d(xm(k)+, fxn(k)+)

)
+ �

)γ (xm(k),xm(k))γ (xn(k),xn(k))

http://www.fixedpointtheoryandapplications.com/content/2014/1/117
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=
(
ψ

(
d(fxm(k), fxn(k))

)
+ �

)γ (xm(k),xm(k))γ (xn(k),xn(k))

≤ α
(
d(xm(k),xn(k))

)
– β

(
d(xm(k),xn(k))

)
+ �.

Then

ψ
(
d(xm(k)+, fxn(k)+)

) ≤ α
(
d(xm(k),xn(k))

)
– β

(
d(xm(k),xn(k))

)
.

Taking the lim inf as k → +∞ in the above inequality, we have

ψ(ε) ≤ lim infψ
(
d(xn(k)+,xm(k)+)

) ≤ lim supψ
(
d(xn(k)+,xm(k)+)

)
≤ lim sup

(
α
(
d(xn(k),xm(k))

)
– β

(
d(xn(k),xm(k))

))
= lim supα

(
d(xn(k),xm(k))

)
– lim infβ

(
d(xn(k),xm(k))

)
≤ α(ε) – β(ε).

So we have

ψ(ε) ≤ α(ε) – β(ε),

which contradicts the fact that ψ(t) – α(t) + β(t) >  for all t > . Hence

lim
n→∞d(xn,xm) = ,

that is, the sequence {xn} is a Cauchy sequence. Since (X,d) is complete, then there exists
x∗ ∈ X such that xn → x∗ as n → ∞. Suppose that (i) holds. Then

x∗ = lim
n→∞xn+ = f

(
lim
n→∞xn

)
= f

(
x∗).

Hence, x∗ is a fixed point of f . Suppose that (ii) holds, that is, γ (x∗,x∗) ≥ , γ (x∗, fx∗) ≥ ,
and xn � x∗ for all n ≥ . We claim that x∗ is a fixed point of f , that is, limn→∞ d(xn+,
fx∗) = . Suppose, to the contrary, that limn→∞ d(xn+, fx∗) = d(x∗, fx∗) > . Due to condi-
tion (.), we have

ψ
(
d
(
fx∗,xn+

))
+ � = ψ

(
d
(
fx∗, fxn

))
+ �

≤ (
ψ

(
d
(
fx∗, fxn

))
+ �

)γ (x∗ ,x∗)γ (xn ,xn)

≤ α
(
d
(
x∗,xn

))
– β

(
d
(
x∗,xn

))
+ �.

Taking the lim inf as n→ ∞ in the above inequality, we obtain

ψ
(
d
(
x∗, fx∗)) ≤ lim inf

n→∞ ψ
(
d
(
xn+, fx∗))

= lim inf
n→∞ ψ

(
d
(
fxn, fx∗)) ≤ lim sup

n→∞
ψ

(
d
(
xn, fx∗))

≤ lim sup
n→∞

(
α
(
d
(
xn,x∗)) – β

(
d
(
xn,x∗)))

≤ α() – β(),

which is a contradiction. Hence limn→∞ d(xn+, fx∗) = d(x∗, fx∗) =  and so, x∗ = fx∗. �

http://www.fixedpointtheoryandapplications.com/content/2014/1/117
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Example . Let X = [,∞) be endowed with the usual metric d(x, y) = |x – y| for all
x, y ∈ X and f : X → X be defined by

fx =

⎧⎨
⎩

x
(x+) if x ∈ [, ],

x if x ∈ (,∞).

Define also γ : X × X → [, +∞), ψ : [, +∞) → [, +∞), α : [, +∞) → [, +∞), and β :
[, +∞)→ [, +∞) by

γ (x, y) =

⎧⎨
⎩
 if x, y ∈ [, ],

 otherwise,
ψ(t) = t + /,

α(t) = t +  and β(t) = t/ + /.

We prove that Theorem . can be applied to f . But Theorem . cannot be applied.
Clearly, (X,d) is a completemetric space.We show that f is a γ -admissible mapping. Let

x, y ∈ X. If γ (x, y) ≥  then x, y ∈ [, ]. On the other hand, for all x ∈ [, ] we have fx ≤ .
It follows that γ (fx, fy) ≥ . Thus the assertion holds. Because of the above arguments,
γ (, ) ≥ . Now, if {xn} is a sequence in X such that γ (xn,xn) ≥  for all n ∈ N ∪ {} and
xn → x as n → +∞, then {xn} ⊂ [, ] and hence x ∈ [, ]. This implies that γ (x,x) ≥ .
Alsoψ(t) = t+/ > t/+/ = α(t)–β(t) andψ(t) = t+/ > / = α()–β() for all t > .
Let γ (x, fx)γ (y, fy) ≥ . Then x, y ∈ [, ]. Indeed, if x /∈ [, ] or y /∈ [, ]. So, γ (x, fx) = 
or γ (y, fy). That is, γ (x, fx)γ (y, fy) =  <  which is a contradiction. Without any loss of
generality we assume that y≥ x. We get

(
ψ

(
d(fx, fy)

)
+ �

)γ (x,x)γ (y,y) = fy – fx + / + �

=
y

(y + )
–

x
(x + )

+ / + �

=
y – x

( + x)( + y)
+ / + �

≤ y – x


+ / + �

= α
(
d(x, y)

)
– β

(
d(x, y)

)
+ �.

Then the condition of Theorem . holds and f has a fixed point. Let x =  and y = , then

ψ
(
d(f , f )

)
=  + / >  = α

(
d(, )

)
– β

(
d(, )

)
.

That is, the contractive condition of Theorem . does not hold for this example.

Corollary . Let (X,d,�) be a partially orderedmetric space such that (X,d) is complete.
Assume f : X → X and γ : X×X → [,∞) be twomappings such that f is a non-decreasing
γ -admissible mapping. Assume that there exist ψ ∈ � , α ∈ �α , and β ∈ �β such that

ψ(t) – α(s) + β(s) >  for all t >  and s = t or s = . (.)

Suppose that either
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(i) f is continuous, or
(ii) if a non-decreasing sequence {xn} is such that xn → x as n → ∞, γ (xn, fxn) ≥ , and

γ (xn,xn) ≥  for all n, then γ (x,x)≥ , γ (x, fx) ≥ , and xn � x for all n ∈N,
(iii)

γ (x, fx)γ (y, fy)
(
ψ

(
d(fx, fy)

)
+ �

)γ (x,x)γ (y,y) ≤ α
(
d(x, y)

)
– β

(
d(x, y)

)
+ �

for all comparable x, y ∈ X where � ≥ .
If there exists x ∈ X such that γ (x,x) ≥ , γ (x, fx) ≥ , and x � fx, then f has a

fixed point.

Proof Let γ (x, fx)γ (y, fy) ≥ . Then from (iii) we have

(
ψ

(
d(fx, fy)

)
+ �

)γ (x,x)γ (y,y) ≤ γ (x, fx)γ (y, fy)
(
ψ

(
d(fx, fy)

)
+ �

)γ (x,x)γ (y,y)

≤ α
(
d(x, y)

)
– β

(
d(x, y)

)
+ �.

That is,

γ (x, fx)γ (y, fy) ≥ 

�⇒ (
ψ

(
d(fx, fy)

)
+ �

)γ (x,x)γ (y,y) ≤ α
(
d(x, y)

)
– β

(
d(x, y)

)
+ �.

Hence, all conditions of Theorem . hold and f has a fixed point. �

Now, we prove our second main result as follows.

Theorem . Let (X,d,�) be a partially ordered metric space such that (X,d) is com-
plete. Assume f : X → X and γ : X × X → [,∞) are two mappings such that f is a non-
decreasing γ -admissible mapping. Assume that there exist ψ ∈ � , α ∈ �α , and β ∈ �β

such that

ψ(t) – α(s) + β(s) >  for all t >  and s = t or s = 

and

γ (x, fx)γ (y, fy) ≥ 

�⇒ (
γ (x,x)γ (y, y) + 

)ψ(d(fx,fy)) ≤ α(d(x,y))–β(d(x,y)) (.)

for all comparable x, y ∈ X. Suppose that either
(i) f is continuous, or
(ii) if a non-decreasing sequence {xn} is such that xn → x as n → ∞, γ (xn,xn) ≥ , and

γ (xn, fxn) ≥  for all n, then γ (x,x)≥ , γ (x, fx)≥ , and xn � x for all n ∈N.
If there exists x ∈ X such that α(x,x) ≥ , α(x, fx) ≥ , and x � fx, then f has a

fixed point.

Proof Let x � fx. We define an iterative sequence {xn} in the following way:

xn = f nx = fxn– for all n ∈N.

http://www.fixedpointtheoryandapplications.com/content/2014/1/117
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From Theorem . we know that {xn} is a non-decreasing sequence, γ (xn,xn) ≥  and
γ (xn, fxn) ≥  for all n ∈ N ∪ {}. Also, similarly, we suppose that d(xn–,xn) >  for all n.
We shall show that the sequence {dn := d(xn,xn+)} is non-increasing sequence of reals.
Assume that there exists some n ∈N such that

d(xn–,xn )≤ d(xn ,xn+).

Hence

ψ
(
d(xn–,xn )

) ≤ ψ
(
d(xn ,xn+)

)
. (.)

Taking x = xn– and y = xn in (.) and applying (.) we get

ψ(d(xn ,xn+)) = ψ(d(fxn–,fxn))

≤ (
γ (xn–,xn–)γ (xn,xn) + 

)ψ(d(fxn–,fxn))

≤ α(d(xn–,xn))–β(d(xn–,xn)).

Hence

ψ
(
d(xn,xn+)

) ≤ α
(
d(xn–,xn)

)
– β

(
d(xn–,xn)

)
(.)

for all n ∈N. Now, by taking x = xn– and y = xn in (.) and using (.) we deduce

ψ
(
d(xn–,xn )

) ≤ α
(
d(xn–,xn )

)
– β

(
d(xn–,xn )

)
,

which is a contradiction. Then dn < dn– holds for all n ∈ N and so there exists r ≥  such
that limn→∞ dn = r. Reviewing the proof of Theorem . we can show that r = . Now,
suppose, to the contrary, that {xn} is not a Cauchy sequence. Then there exist ε >  and
sequencesm(k) and n(k) such that for all positive integers k with n(k) >m(k) > k

lim
k→∞

d(xn(k),xm(k)) = ε (.)

and

lim
k→∞

d(xn(k)+,xm(k)+) = ε. (.)

By (.) with x = xm(k) and y = xn(k) we have

ψ(d(xm(k)+,fxn(k)+))

≤ (
γ (xm(k),xm(k))γ (xn(k),xn(k)) + 

)ψ(d(xm(k)+,fxn(k)+))

=
(
γ (xm(k),xm(k))γ (xn(k),xn(k)) + 

)ψ(d(fxm(k),fxn(k)))

≤ α(d(xm(k),xn(k)))–β(d(xm(k),xn(k)))

and so

ψ
(
d(xm(k)+, fxn(k)+)

) ≤ α
(
d(xm(k),xn(k))

)
– β

(
d(xm(k),xn(k))

)
.
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By taking the lim inf as k → +∞ in the above inequality, we have

ψ(ε) ≤ lim infψ
(
d(xn(k)+,xm(k)+)

) ≤ lim supψ
(
d(xn(k)+,xm(k)+)

)
≤ lim sup

(
α
(
d(xn(k),xm(k))

)
– β

(
d(xn(k),xm(k))

))
= lim supα

(
d(xn(k),xm(k))

)
– lim infβ

(
d(xn(k),xm(k))

)
≤ α(ε) – β(ε).

Therefore

ψ(ε) ≤ α(ε) – β(ε),

which is a contradiction. Hence,

lim
n→∞d(xn,xm) = .

Then {xn} is a Cauchy sequence. Since (X,d) is complete, there exists x∗ ∈ X such that
xn → x∗ as n → ∞. Let (i) hold. Then

x∗ = lim
n→∞xn+ = f

(
lim
n→∞xn

)
= f

(
x∗).

So, x∗ is a fixed point of f . Now, we assume that (ii) holds, that is, γ (x∗,x∗) ≥ ,
γ (x∗, fx∗)≥ , and xn � x∗ for all n ≥ . We claim that x∗ is a fixed point of f , equivalently,
limn→∞ d(xn+, fx∗) = . Suppose, to the contrary, that limn→∞ d(xn+, fx∗) = d(x∗, fx∗) > .
From (.), we have

ψ(d(fx∗ ,xn+)) = ψ(d(fx∗ ,fxn))

≤ (
γ
(
x∗,x∗)γ (xn,xn) + 

)ψ(d(fx∗ ,fxn))

≤ α(d(x∗ ,xn))–β(d(x∗ ,xn)).

Taking the lim inf as n→ ∞ in the above inequality, we obtain

ψ
(
d
(
x∗, fx∗)) ≤ lim inf

n→∞ ψ
(
d
(
xn+, fx∗))

= lim inf
n→∞ ψ

(
d
(
fxn, fx∗)) ≤ lim sup

n→∞
ψ

(
d
(
xn, fx∗))

≤ lim sup
n→∞

(
α
(
d
(
xn,x∗)) – β

(
d
(
xn,x∗)))

≤ α() – β(),

which is a contradiction. Then limn→∞ d(xn+, fx∗) = d(x∗, fx∗) =  and hence, x∗ = fx∗. �

Example . Let X and d be as in Example .. Define f : X → X by

fx =

⎧⎨
⎩


 ( – x) if x ∈ [, ],

ex if x ∈ (,∞).

http://www.fixedpointtheoryandapplications.com/content/2014/1/117
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Define also γ , ψ , α, and β as in Example .. We shall show that Theorem . can be
applied to f , but Theorem . cannot be applied. Proceeding as in the proof of Example .
f is a γ -admissible mapping, α(, )≥ , and if {xn} is a sequence in X such that α(xn,xn) ≥
 for all n ∈N∪ {} and xn → x as n→ +∞, then γ (x,x)≥ . Let γ (x, fx)γ (y, fy) ≥ . Then
x, y ∈ [, ]. Assume y ≥ x. We get

(
γ (x,x)γ (y, y) + 

)ψ(d(fx,fy)) = fx–fy+/

= [

 (y

–x)+/]

= [

 (y+x)(y–x)+/]

≤ [

 (y–x)+/]

= α(d(x,y))–β(d(x,y)).

Then the condition ofTheorem. holds and so f has a fixedpoint. Let x = ln and y = ln,
then

ψ
(
d
(
f (ln), f (ln)

))
=  + / >



ln + /

= α
(
d(ln, ln)

)
– β

(
d(ln, ln)

)
.

Hence, the condition of Theorem . does not hold for this example.

Corollary . Let (X,d,�) be a partially ordered metric space such that (X,d) is com-
plete. Assume f : X → X and γ : X × X → [,∞) are two mappings such that f is a non-
decreasing γ -admissible mapping. Assume that there exist ψ ∈ � , α ∈ �α , and β ∈ �β

such that

ψ(t) – α(s) + β(s) >  for all t >  and s = t or s = 

and

γ (x, fx)γ (y, fy)
(
γ (x,x)γ (y, y) + 

)ψ(d(fx,fy)) ≤ α(d(x,y))–β(d(x,y))

for all comparable x, y ∈ X. Suppose that either
(i) f is continuous, or
(ii) if a non-decreasing sequence {xn} is such that xn → x as n → ∞, γ (xn,xn) ≥ , and

γ (xn, fxn) ≥  for all n, then γ (x,x)≥ , γ (x, fx)≥ , and xn � x for all n ∈N.
If there exists x ∈ X such that α(x,x) ≥ , α(x, fx) ≥ , and x � fx, then f has a

fixed point.

Theorem . Let (X,d,�) be a partially ordered metric space such that (X,d) is complete.
Assume that f : X → X and γ : X × X → [,∞) are two mappings such that f is a non-
decreasing γ -admissible mapping. Assume that there exist ψ ∈ � , α ∈ �α , and β ∈ �β

such that

ψ(t) – α(s) + β(s) >  for all t >  and s = t or s = 

http://www.fixedpointtheoryandapplications.com/content/2014/1/117
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and

γ (x, fx)γ (y, fy) ≥ 

�⇒ γ (x,x)γ (y, y)ψ
(
d(fx, fy)

) ≤ α
(
d(x, y)

)
– β

(
d(x, y)

)
(.)

for all comparable x, y ∈ X. Suppose that either
(i) f is continuous, or
(ii) if a non-decreasing sequence {xn} is such that xn → x as n → ∞, γ (xn,xn) ≥ , and

γ (xn, fxn) ≥  for all n, then γ (x,x)≥ , γ (x, fx)≥ , and xn � x for all n ∈N.
If there exists x ∈ X such that α(x,x) ≥ , α(x, fx) ≥ , and x � fx, then f has a

fixed point.

Proof Let x � fx. We define an iterative sequence {xn} in the following way:

xn = f nx = fxn– for all n ∈N.

From Theorem . we know that {xn} is a non-decreasing sequence, γ (xn,xn) ≥ , and
γ (xn, fxn) ≥  for all n ∈ N ∪ {}. Also, similarly, we suppose that d(xn–,xn) >  for all n.
We shall show that the sequence {dn := d(xn,xn+)} is non-increasing. Assume that there
exists some n ∈N such that

d(xn–,xn )≤ d(xn ,xn+).

Hence

ψ
(
d(xn–,xn )

) ≤ ψ
(
d(xn ,xn+)

)
. (.)

Taking x = xn– and y = xn in (.) and applying (.) we get

ψ
(
d(xn,xn+)

)
= ψ

(
d(fxn–, fxn)

)
≤ γ (xn–,xn–)γ (xn,xn)ψ

(
d(fxn–, fxn)

)
≤ α

(
d(xn–,xn)

)
– β

(
d(xn–,xn)

)
.

Hence

ψ
(
d(xn,xn+)

) ≤ α
(
d(xn–,xn)

)
– β

(
d(xn–,xn)

)
(.)

for all n ∈N. Now, by taking x = xn– and y = xn in (.) and using (.) we deduce

ψ
(
d(xn–,xn )

) ≤ α
(
d(xn–,xn )

)
– β

(
d(xn–,xn )

)
,

which is a contradiction. Then dn < dn– holds for all n ∈ N and so there exists r ≥  such
that limn→∞ dn = r. Proceeding as in the proof of Theorem . we conclude that r = .
Now, suppose, to the contrary that {xn} is not a Cauchy sequence. Then there exist ε > 
and sequencesm(k) and n(k) such that for all positive integers k with n(k) >m(k) > k

lim
k→∞

d(xn(k),xm(k)) = ε (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/117
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and

lim
k→∞

d(xn(k)+,xm(k)+) = ε. (.)

By (.) with x = xm(k) and y = xn(k) we have

ψ
(
d(xm(k)+, fxn(k)+)

)
≤ γ (xm(k),xm(k))γ (xn(k),xn(k))ψ

(
d(xm(k)+, fxn(k)+)

)
= γ (xm(k),xm(k))γ (xn(k),xn(k))ψ

(
d(fxm(k), fxn(k))

)
≤ α

(
d(xm(k),xn(k))

)
– β

(
d(xm(k),xn(k))

)

and so

ψ
(
d(xm(k)+, fxn(k)+)

) ≤ α
(
d(xm(k),xn(k))

)
– β

(
d(xm(k),xn(k))

)
.

Taking the lim inf as k → +∞ in the above inequality, we have

ψ(ε) ≤ lim infψ
(
d(xn(k)+,xm(k)+)

) ≤ lim supψ
(
d(xn(k)+,xm(k)+)

)
≤ lim sup

(
α
(
d(xn(k),xm(k))

)
– β

(
d(xn(k),xm(k))

))
= lim supα

(
d(xn(k),xm(k))

)
– lim infβ

(
d(xn(k),xm(k))

)
≤ α(ε) – β(ε).

Therefore

ψ(ε) ≤ α(ε) – β(ε),

which is a contradiction. Hence

lim
n→∞d(xn,xm) = ,

that is, {xn} is a Cauchy sequence. Since (X,d) is complete, there exists x∗ ∈ X such that
xn → x∗ as n → ∞. Let (i) hold. Then

x∗ = lim
n→∞xn+ = f

(
lim
n→∞xn

)
= f

(
x∗).

So, x∗ is a fixed point of f . Now, we assume that (ii) holds, that is, γ (x∗,x∗) ≥ , γ (x∗, fx∗) ≥
, and xn � x∗ for all n ≥ . We claim that x∗ is a fixed point of f , or equivalently,
limn→∞ d(xn+, fx∗) = . Suppose, to the contrary, that limn→∞ d(xn+, fx∗) = d(x∗, fx∗) > .
From (.), we have

ψ
(
d
(
fx∗,xn+

))
= ψ

(
d
(
fx∗, fxn

))
≤ γ

(
x∗,x∗)γ (xn,xn)ψ(

d
(
fx∗, fxn

))
≤ α

(
d
(
x∗,xn

))
– β

(
d
(
x∗,xn

))
.

http://www.fixedpointtheoryandapplications.com/content/2014/1/117


Long et al. Fixed Point Theory and Applications 2014, 2014:117 Page 16 of 18
http://www.fixedpointtheoryandapplications.com/content/2014/1/117

Taking the lim inf as n→ ∞ in the above inequality, we obtain

ψ
(
d
(
x∗, fx∗)) ≤ lim inf

n→∞ ψ
(
d
(
xn+, fx∗))

= lim inf
n→∞ ψ

(
d
(
fxn, fx∗)) ≤ lim sup

n→∞
ψ

(
d
(
xn, fx∗))

≤ lim sup
n→∞

(
α
(
d
(
xn,x∗)) – β

(
d
(
xn,x∗)))

≤ α() – β(),

which is a contradiction. Then limn→∞ d(xn+, fx∗) = d(x∗, fx∗) = , and hence x∗ = fx∗. �

Example . Let X and d be as in Example .. Define f : X → X by

fx =

⎧⎨
⎩


x

 if x ∈ [, ],

esinx + x if x ∈ (,∞).

Define also γ , ψ , α, and β as in Example .. We shall show that Theorem . can be
applied for f , but Theorem . cannot be applied. Reviewing the proof of Example ., f is
a γ -admissible mapping, α(, ) ≥  and if {xn} is a sequence in X such that α(xn,xn) ≥ 
for all n ∈ N ∪ {} and xn → x as n → +∞, then γ (x,x) ≥ . Let γ (x, fx)γ (y, fy) ≥ . Then
x, y ∈ [, ]. Assume y ≥ x. We get

γ (x,x)γ (y, y)ψ
(
d(fx, fy)

)
= fy – fx + /

=


(y + x)(y – x)

(
y + x

)
+ /

≤ 

(y – x) + /

= α
(
d(x, y)

)
– β

(
d(x, y)

)
.

Then the condition of Theorem . holds and f has a fixed point. Clearly, the condition of
Theorem . does not hold for this example.

Corollary . Let (X,d,�) be a partially ordered metric space such that (X,d) is com-
plete. Assume f : X → X and γ : X × X → [,∞) are two mappings such that f is a non-
decreasing γ -admissible mapping. Assume that there exist ψ ∈ � , α ∈ �α , and β ∈ �β

such that

ψ(t) – α(s) + β(s) >  for all t >  and s = t or s = 

and

γ (x, fx)γ (y, fy)γ (x,x)γ (y, y)ψ
(
d(fx, fy)

) ≤ α
(
d(x, y)

)
– β

(
d(x, y)

)

for all comparable x, y ∈ X. Suppose that either
(i) f is continuous, or
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(ii) if a non-decreasing sequence {xn} is such that xn → x as n → ∞, γ (xn,xn) ≥ , and
γ (xn, fxn) ≥  for all n, then γ (x,x)≥ , γ (x, fx)≥ , and xn � x for all n ∈N.

If there exists x ∈ X such that α(x,x) ≥ , α(x, fx) ≥ , and x � fx, then f has a
fixed point.
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