-

brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk

provided by Crossref

Gubanov et al. Nanoscale Research Letters 2014, 9:80
http://www.nanoscalereslett.com/content/9/1/80

® Nanoscale Research Letters

a SpringerOpen Journal

NANO EXPRESS Open Access

Dynamics of time-resolved photoluminescence in
GalnNAs and GaNAsSb solar cells

Alexander Gubanov'", Ville Polojarvi', Arto Aho', Antti Tukiainen', Nikolai V Tkachenko? and Mircea Guina'

Abstract

PACS: 78.47.D; 78.55.Cr; 8840.hj

We report a time-resolved photoluminescence study for GalnNAs and GaNAsSb p-i-n bulk solar cells grown on
GaAs(100). In particular, we studied the extent to which the carrier lifetime decreases with the increase of N content.
Rapid thermal annealing proved to significantly increase the decay times by a factor of 10 to 12 times, for both
GalnNAs and GaNAsSb heterostructures, while for the 1-eV bandgap GaNAsSb structure, grown at the same growth
conditions as the GalnNAs, the photoluminescence decay time remained slightly below 100 ps after annealing; the
approximately 1.15-eV GalnNAs p-i-n solar cell exhibited a lifetime as long as 900 ps.

Keywords: Solar cells; Dilute nitrides; GalnNAsSb; Time-resolved photoluminescence; Carrier lifetime

Background

In recent years, multijunction III-V semiconductor solar
cells have experienced remarkable improvements, not
only for space applications but also for terrestrial con-
centrated photovoltaic systems. The highest photovoltaic
conversion efficiency reported so far is 44.7% and has
been obtained with four junction solar cell [1]. A very
promising way to further improve the performance of
solar cells is to utilize dilute nitride and dilute antimo-
nide materials, which can be grown lattice matched onto
GaAs and Ge substrates [2]. These materials provide
suitable absorption bands to harvest photons down to 1
eV and even below. Recently, a conversion efficiency of
44% was reported for a triple junction solar cell includ-
ing a bottom junction based on GaInNAs(Sb) grown by
molecular beam epitaxy (MBE) [3]. Adding antimony to
ternary GaAsN to form GaAsNSb compounds can be
also used to lower the bandgap beyond the 1-eV limit,
serving as an alternative to quinary alloys, which are
somewhat more difficult to grow due to the presence of
three elements of group V [4,5]. The drawback in using
dilute nitrides/antimonides is related to challenges in
material fabrication [6] and formation of defects [7,8].
Careful growth parameter optimization and thermal
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annealing are known to increase the material quality and
carrier lifetimes [9]. Carrier lifetime correlates with solar
cell performance via the minimum diffusion length re-
quired for the carriers to travel without recombination,
and it should be maximized in order to harvest efficiently
the photogenerated carriers [10]. Time-resolved photolu-
minescence (TRPL) using up-conversion technique [11] is
commonly used for estimating carrier lifetimes of opto-
electronic heterostructures and has been extensively used
in connection with optimization of GaInNAs heterostruc-
tures [2,12-14]. However, most of the studies have been
concerned with analyses of quantum wells [15]. Studies
on GalnAsN epilayers have reported a wide variety of life-
times in the range of 70 to 740 ps [8,16]. In this paper,
we report TRPL values for bulk GalnAsN and GaNAsSb
p-i-n solar cells. In particular, we focus on correlating the
effects of thermal annealing and the nitrogen composition.

Methods

The samples studied were grown on GaAs(100) sub-
strate by MBE equipped with radio-frequency plasma
source for atomic nitrogen incorporation. Their struc-
tures are presented in Figure 1. The thickness of the in-
trinsic region of the p-i-n solar cells grown was modified
throughout the series, but other growth parameters were
kept constant. The intrinsic regions of samples 1, 2,
and 3 consist of lattice-matched GalnNAs with nitrogen
compositions of 1%, 2%, and 3%, and were 320-, 600-,
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Figure 1 Schematic sample structures for (a) samples 1, 2, 3, 900 1000 1100 1200 1300
and (b) sample 4. The thickness of the lattice-matched N-based A (nm)

intrinsic regions is ranging from 300 to 1,300 nm.

and 600-nm thick, respectively. In order to obtain lattice
matching, the In composition was 2.7 times the nitrogen
composition in each of the samples. Sample 4 comprised
a lattice-matched GaNgyAs093Sbggs intrinsic region
with a bandgap of approximately 1 eV and, unlike the
other samples, had also an AlInP window layer. After
growth, wafers were diced and thermally annealed. Rapid
thermal annealing (RTA) treatments were done in N,
atmosphere. Sample temperature was monitored by op-
tical pyrometer through the Si carrier wafer. In order to
avoid desorption of As, the samples were protected with
a GaAs proximity cap during RTA [17]. The annealing
temperatures and the corresponding times for samples 1
to 3 were optimized to maximize the PL intensity [18].

TRPL measurements were carried out with an up-
conversion system [19]. For instrumentation details,
see [20]. The excitation source was an 800-nm mode-
locked Ti-sapphire pulsed laser, which delivered 50-fs
pulses enabling a final time resolution of approxi-
mately 200 fs (FWHM). The excitation density was
approximately 3 x 10™* J/cm?, with a 20-um diameter
spot on the sample.

The population dynamics of a single radiative level is
given by a rate equation:

dn(t)
e ~k x n(t), (1)

which results in a monoexponential photoluminescence
decay [21]:

n(t) = Aexp(—t/Tdecay)- (2)

This model ignores thermalization of carriers after
excitation, which is typically a very fast process and was
not time-resolved in these measurements. To account
for limited time resolution of the instrument, emission
decays were fitted using deconvolution with the instru-
ment response function. The monoexponential fits gave
satisfactory results for all measured decays.

Figure 2 Wavelength dependences of decay time constants for
samples 1-3 with GalnAsN i-region and PL intensities.

Results and discussion

Figure 2 shows the fit results for TRPL data for samples
1 to 3 measured at different wavelengths. Emission
wavelength depends on the nitrogen and indium com-
position, as shown by lines and open points in Figure 2.
The photoluminescence emission spectra appear to be
rather broad, which is typical for bulk-like heterostruc-
tures. The decay time increased steadily with the wave-
length, being within 400 to 600 ps for sample 1 and in
200 to 400 ps range for samples 2 and 3.

The spectral dependence of carrier lifetime in GalnNAs
can be explained in terms of interplay between the radia-
tive recombination and hopping energy relaxation of lo-
calized excitons as described by Rubel et al. [22] and
references therein. According to Takahashi et. al [23], the
increased nitrogen concentration, as in samples 1 to 3,
merely increases the band bowing and reduces the dipole
interaction by involving more non-T' states, which has
a direct effect on the radiative lifetime when larger N
concentrations are used. Moreover, nitrogen increases the
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Figure 3 Decay time versus wavelength for as-grown and

annealed sample 1.
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density of nonradiative recombination centers in the
bandgap which strongly contributes to the carrier lifetime.

Annealing indeed increases the decay time of Galn-
NAs, and this is shown in Figure 3, where the as-grown
sample decay time is also plotted. Lifetime increases by
one order of magnitude following RTA, underlining the
importance of thermal annealing for dilute nitride solar
cells. Optimal annealing conditions for GaInNAs depend
on the amount of nitrogen and growth parameters. Typic-
ally, good results for solar cells are obtained when anneal-
ing is performed at 750°C to 800°C for a few hundred
seconds [24,25]. This significant increase of decay time
is related to reduction of nonradiative recombination and
removal of defects due to thermal annealing [26,27]. Fur-
thermore, the decrease of decay times for the higher
nitrogen content points out to the fact that that nitrogen-
related defects are responsible for decreasing the carrier
lifetime [13].

The effect of RTA was further investigated on the
GaNAsSD structure. Figure 4 shows TRPL decays for sam-
ple 4 for as-grown wafer and annealing times of 300 and
1,800 s at a temperature (7,,) of 750°C. The dependences
of decay time on detection wavelength are presented in
Figure 5. An increase in decay time is observed when
moving towards the band edge, which is similar to samples
1 to 3. The change in the (1) slope upon RTA can be
linked to carrier energy relaxation processes in the vicinity
of the conduction band edge [22]. Although lifetime in-
creases with annealing, it remained below 100 ps. Further-
more, sample 4 has AlInP window layer which suppresses
effectively surface recombination rates. This lifetime is
approximately one fourth of that for sample 3 and one half
of the value obtained for the quinary GalnNAsSb [8].
Furthermore, as high as 900 ps, lifetime (not shown) was
measured from an optimized GalnNAs p-i-n solar cell

structure with an approximately 1.15-eV bandgap [9]. The
fact that the lifetime after annealing is one order of magni-
tude less than for optimized GaInNAs and less than what
has been published for GaInNAsSb indicates that there is
still room for further optimization for GaNAsSb growth
and annealing parameters.

Conclusions

We investigated the carrier lifetime dynamics in lattice-
matched GalnNAs and GaNAsSb p-i-n solar cells using
TRPL. The increase of nitrogen content decreases the
carrier lifetime owing to increase of defect densities. An
increase of the lifetime by at least tenfold was observed
after thermal annealing of bulk GaInNAs layers. Ther-
mal annealing was also found to affect the carrier energy
relaxation process in GaNAsSb. Further growth and an-
nealing parameter optimization is needed to improve the
quality of GaNAsSb to make it an effective subjunction
material in high-efficiency terrestrial and space solar
cells.
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