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1 Introduction
In this paper, we consider the asymptotic behavior of solutions for the Cauchy problem of
the porous medium equation with nonlinear sources

∂u
∂t

–�um = up, in R
N × (,∞), (.)

u(x, ) = u(x), in R
N , (.)

wherem,p >  and u ∈ L∞(ρσ ) ≡ {ϕ;ϕρσ ∈ L∞(RN )} with ρσ (x) = ( + |x| ) σ
 .

It is well known that any positive solutions of problem (.)-(.) blow up in finite time
if  < p ≤ pc ≡ m + 

N [–], while positive global solutions do exist if p > pc [–]. In
, Mukai, Mochizuki and Huang in [] found that if p >m + 

N and 
p–m < σ < N and

 ≤ ϕ ∈ Cb(RN ) satisfies lim sup|x|→∞ |x| σ ϕ(x) < ∞, then there exists a constant η(ϕ) > 
such that for  < η < η(ϕ), the solutions u(x, t) of problem (.)-(.) with the initial value
u = ηϕ are global and the following estimate holds:

∥∥u(t)∥∥ L∞(RN ) ≤ Ct–
σ

σ (m–)+ . (.)

Moreover, if lim|x|→∞ |x| σ ϕ(x) =M > , then

t
σ

σ (m–)+ u
(
t


σ (m–)+ x, t

) t→∞––––→ S()w(x)
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uniformly on R
N , where w(x) = M |x|–σ . Here S(t) is a semigroup generated by the

Cauchy problem of the porous medium equation

∂w
∂t

–�wm = , in R
N × (,∞), (.)

w(x, ) = w(x), in R
N (.)

and w(x) = ηM |x|–σ .
On the other hand, regarding problem (.)-(.), in , Vázquez and Zuazua []

found that for any bounded sequence {ϕn}∞n= in L∞(RN ), there exists an initial value u ∈
L∞(RN ) and a sequence tnk → ∞ as k → ∞ such that limk→∞ S(tnk )u(t



nk x) = S()ϕn(x)

uniformly on any compact subsets of RN . In our previous papers [], for any bounded se-
quence {ϕn}∞n= in C+

 (RN ) ≡ {ϕ ∈ C(RN );φ(x) ≥ }, we have shown that there exists an
initial value u ∈ C(RN ) and a sequence tnk → ∞ as k → ∞ such that

lim
k→∞

t
μ

nk S(tnk )u

(
tβnk x

)
= S()ϕn(x)

uniformly on R
N , where  < μ < N

N(m–)+ and β = –μ(m–)
 . For more details on the study

of complicated asymptotic behavior of solutions for the heat equation and other evolution
equations, we refer the readers to [–].
In this paper, we are quite interested in the abovementioned same topic for the equation

with strongly nonlinear sources, namely equation (.) with p >m + 
N . We will show that

for any M > , there is a constant η(M) and an initial value u ∈ Cσ ,+
η(M) ≡ {ϕ ∈ C(RN );ϕ ∈

Bσ ,+
η(M)} with 

p–m < σ < N such that for any ϕ ∈ Cσ ,+
η(M), there exists a sequence tn → ∞ as

n→ ∞ satisfying

lim
n→∞ t

σ
σ (m–)+
n S(tn)u

(
t


σ (m–)+
n x

)
= S()ϕ(x)

uniformly on R
N . Here Bσ ,+

η(M) ≡ {φ = ηϕ;  ≤ ϕ ∈ L∞(ρσ ), ‖( + | · | ) σ
 ϕ(·)‖ L∞(RN ) ≤

M and  ≤ η ≤ η(M)}. For this purpose, we first show that if the initial value u ∈ Bσ ,+
η(M),

then the solutions u(x, t) are global and satisfy

u(x, t)≤ C
(
 + t


σ (m–)+ + |x| )– σ

 . (.)

One can easily see that (.) captures (.). From this, we can follow the framework by
Kamin and Peletier [] to prove that

lim
t→∞ t


σ (m–)+

∥∥u(
t

σ
σ (m–)+ ·, t) – S(t)u

(
t


σ (m–)+ ·)∥∥ L∞(RN ) = . (.)

So, we can get our results by following the framework in [] and using (.)-(.).
The rest of this paper is organized as follows. The next section is devoted to giving a suf-

ficient condition for the global existence of solutions for problem (.)-(.) and the upper
bounded estimates on these solutions. In the last section, we investigate the complicated
asymptotic behavior of solutions.

http://www.boundaryvalueproblems.com/content/2013/1/35
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2 Preliminaries and estimates
In this section we state the definition of a weak solution of problem (.)-(.) and give
the upper bounded estimates on the global solutions. We begin with the definition of the
weak solution of problem (.)-(.).

Definition . [, ] By a weak solution of problem (.)-(.) in R
N × [,T), we mean

a function u(x, t) in R
N × [,T) such that

. u(x, t)≥  in R
N × [,T) and u(x, t) ∈ C(RN × (, τ ]) for each  < τ < T .

. For  < τ < T and any nonnegative ϕ(x, t) ∈ C,(RN × [,T)) which vanishes for
large |x|, the following equation holds:

∫
RN

u(x, τ )ϕ(x, τ ) dx –
∫
RN

u(x)ϕ(x, ) dx

=
∫ τ



∫
RN

um(x, t)�ϕ(x, t) dxdt

+
∫ τ



∫
RN

u(x, t)ϕt(x, t) dxdt +
∫ τ



∫
RN

up(x, t)ϕ(x, t) dxdt. (.)

A supersolution [or subsolution] is similarly defined with equality of (.) replaced by
≥ [or ≤]. The weak solutions for problem (.)-(.) can be defined in a similar way as
above. It is well known that problem (.)-(.) has a unique, nonnegative and bounded
weak solution, at least locally in time [, ]. Now we state the comparison principle for
problem (.)-(.).

Lemma . [, ] Suppose that for  < τ < T , u(x, t),u(x, t) ∈ C(RN × [,T))∩L∞(RN ×
[, τ ]) are supersolution and subsolution of the problem (.)-(.), respectively. If

u(x, )≥ u(x, ) for x ∈R
N ,

then, for all (x, t) ∈R
N × (,T),

u(x, t)≥ u(x, t).

To study the asymptotic behavior of solutions for problem (.)-(.), we adopt the space
X and L∞(ρσ ) as that in [–]. For any σ >  and ρσ (x) = ( + |x|) σ

 , the L∞(ρσ ) is
defined as

L∞(ρσ ) ≡
{
ϕ;ϕρσ ∈ L∞(

R
N)}

with the obvious norm ‖ϕ‖L∞(ρσ ) = ‖ϕρσ‖L∞(RN ) and the X is given by

X ≡ {
ϕ ∈ Lloc

(
R

N)
;‖|ϕ‖| < ∞ and �(ϕ) = 

}
with the norm ‖| · ‖|. Here

‖|ϕ‖|r = sup
R≥r

R–N(m–)+
m–

∫
{|x|≤R}

∣∣ϕ(x)∣∣dx and �(ϕ) = lim
r→∞‖|ϕ‖|r .

http://www.boundaryvalueproblems.com/content/2013/1/35
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Hence they are both Banach spaces. The existence and uniqueness of a weak solution of
problem (.)-(.) with the initial-value u ∈ X is shown in [, ], and this solution
satisfies the following proposition.

Proposition . [] Problem (.)-(.) generates a continuous bounded semigroup in X

given by

S(t) : w → w(x, t).

In other words, S(t)w ∈ C([,∞);X).Moreover, if u ∈ L(RN ), then the semigroup S(t) is
a contraction.

We now introduce the definitions of scalings and the commutative relations between
the semigroup operators and the dilation operators. For any μ,β >  and v(x) ∈ X, the
dilation Dμ,β

λ is defined as follows:

Dμ,β
λ w(x) ≡ λμw

(
λβx

)
.

From the definitions of the dilation operator and the semigroup operator, we can get that
for μ,β >  and w ∈ X,

Dμ,β
λ

[
S
(
λt

)
w

]
(x) = S

(
λ–μ(m–)–β t

)[
Dμ,β

λ w
]
(x); (.)

see details in [, ].
In the rest of this section, we give a sufficient condition for the existence of global solu-

tions of problem (.)-(.) and establish the upper bounded estimates of these solutions.

Theorem . Let 
p–m < σ <N and M > . There exists a constant η(M) such that for any

 ≤ η ≤ η(M), φ(x)≥  and ‖φ‖L∞(ρσ ) ≤ M, the solutions u(x, t) of problem (.)-(.) with
the initial value u(x) = ηφ(x) are global.Moreover, the following estimate holds:

 ≤ u(x, t)≤ C(M,η)
(
 + t


σ (m–)+ + |x|)– σ

 , (.)

where C(M,η) is a constant dependent only on M and η.

Remark . Notice that if  ≤ ϕ ∈ Cb(RN ) and lim sup|x|→∞ ϕ(x)|x|σ < ∞, then ϕ ∈
L∞(ρσ ). So, our results capture Theorem  in []. Here we use some ideas of them.

Proof To prove this theorem, we need the fact that if v =M|x|–σ , then

S(t)v(x) ≤ C(M)
(
t


σ (m–)+ + |x|)– σ

 , (.)

which has been given in Lemma . of []. We give the proof here for completeness. In
fact,

‖v‖r = sup
R≥r

R–N(m–)+
m–

∫
BR

A|x|–σ dx≤ Cr–σ– 
m– →  as r → ∞.

http://www.boundaryvalueproblems.com/content/2013/1/35
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This means that v ∈ X. Therefore, from Proposition ., we obtain that S(t)v(x) is well
defined. Taking μ = σ

σ (m–)+ and β = 
σ (m–)+ in (.), we have

λ
σ

σ (m–)+
[
S
(
λs

)
v

](
λ


σ (m–)+ x

)
= S(s)

[
λ

σ
σ (m–)+ v

(
λ


σ (m–)+ ·)](x) = S(s)v(x). (.)

Now taking s = , λ = t 
 and g(x) = S()v(x) in (.), we obtain that

S(t)v(x) = t–
σ

σ (m–)+ g
(
t–


σ (m–)+ x

)
. (.)

The fact that φ ∈ C∞(RN \ {}) clearly means that

S(t)v ∈ C
(
[,∞)×R

N \ {
(, )

}) ∩C
α
 ,α

(
(,∞)×R

N)
for some α > ; (.)

see []. This implies that for |x| = , the following limit holds:

t–
σ

σ (m–)+ g
(
t–


σ (m–)+ x

)
= S(t)v(x)→ φ(x) =M|x|–σ =M as t → .

Let

y = t–


σ (m–)+ x.

So,

|y| → ∞ as t → .

Therefore,

|y|σ g(y) –M → 

as |y| → ∞. This means that there exists anM >  such that if |y| ≥ M, then

g(y) ≤ M|y|–σ . (.)

From (.), for |y| ≤ M, there exists a constant C such that

g(y) ≤ C. (.)

Combining (.) and (.), we have

g(x)≤ C(M)
(
 + |x|)– σ

 for x ∈R
N .

By (.), we thus obtain that

S(t)v(x) ≤ C(M)
(
t


σ (m–)+ + |x|)– σ

 .

http://www.boundaryvalueproblems.com/content/2013/1/35
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So, we complete the proof of (.). Now taking

ϕ(x) =M
(
 + |x|)– σ

 ,

we get that

 < ϕ(x)≤ v(x) =M|x|–σ for x 
= .

Therefore, by the comparison principle and (.), for all t ≥ , we have

S(t)ϕ(x)≤ S(t)v(x) ≤ C(M)
(
t


σ (m–)+ + |x|)– σ

 . (.)

Since S(t)ϕ(x) ∈ C([,∞)×R
N ) (see [, ]), there exists a t >  such that for all |x| ≤ 

and  ≤ t ≤ t,

S(t)ϕ(x)≤ Cϕ(x) ≤ C(M)
(
 + |x|)– σ

 .

Combining this with (.) and using the comparison principle, we can get

S(t)φ(x)≤ S(t)ϕ(x)≤ C(M)
(
 + t


σ (m–)+ + |x|)– σ

 .

In other words,

S(t)φ(x)≤ C(M)
(
( + t)


σ (m–)+ + |x|)– σ

 . (.)

If η = , (.) clearly holds. In the rest of proof, we can assume that η > . The hypothesis


p–m < σ <N indicates

σ (p –m) –  > .

Let

η(M)m–p = Cp–(M)(p –m)
∫ ∞


( + t)–

σ (p–)
σ (m–)+ dt

=
C(M)p–(σ (m – ) + )(p –m)

σ (p –m) – 
> ,

where C(M) is the constant given by (.). For  < η ≤ η(M), taking

α(t) =
[(

ηm–p –C(M)p–(p –m)
∫ t


( + s)–

σ (p–)
σ (m–)+ dx

)]– 
p–m

,

and

w(x, t) = S(t)φ(x),

http://www.boundaryvalueproblems.com/content/2013/1/35
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we obtain from (.) that α(t) is an increasing function satisfying

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a() = η,

a(t)≤ 


p–m η(M) for all t ≥ ,

a′(t) = C(M)p–a(t)p–m+( + t)–
σ (p–)

σ (m–)+ ≥ a(t)p–m+‖w(t)‖p–L∞(RN ).

(.)

Now letting b(t) to satisfy

⎧⎨
⎩b′(t) = a(b(t))m–,

b() = 
(.)

and then taking

w(x, t) = a
(
b(t)

)
w(x, t),

one can see that w(x, t) is a supersolution of the following problem:

∂u
∂t

–�um = up, (x, t) ∈R
N × (,∞);

u(x, ) = u = ηφ(x), x ∈R
N .

Therefore,

u(x, t) ≤ a
(
b(t)

)
w(x, t)≤ 


p–m η(M)w

(
x,b(t)

)
≤ C(η,M)

(
 + b(t)


σ (m–)+ + |x|)– σ

 . (.)

(.) and (.) clearly mean that

ηm–t ≤ b(t) ≤ 
m–
p–m η(M)m–t.

From this and (.), we can get (.). So, we complete the proof of this theorem. �

3 Complicated asymptotic behavior
For anyM > , let η(M) be as given by Theorem .. We introduce

Bσ ,+
η(M) ≡

{
ϕ(x) = ηφ(x) : φ(x) ≥ ,‖φ‖L∞ (ρσ ) ≤ M and ≤ η ≤ η(M)

}

and

Cσ ,+
η(M) ≡

{
ϕ ∈ C

(
R

N)
;ϕ ∈ Bσ ,+

η(M)
}
.

In the rest of this section, we show that the complexity may occur in the asymptotic be-
havior of solutions of problem (.)-(.) with u ∈ Cσ ,+

η(M). Our main result is the following
theorem.

http://www.boundaryvalueproblems.com/content/2013/1/35
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Theorem . Let p > m + 
N and 

p–m < σ < N . Then there is a function u ∈ Cσ ,+
η(M) such

that for any ϕ ∈ Cσ ,+
η(M), there exists a sequence tn → ∞ as n→ ∞ such that

lim
n→∞ t

σ
σ (m–)+
n u

(
t


σ (m–)+
n x, tn

)
= S()ϕ(x)

uniformly on R
N . Here u(x, t) is the solution of problem (.)-(.).

To get this theorem, we need to prove the following lemma first.

Lemma . Suppose p > m + 
N and M > . Let u be a solution of problem (.)-(.). If

 ≤ u ∈ Bσ ,+
η(M) with


p–m < σ <N , then

lim
t→∞ t

σ
+σ (m–)

∥∥u(
t


+σ (m–) ·, t) – [

S(t)u
](
t


+σ (m–) ·)∥∥L∞(RN ) = .

Proof We first define the functions

uλ(x, t) =Dμ,β
λ u(x,λt) = λμu

(
λβx,λt

)
and

wλ(x, t) =Dμ,β
λ w(x,λt) = λμw

(
λβx,λt

)
,

where μ = σ
σ (m–)+ and β = 

σ (m–)+ . Using the comparison principle, we know that for
(x, t) ∈R

N × (,∞),

w(x, t)≤ u(x, t)

and for all λ ≥ ,

wλ(x, t)≤ uλ(x, t).

The results of Theorem . imply that

uλ(x, t)≤ Cλμ
[(
 + λt

)β + λβ |x|]– σ


≤ C
((

λ– + t
)β + |x|)– σ



≤ C
(
λ– + t

)–μ(
 +

(
λ– + t

)–β |x|)– σ
 . (.)

Here we have used the fact μ = βσ . So,

∫ τ



∫
B
uλ(x, t) dxdt ≤ C

∫ τ+λ–

λ–
sNβ–μ ds

∫ s–β


rN–σ– dr ≤ Cτ .

Now we estimate the integral

∫ τ



∫
B
uλ(x, t)q dxdt

http://www.boundaryvalueproblems.com/content/2013/1/35
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with q >  in several steps. For any τ > , we take λ large enough to satisfy λ– ≤ τ and
assume, without loss of generality, that (τ + λ–)–β >  in the rest of this proof. Then using
the same method as above, we have

∫ τ



∫
B
uλ(x, t)q dxdt ≤

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Cτ γβ +Cτ if γ >  and N 
= σq,

Cτ +Cτ ln 
τ

if γ >  and N = σq,

Cτ +C ln ( + λτ ) if γ = ,

Cτ +Cλ–βγ if γ < ,

(.)

where γ = N + σ (m – ) – σq + . Similarly, we can get the integral estimates for wλ(x, t),
which have been given in []. By using the same methods as in [], we can get that for
T > 

uλ(T) –wλ(T) →  as λ → ∞ (.)

uniformly on any compact subset of RN . For any T ,λ, ε > , we can obtain from (.) that
there exists a constant R >  satisfying

∥∥uλ(T)
∥∥
L∞(RN \BR) ≤

∥∥ϕλ(T)
∥∥
L∞(RN \BR) <

ε


(.)

and

∥∥wλ(T)
∥∥
L∞(RN \BR) ≤

∥∥uλ(·,T)
∥∥
L∞(RN \BR) <

ε


, (.)

where ϕλ(x, t) = Cλμ[( + λt)


σ (m–)+ + |λβx|]– σ
 = C[(λ– + t)


σ (m–)+ + |x|]– σ

 and BR ≡
{x ∈ R

N ; |x| ≤ R}. Taking R as given by (.), from (.), there exists λ such that for all
λ ≥ λ,

∥∥uλ(T) –wλ(T)
∥∥
L∞(BR)

<
ε


. (.)

Therefore, from (.)-(.), we have

lim
λ→∞

∥∥uλ(T) –wλ(T)
∥∥
L∞(RN ) = . (.)

Now letting T =  and λ = t 
 in (.), we get that

lim
t→∞ t

σ
+σ (m–)

∥∥[
u
(
t


+σ (m–) ·, t) –w

(
t


+σ (m–) ·, t)]∥∥L∞(RN ) = .

So, we complete the proof of this lemma. �

Now we can prove our main result.

Proof of Theorem . Let

μ =
σ

σ (m – ) + 

http://www.boundaryvalueproblems.com/content/2013/1/35
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and

β =


σ (m – ) + 
.

From the definition of Cσ ,+
η(M), we obtain that there exists a countable set F such that

F ⊂ Cσ ,+
η(M) ∩ L

(
R

N)

and for any ε >  and ϕ ∈ Cσ ,+
η(M), there exists a function φε ∈ F satisfying

‖ϕε – ϕ‖L∞(RN ) < ε. (.)

Therefore, there exists a sequence {ϕj}j≥ ⊂ F such that
I. For any φ ∈ F , there exists a subsequence {ϕjk }k≥ of the sequence {ϕj}j≥ satisfying

ϕjk (x) = φ for all k ≥ ,

II. There exists a constant C >  satisfying

max
(‖ϕj‖L∞(RN ),‖ϕj‖L(RN )

) ≤ Cj for j ≥ .

Now we can follow the methods given in [] to construct an initial value as follows. Let

u(x) =
∞∑
j=

λj
–μχj

(
x/λβ

j
)
ϕj

(
x/λβ

j
)
=

∞∑
j=

Dμ,β
λ–j

[
χj(x)ϕj(x)

]
. (.)

Here

λj =

⎧⎨
⎩
 for j = ,

max(j
N(m–)+

N–μ[N(m–)+] λ

βN–μ
N–μ[N(m–)+]
j– , (jλj–)


μ ,λj) for j > ,

(.)

χj(x) is the cut-off function defined on {x ∈ R
N ; –j < |x| < j} relatively to {x ∈ R

N ; –j+ <
|x| < j–}, and λj is selected large enough to satisfy

Dμ,β
λj

[
S
(
λ
j t

)
u(x)

]
=Dμ,β

λj

[
S
(
λ
j t

) j–∑
n=

λn
–μχn

(
x/λβ

n
)
ϕn

(
x/λβ

n
)]

+Dμ,β
λj

[
S
(
λ
j t

)
λj

–μχj
(
x/λβ

j
)
ϕj

(
x/λβ

j
)]

+Dμ,β
λj

[
S
(
λ
j t

) ∞∑
n=j+

λn
–μχn

(
x/λβ

n
)
ϕn

(
x/λβ

n
)]

.

Notice first that if ϕ ∈ Cσ ,+
η(M), then

‖ϕ‖L∞(RN ) ≤ η(M), ‖ϕ‖L∞(ρσ ) ≤ η(M)

http://www.boundaryvalueproblems.com/content/2013/1/35
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and

ϕ ∈ C
(
R

N)
.

By (.) and (.), we have

‖u‖L∞(RN ) ≤ ‖u‖L∞(ρσ ) ≤ sup
j≥

∥∥λj
–μχj

(
x/λβ

j
)
ϕj

(
x/λβ

j
)∥∥

L∞(ρσ )
≤ η(M).

So, we have

u ∈ Cσ ,+
η(M) ⊂ C

(
R

N)
.

Using the samemethod as that in [], we can get that for any ϕ ∈ F , there exists a sequence
tn → ∞ as n→ ∞ such that

t
σ

σ (m–)+
n

[
S(tn)u

](
t


σ (m–)+
n x

) n→∞––––→ S()ϕ(x) (.)

uniformly on R
N . For any φ ∈ Cσ ,+

η(M), from (.), we know that there exists a sequence
{ϕk} ⊂ F such that

ϕk → φ as k → ∞.

Therefore,

S()ϕk → S()φ as k → ∞ (.)

uniformly on any compact subset ofRN . This uses the fact that themap S() is regularizing
since the images of bounded sets are relatively compact subsets of Cα for some α > 
in compact sets of RN []. And notice that ϕk ,φ ∈ Cσ ,+

η(M) ⊂ Bσ ,+
η(M). We thus obtain from

Theorem . that for any ε > , there exists R >  such that if |x| > R, then

S()φ(x) <
ε


(.)

and

S()ϕk(x) <
ε


for all k ≥ . (.)

Combining (.), (.) with (.), we thus have that

S()ϕk → S()φ as k → ∞ (.)

uniformly on R
N . By Lemma ., (.) and (.), we can get that for any φ ∈ Cσ ,+

η(M), there
exists a sequence tn → ∞ as t → ∞ such that

lim
n→∞ t

σ
σ (m–)+
n u

(
t


σ (m–)+
n x, tn

)
= S()φ(x)

uniformly on R
N . So, we complete the proof of Theorem .. �
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