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Abstract
Predator-prey models are similar to host-parasite and host-parasitoid models. We
investigate the stability and invariant manifolds of a discrete predator-prey model by
using center manifold theory which is not addressed in Çelik and Duman (Chaos
Solitons Fractals 40:1956-1962, 2009), and Wang et al. (Ecol. Complex. 8:81-85, 2011).

1 Introduction
Predator-prey models are similar to host-parasite and host-parasitoid models. In this sys-
tem, the predator does not live on the host. The prey serves as a food source for the preda-
tor. There are many interactions between any pair of biological species; if two species
compete for limited resources or one of the species preys upon the other, then one of the
species is extinct.
The dynamic relationship between the interacting species has been one of the domi-

nant themes in both ecology and mathematical ecology due to its universal importance.
Recently many authors have explained the dynamics of competition and predator-prey
models.
The following discrete time prey-predator systemwas studied by Çelik andDumanwith

an Allee effect on the prey population [], and byWang, Zhang, and Liu with Allee effects
both on prey and predator []:

Nt+ =Nt + rNt( –Nt) – aNtPt ,

Pt+ = Pt + aPt(Nt – Pt),
()

where the parameters a, r are positive,Nt is prey density at time t and Pt is predator density
at time t, r is the intrinsic growth rate. The term aNt is per capita predator increase due to
prey consumption. Çelik and Duman [] claimed that the eigenvalues for the fixed point
(, ), which is a non-hyperbolic fixed point, are λ =  and λ = , but the corresponding
Jacobian matrix for this point is

J =

(
 + r 
 

)
,

with the eigenvalues λ =  + r and λ = . Then (, ) is an unstable fixed point by the Jury
condition [].
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TheAllee effect was first described by ecologist Allee []. TheAllee effectmay be caused
by a variety of mechanisms applicable in small populations. The presence of Allee effects
indicates that there is a minimal population size necessary for a population to maintain
itself in nature. Interest in the dynamics of small populations, including Allee effects, has
increased in recent years. Interest in how small populations interact with other popula-
tions, including predator-prey systems, has also increased. Allee effects can occur at the
higher tropic level (e.g., predator, parasite), at the lower level (e.g., prey, host), or during
interaction between these levels. Adding Allee effects to a predator-prey system can be
destabilizing, depending on the formulation of the equations and where Allee effects are
added [].
In this paper, we consider the system subject to equations () when the predator pop-

ulation is subject to an Allee effect which is more general than described by the system
of equations (.) in [], and we also use the center manifold theory for non-hyperbolic
equilibrium points [].

Nt+ =Nt + rNt( –Nt) – aNtPt ,

Pt+ = Pt + aPt(Nt – Pt)
Pd
t

m + Pd
t
,

()

where the parameters a, r, m are positive and d ≥ . When d = , the system is the model
with an Allee effect on the predator discussed by Wang, Zhang, and Liu []. The aim of
this paper is to investigate stability of model () and analyze the stability of the exclusion
fixed point, which is non-hyperbolic, for the particular cases when d =  and d =  by using
the center manifold theory which is not addressed in [, ].

2 Stability of system (2)
In this section we investigate the stability condition for system ().
The fixed points are (, ), (, ), and ( r

a+r ,
r

a+r ). The Jacobian matrix of the planar map
in () is

J =

(
 + r – rN – aP –aN

aP+d
m+Pd

m+(+a(N–P))Pd–mPd(––a((+d)N–(+d)P))
(m+Pd)

)
.

The Jacobian matrix for the extinction fixed point (, ) is

J =

(
 + r 
 

)
.

(, ) is unstable since one of the eigenvalues J is greater than . The Jacobian for the
exclusion fixed point (, ) is

J =

(
 – r –a
 

)
.

Since one of the eigenvalues of the matrix J is , this point is non-hyperbolic. By using the
center manifold theory in the next section, we will show that for some particular cases,
this point is unstable.
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Figure 1 Some orbits of system (2) whenm = 0.4,
r = 0.2, a = 0.2, d = 2.

We now discuss the coexistence of the fixed point, i.e., ( r
a+r ,

r
a+r ): the Jacobian matrix for

this point is

J∗ =

⎛
⎝ a+r–r

a+r – ar
a+r

a( r
a+r )

+d

m+( r
a+r )d

 – a( r
a+r )

+d

m+( r
a+r )d

⎞
⎠ .

By using the Jury conditions [], after some manipulation, we obtain the following theo-
rem.

Theorem  The positive fixed point ( r
a+r ,

r
a+r ) is asymptotically stable if and only if

 < r
[
(K +m)r + a(K –Kr)

]
< a(K +m) – aKr – (K +m)(– + r)r,

where K = ( r
a+r )

d .

In Figure , we give the numerical evidence for some particular values of the parameters
that the positive fixed point is asymptotically stable.

3 Instability of an exclusion fixed point
In this section, by using the center manifold theory, we show that for some values of d for
system (), the fixed point (, ) is unstable.

Theorem  For system (), the following statements hold true:
(a) If d = , then (, ) is unstable.
(b) If d = , then (, ) is unstable.

Proof The eigenvalues of the Jacobian matrix corresponding to the system given in () at
the point (, ) are λ =  – r and λ = . If r > , then |λ| >  and (, ) is unstable.
Now, let us consider the case where  < r <  in which the eigenvalues λ, λ are subject

to |λ| <  and λ = .
(a) In order to apply the center manifold theory, we make a change of variables in sys-

tem () by shifting the point (, ) to (, ) with u = N –  and v = P, for d = , the new
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system is

ut+ = (ut + ) – r(ut + )ut – a(ut + )vt – ,

vt+ = vt + avt(ut – vt + )
vt

m + vt
.

()

The Jacobian of the planar map given in () at (, ) is

J̃ =

(
 – r –a
 

)
.

According to system (), it becomes

ut+ = ( – r)ut – avt + f̃ (ut , vt),

vt+ = vt + g̃(ut , vt),
()

where

f̃ (ut , vt) = –ut(rut + avt)

and

g̃(ut , vt) =
a( + ut – vt)vt

m + vt
.

Consider the center manifold v = h(u). Let us assume that the map h takes the form

h(u) = –
r
a
u + αu + βu +O

(
u

)
, α,β ∈R.

This leads to the evaluation of two constants α and β . The function h must satisfy the
center manifold equation

h
(
( – r)u – ah(u) + f̃

(
u,h(u)

))
– h(u) – g̃

(
u,h(u)

)
= .

By using the Taylor series expansion, we solve the functional equation above yielding

αr –
r

ma
= 

and

αr + βr +
αr
m

–
r

ma
–

r

ma
–

r

ma
– α

(
r + a

(
α –

r
a

))
= .

By solving the last set of equations, we obtain α = r
ma , β = r+mr

ma . Hence

h(u) = –
r
a
u +

r
ma

u +
r +mr

ma
u.
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Thus, on the center manifold v = h(u), we have the following map:

S(u) = –
u(( +m)ru( + u) +ma(–m + ru( + u)))

ma
.

Since S′() =  and S′′() = –r
m < , the exclusion fixed point (, ) is unstable.

(b) Similarly, when d = , the new system is given by

ut+ = (ut + ) – r(ut + )ut – a(ut + )vt – ,

vt+ = vt + avt(ut – vt + )
vt

m + vt
.

()

The Jacobian of the planar map which is given in () at the point (, ) is

J̃ =

(
 – r –a
 

)
.

The equations in system () become

ut+ = ( – r)ut – avt + f̃ (ut , vt),

vt+ = vt + g̃(ut , vt),
()

where

f̃ (ut , vt) = –ut(rut + avt)

and

g̃(ut , vt) =
a( + ut – vt)vt

m + vt
.

Consider again the center manifold v = h(u). Let us assume that the function h takes the
form

h(u) = –
r
a
u + αu + βu +O

(
u

)
, α,β ∈R.

Now we can evaluate the constants α and β . The function hmust satisfy the center man-
ifold equation

h
(
( – r)u – ah(u) + f̃

(
u,h(u)

))
– h(u) – g̃

(
u,h(u)

)
= .

Utilizing the Taylor expansion, we solve the above functional equation

αr = 

and

–aα + (α + β)r +
r

ma
= .
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(a) without the Allee effect (b) with the Allee effect

(c) without the Allee effect (d) with the Allee effect

Figure 2 Trajectories of the prey-predator system: the Allee effect stabilizes the system. r = 2.5, a = 1.9,
d = 2; (a), (c)m = 0; (b), (d)m = 0.1.

Solution of the above set of equations is α = , β = – r
ma . Hence

h(u) = –
r
a
u –

r

ma
u.

Thus, on the center manifold v = h(u), we have the following map:

R(u) =
mau + ru( + u)

ma
.

Since R′() =  and R′′() = , we need to calculate the Schwarzian derivative [] at the
origin. Since the Schwarzian derivative at the origin is r

ma > , we conclude that the fixed
point (, ) is unstable. �

We show the influence of the Allee effect on the local stability of system (). In Figures 
and , we show the trajectories of predator-prey densities in the system we studied. Fig-
ure  shows that the corresponding equilibrium points can move from unstable to stable
under the Allee effect. On the other hand, the Allee effect may be a destabilizing force in
our predator-prey system which made the equilibrium point change from stable to unsta-
ble. Figure  depicts the fact. Table  also gives compact information about the stabilizing
and destabilizing force of the Allee effect in our model.
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(a) without the Allee effect (b) with the Allee effect

(c) without the Allee effect (d) with the Allee effect

Figure 3 Trajectories of the prey-predator system: the Allee effect destabilizes the system. r = 2.5,
a = 0.5, d = 2; (a), (c)m = 0; (b), (d)m = 0.3.

Table 1 The Allee effect may stabilize or destabilize the system

Figure r a d m Fixed point Initial point

2(a), 2(c) 2.5 1.9 2 0 Unstable (0.3, 0.2)
2(b), 2(d) 2.5 1.9 2 0.1 Stable (0.3, 0.2)
3(a), 3(c) 2.5 0.5 2 0 Stable (0.3, 0.2)
3(b), 3(d) 2.5 0.5 2 0.3 Unstable (0.3, 0.2)
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