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Abstract
In this paper, we consider a discrete fractional boundary value problem of the form

{
�αx(t) = f (t + α – 1, x(t + α – 1)), t ∈ [0, T ]N0 := {0, 1, . . . , T},
x(α – 2) = 0, x(α + T ) =�–βx(η + β),

where 1 < α ≤ 2, β > 0, η ∈ Nα–2,α+T–1 := {α – 2,α – 1, . . . ,α + T – 2,α + T – 1} and
f : [α – 1, . . . ,α + T – 1]Nα–1 ×R→ R is a continuous function. Existence and
uniqueness of the solutions are proved by using the contraction mapping theorem,
the nonlinear contraction theorem and Schaefer’s fixed point theorem. Some
illustrative examples are also presented.
MSC: 34A08; 26A33
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1 Introduction
Fractional calculus is an emerging field recently drawing attention from both theoretical
and applied disciplines. Fractional order differential equations play a vital role in describ-
ing many phenomena related to physics, chemistry, mechanics, control systems, flow in
porous media, electrical networks, mathematical biology and viscoelasticity. For a reader
interested in the systematic development of the topic, we refer to the books [–]. A va-
riety of results on initial and boundary value problems of fractional differential equations
and inclusions can easily be found in the literature on the topic. For some recent results,
we can refer to [–] and references cited therein.
Discrete fractional calculus and fractional difference equations represent a very new area

for researchers. Some real-world phenomena are being studied with the help of discrete
fractional operators. A good account of papers dealing with discrete fractional boundary
value problems can be found in [–] and references cited therein.
Goodrich in [] considered a discrete fractional boundary value problem of the form

⎧⎨
⎩–�νx(t) = f (t,x(t + ν – )), t ∈ [,T]N := {, , . . . ,T},
x(ν – ) = , x(ν + T) = g(x),

(.)
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where  < ν ≤ , f : [ν–, . . . ,ν+T –]Nν– ×R →R is a continuous function and g : C([ν–
,ν + T]Nν– ,R) is a given function. Existence and uniqueness of solutions are obtained
by the contraction mapping theorem, the Brouwer theorem and the Guo-Krasnoselskii
theorem.
Pan et al. in [] examined the fractional boundary value problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

–�ν
ν–μx(t) = f (t,x(t + ν – )), t ∈ {, , . . . ,T +M},

x(ν –N) = · · · = x(ν – ) = ,

x(ν – ) = g(x),

�
μ
ν–Nx(T +M + ν –μ) = ,

(.)

where ν ≥ , N ∈ N so that N –  < ν ≤ N ,  ≤ μ < ν , M ∈ N so that M –  < ν ≤ M, f :
{, , . . . ,T +M}×R →R is continuous and nonnegative for x≥ , and g : C([ν–N , . . . ,T +
M + ν],R) is a given function. Existence and uniqueness of solutions are obtained by the
contraction mapping theorem and the Brouwer theorem.
In this paper we consider the nonlinear discrete fractional boundary value problem of

the form
⎧⎨
⎩�αx(t) = f (t + α – ,x(t + α – )), t ∈ [,T]N := {, , . . . ,T},
x(α – ) = , x(α + T) = �–βx(η + β),

(.)

where  < α ≤ , β > , η ∈ Nα–,α+T– := {α – ,α – , . . . ,α + T – ,α + T – } and f :
[α – , . . . ,α + T – ]Nα– ×R →R is a continuous function.
The plan of this paper is as follows. In Section we recall some definitions and basic lem-

mas. Also, we derive a representation for the solution to (.) by converting the problem
to an equivalent summation equation. In Section , using this representation, we prove
existence and uniqueness of the solutions of boundary value problem (.) by the help of
the contractionmapping theorem, the nonlinear contraction theorem and Schaefer’s fixed
point theorem. Some illustrative examples are presented in Section .

2 Preliminaries
In this section, we introduce notations, definitions and lemmaswhich are used in themain
results.

Definition . We define the generalized falling function by tα := �(t+)
�(t+–α) , for any t and

α, for which the right-hand side is defined. If t +  –α is a pole of the gamma function and
t +  is not a pole, then tα = .

Definition . The αth fractional sum of a function f , for α > , is defined by

�–αf (t) = �–αf (t;a) :=


�(α)

t–α∑
s=a

(
t – σ (s)

)α–f (s) (.)

for t ∈ {a + α,a + α + , . . .} := Na+α and σ (s) = s + . We also define the αth fractional
difference for α >  by �αf (t) := �N�α–Nf (t), where t ∈Na+α and N ∈N is chosen so that
 ≤N –  < α ≤N .
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Lemma . Let t and α be any numbers for which tα and tα– are defined. Then �tα =
αtα–.

Lemma . Let  ≤N –  < α ≤N . Then

�–α�αy(t) = y(t) +Ctα– +Ctα– + · · · +CNtα–N ,

for some Ci ∈R, with ≤ i≤N .

To define the solution of boundary value problem (.), we need the following lemma
which deals with linear variant of boundary value problem (.) and gives a representation
of the solution.

Lemma . Let

η–α+∑
s=

(η + β – s – α + )β–�(s + α – )
�(β)�(s)

�= �(α + T + )
�(T + )

and h : [α – , . . . ,α + T – ]Nα– →R be given. Then the problem

⎧⎪⎪⎨
⎪⎪⎩

�αx(t) = h(t + α – ), t ∈ [,T]N ,α ∈ (, ],

x(α – ) = ,

x(α + T) = �–βx(η + β), η ∈Nα–,α+T–,β > ,

(.)

has a unique solution

x(t) = –
tα–

	�(α)

[


�(β)

η∑
s=α

s–α∑
ξ=

(
η + β – σ (s)

)β–(s – σ (ξ )
)α–h(ξ + α – )

–
T∑
s=

(
T + α – σ (s)

)α–h(s + α – )

]

+


�(α)

t–α∑
s=

(
t – σ (s)

)α–h(s + α – ), (.)

where

	 =
η–α+∑
s=

(η + β – s – α + )β–�(s + α – )
�(β)�(s)

–
�(α + T + )

�(T + )
. (.)

Proof From Lemma ., we find that a general solution for (.) can be written as

x(t) = Ctα– +Ctα– +�–αh(t + α – ) (.)

for t ∈ [α – ,α + T]Nα– . Applying the first boundary condition of (.) and using (α –
)α– = �(α–)

�() = , we have C = . So,

x(t) = Ctα– +�–αh(t + α – ). (.)

http://www.advancesindifferenceequations.com/content/2013/1/296
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Using the fractional sum of order β >  for (.), we obtain

�–βx(t) =


�(β)

t–β∑
s=α–

(
t – σ (s)

)β–x(s) =
C

�(β)

t–β∑
s=α–

(
t – σ (s)

)β–sα–

+


�(β)�(α)

t–β∑
s=α–

s–α∑
ξ=

(
t – σ (s)

)β–(s – σ (ξ )
)α–h(ξ + α – ).

The second condition of (.) implies

�–βx(η + β) =
C

�(β)

η∑
s=α–

(
η + β – σ (s)

)β–sα–

+


�(β)�(α)

η∑
s=α–

s–α∑
ξ=

(
η + β – σ (s)

)β–(s – σ (ξ )
)α–h(ξ + α – )

= C(α + T)α– +


�(α)

T∑
s=

(
T + α – σ (s)

)α–h(s + α – ).

Solving the above equation for a constant C, we get

C =


	�(α)

T∑
s=

(
T + α – σ (s)

)α–h(s + α – )

–


	�(β)�(α)

η∑
s=α–

s–α∑
ξ=

(
η + β – σ (s)

)β–(s – σ (ξ )
)α–h(ξ + α – ),

where 	 is defined by (.). From the fact that
∑i

j =  for i < j, we have

C =


	�(α)

T∑
s=

(
T + α – σ (s)

)α–h(s + α – )

–


	�(β)�(α)

η∑
s=α

s–α∑
ξ=

(
η + β – σ (s)

)β–(s – σ (ξ )
)α–h(ξ + α – ).

Substituting a constant C into (.), we obtain (.). �

3 Main results
In this section, we wish to establish the existence results for problem (.). To accomplish
this, we define C([α – ,α + T]Nα– ,R), the Banach space of all function x with the norm
defined by ‖x‖ = max{|x(t)|, t ∈ [α – ,α + T]Nα–} and also define an operator F : C([α –
,α + T]Nα– ,R)→ C([α – ,α + T]Nα– ,R) by

Fx(t) = –
tα–

	�(α)

[


�(β)

η∑
s=α

s–α∑
ξ=

(
η + β – σ (s)

)β–

× (
s – σ (ξ )

)α–f
(
ξ + α – ,x(ξ + α – )

)

http://www.advancesindifferenceequations.com/content/2013/1/296
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–
T∑
s=

(
T + α – σ (s)

)α–f
(
s + α – ,x(s + α – )

)]

+


�(α)

t–α∑
s=

(
t – σ (s)

)α–f
(
s + α – ,x(s + α – )

)
, (.)

for t ∈ [α –,α +T]Nα– , where 	 �=  is defined by (.). It is easy to see that problem (.)
has solutions if and only if the operator F has fixed points.

Theorem. Suppose that there exists a constant γ >  such that |f (t,x)– f (t, y)| ≤ γ |x–y|
for each t ∈ [α – ,α + T]Nα– and x, y ∈ R. If

γ� < , (.)

where

� =
�(T + α + )

|	|�(α)�(T + )

[


�(β)

η∑
s=α

s–α∑
ξ=

(
η + β – σ (s)

)β–(s – σ (ξ )
)α–

+
T∑
s=

(
T + α – σ (s)

)α–
]
+

�(T + α + )
�(T + )�(α + )

, (.)

then problem (.) has a unique solution in [α – ,α + T]Nα– .

Proof Firstly, we transform problem (.) into a fixed point problem, x = Fx, where the
operator F : C([α – ,α + T]Nα– ,R) → C([α – ,α + T]Nα– ,R) is defined by (.). Then,
for any x, y ∈ C([α – ,α + T]Nα– ,R), we have

∣∣(Fx)(t) – (Fy)(t)
∣∣

≤ γ ‖x – y‖
|	|�(α)

[


�(β)

η∑
s=α

s–α∑
ξ=

(
η + β – σ (s)

)β–(s – σ (ξ )
)α–

+
T∑
s=

(
T + α – σ (s)

)α–
]

max
t∈[α–,α+T]Nα–

tα–

+
γ ‖x – y‖

�(α)
max

t∈[α–,α+T]Nα–

t–α∑
s=

(
t – σ (s)

)α–

≤ γ ‖x – y‖
|	|�(α)

[


�(β)

η∑
s=α

s–α∑
ξ=

(
η + β – σ (s)

)β–(s – σ (ξ )
)α–

+
T∑
s=

(
T + α – σ (s)

)α–
]

max
t∈[α–,α+T]Nα–

�(t + )
�(t – α + )

+
γ ‖x – y‖

�(α)
max

t∈[α–,α+T]Nα–

[
–
α
(t – s)α

]t–α+

s=

≤ γ ‖x – y‖
|	|�(α)

[


�(β)

η∑
s=α

s–α∑
ξ=

(
η + β – σ (s)

)β–(s – σ (ξ )
)α–

http://www.advancesindifferenceequations.com/content/2013/1/296
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+
T∑
s=

(
T + α – σ (s)

)α–
]

�(T + α + )
�(T + )

+ γ ‖x – y‖ max
t∈[α–,α+T]Nα–

�(t + )
�(t – α + )�(α + )

≤ γ ‖x – y‖�(T + α + )
|	|�(α)�(T + )

[


�(β)

η∑
s=α

s–α∑
ξ=

(
η + β – σ (s)

)β–(s – σ (ξ )
)α–

+
T∑
s=

(
T + α – σ (s)

)α–
]
+ γ ‖x – y‖ �(T + α + )

�(T + )�(α + )

= γ�‖x – y‖.

Thus

‖Fx – Fy‖ ≤ γ�‖x – y‖.

Therefore, F is a contraction. Hence, by the Banach fixed point theorem, we get that F has
a fixed point which is a unique solution of problem (.) on t ∈ [α – ,α + T]Nα– . �

Next, we can still deduce the existence of a solution to (.). We shall use nonlinear
contraction to accomplish this.

Definition . Let E be a Banach space and let F : E → E be a mapping. F is said to be
a nonlinear contraction if there exists a continuous nondecreasing function  : R+ → R+

such that () =  and (ρ) < ρ for all ρ >  with the property

‖Fx – Fy‖ ≤ 
(‖x – y‖), ∀x, y ∈ E.

Lemma . (Boyd and Wong []) Let E be a Banach space and let F : E → E be a non-
linear contraction. Then F has a unique fixed point in E.

Theorem . Suppose that there exists a continuous function h : [α – ,α + T]Nα– → R
+

such that |f (t,x) – f (t, y)| ≤ h(t) |x–y|
H∗+|x–y| for all t ∈ [α – ,α + T]Nα– and x, y≥ , where

H∗ =
�(T + α + )

|	|�(α)�(T + )

[


�(β)

η∑
s=α

s–α∑
ξ=

(
η + β – σ (s)

)β–

× (
s – σ (ξ )

)α–h(ξ + α – ) +
T∑
s=

(
T + α – σ (s)

)α–h(s + α – )

]

+


�(α)

T∑
s=

(
T + α – σ (s)

)α–h(s + α – ) (.)

and 	 is defined in (.).
Then boundary value problem (.) has a unique solution.

http://www.advancesindifferenceequations.com/content/2013/1/296
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Proof Let the operator F : C([α –,α +T]Nα– ,R) → C([α –,α +T]Nα– ,R) be defined by
(.). We define a continuous nondecreasing function  :R+ →R

+ by

(ρ) =
H∗ρ
H∗ + ρ

, ∀ρ ≥ ,

such that () =  and (ρ) < ρ for all ρ > .
Let x, y ∈ C([α – ,α + T]Nα– ). Then we get

∣∣f (s,x(s)) – f
(
s, y(s)

)∣∣ ≤ h(s)
H∗ 

(‖x – y‖),
so that

∣∣Fx(t) – Fy(t)
∣∣

≤ tα–

|	|�(α)

[


�(β)

η∑
s=α

s–α∑
ξ=

(
η + β – σ (s)

)β–

× (
s – σ (ξ )

)α–h(ξ + α – )
|x(ξ + α – ) – y(ξ + α – )|

H∗ + |x(ξ + α – ) – y(ξ + α – )|

+
T∑
s=

(
T + α – σ (s)

)α–h(s + α – )× |x(s + α – ) – y(s + α – )|
H∗ + |x(s + α – ) – y(s + α – )|

]

+


�(α)

t–α∑
s=

(
t – σ (s)

)α–h(s + α – )
|x(s + α – ) – y(s + α – )|

H∗ + |x(s + α – ) – y(s + α – )|

≤
{

�(T + α + )
|	|�(α)�(T + )

[


�(β)

η∑
s=α

s–α∑
ξ=

(
η + β – σ (s)

)β–

× (
s – σ (ξ )

)α–h(ξ + α – ) +
T∑
s=

(
T + α – σ (s)

)α–h(s + α – )

]

+


�(α)

T∑
s=

(
T + α – σ (s)

)α–h(s + α – )

}
‖x – y‖

H∗ + ‖x – y‖

for t ∈ [α – ,α + T]Nα– . From (.), it follows that ‖Fx – Fy‖ ≤ (‖x – y‖). Hence F is a
nonlinear contraction. Therefore, by Lemma ., the operator F has a unique fixed point
in C([α – ,α + T]Nα– ), which is a unique solution of problem (.). �

The following result is based on Schaefer’s fixed point theorem.

Theorem . Suppose that there exists a constant M >  such that |f (t,x)| ≤ M for each
t ∈ [α – ,α + T]Nα– and all x ∈R.
Then problem (.) has at least one solution on [α – ,α + T]Nα– .

Proof We shall use Schaefer’s fixed point theorem to prove that the operator F defined by
(.) has a fixed point. We divide the proof into four steps.

http://www.advancesindifferenceequations.com/content/2013/1/296
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Step I. Continuity of F. Let xn be a sequence such that xn → x in C([α – ,α + T]Nα– ).
Then, for each t ∈ [α – ,α + T]Nα– , we get

∣∣F(xn)(t) – F(x)(t)
∣∣

≤ tα–

|	|�(α)

[


�(β)

η∑
s=α

s–α∑
ξ=

(
η + β – σ (s)

)β–

× (
s – σ (ξ )

)α–∣∣f (ξ + α – ,xn(ξ + α – )
)
– f

(
ξ + α – ,x(ξ + α – )

)∣∣
+

T∑
s=

(
T + α – σ (s)

)α–∣∣f (s + α – ,xn(s + α – )
)

– f
(
s + α – ,x(s + α – )

)∣∣]

+


�(α)

t–α∑
s=

(
t – σ (s)

)α–∣∣f (s + α – ,xn(s + α – )
)
– f

(
s + α – ,x(s + α – )

)∣∣

≤ tα–

|	|�(α)

[


�(β)

η∑
s=α

s–α∑
ξ=

(
η + β – σ (s)

)β–(s – σ (ξ )
)α–

× max
ξ∈[α–,α+T]Nα–

∣∣f (ξ + α – ,xn(ξ + α – )
)
– f

(
ξ + α – ,x(ξ + α – )

)∣∣

+
T∑
s=

(
T + α – σ (s)

)α–
max

s∈[α–,α+T]Nα–

∣∣f (s + α – ,xn(s + α – )
)

– f
(
s + α – ,x(s + α – )

)∣∣]

+


�(α)

t–α∑
s=

(
t – σ (s)

)α–
max

s∈[α–,α+T]Nα–

∣∣f (s + α – ,xn(s + α – )
)

– f
(
s + α – ,x(s + α – )

)∣∣.
Since f is a continuous function, we have ‖Fxn – Fx‖ →  as n → . This means that F is
continuous.
Step II. F maps bounded sets into bounded sets in C([α –,α +T]Nα– ). Let us prove that

for any R > , there exists a positive constant L such that for each x ∈ BR = {x ∈ C([α –
,α + T]Nα– ,R) : ‖x‖ ≤ R}, we have ‖Fx‖ ≤ L. Indeed, for any x ∈ BR, we obtain

∣∣Fx(t)∣∣ ≤ tα–

|	|�(α)

[


�(β)

η∑
s=α

s–α∑
ξ=

(
η + β – σ (s)

)β–

× (
s – σ (ξ )

)α–∣∣f (ξ + α – ,x(ξ + α – )
)∣∣

+
T∑
s=

(
T + α – σ (s)

)α–∣∣f (s + α – ,x(s + α – )
)∣∣]

+


�(α)

t–α∑
s=

(
t – σ (s)

)α–∣∣f (s + α – ,x(s + α – )
)∣∣.

http://www.advancesindifferenceequations.com/content/2013/1/296
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Therefore,

∣∣Fx(t)∣∣ ≤ Mtα–

|	|�(α)

[


�(β)

η∑
s=α

s–α∑
ξ=

(
η + β – σ (s)

)β–(s – σ (ξ )
)α–

+
T∑
s=

(
T + α – σ (s)

)α–
]
+

M
�(α)

t–α∑
s=

(
t – σ (s)

)α–.

Hence, we deduce that

‖Fx‖ ≤ M�(T + α + )
|	|�(α)�(T + )

[


�(β)

η∑
s=α

s–α∑
ξ=

(
η + β – σ (s)

)β–(s – σ (ξ )
)α–

+
T∑
s=

(
T + α – σ (s)

)α–
]
+M

�(T + α + )
�(T + )�(α + )

≤ M� := L,

where � is defined by (.).
Step III. F(BR) is equicontinuous with BR defined as in Step II. For any ε > , there exist

t, t ∈ [α – ,α + T]Nα– , t ≤ t such that

|tα– – tα– |M
|	|�(α)

[


�(β)

η∑
s=α

s–α∑
ξ=

(
η + β – σ (s)

)β–(s – σ (ξ )
)α–

+
T∑
s=

(
T + α – σ (s)

)α–
]
+

M
�(α)

[
�(t + )

�(t – α + )
–

�(t + )
�(t – α + )

]
< ε.

Then we have

∣∣Fx(t) – Fx(t)
∣∣

=

∣∣∣∣∣– t
α–
 – tα–
	�(α)

[


�(β)

η∑
s=α

s–α∑
ξ=

(
η + β – σ (s)

)β–

× (
s – σ (ξ )

)α–f
(
ξ + α – ,x(ξ + α – )

)

–
T∑
s=

(
T + α – σ (s)

)α–f
(
s + α – ,x(s + α – )

)]

+


�(α)

[t–α∑
s=

((
t – σ (s)

)α– –
(
t – σ (s)

)α–)f (s + α – ,x(s + α – )
)

+
t–α∑

s=t–α+

(
t – σ (s)

)α–f
(
s + α – ,x(s + α – )

)]∣∣∣∣∣
≤ |tα– – tα– |M

|	|�(α)

[


�(β)

η∑
s=α

s–α∑
ξ=

(
η + β – σ (s)

)β–(s – σ (ξ )
)α–

+
T∑
s=

(
T + α – σ (s)

)α–
]
+

M
�(α)

[t–α∑
s=

((
t – σ (s)

)α– –
(
t – σ (s)

)α–)
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+
t–α∑

s=t–α+

(
t – σ (s)

)α–
]

=
|tα– – tα– |M

|	|�(α)

[


�(β)

η∑
s=α

s–α∑
ξ=

(
η + β – σ (s)

)β–(s – σ (ξ )
)α–

+
T∑
s=

(
T + α – σ (s)

)α–
]
+

M
�(α)

[
�(t + )

�(t – α + )
–

�(t + )
�(t – α + )

]

≤ ε.

This means that the set F(BR) is an equicontinuous set. As a consequence of Steps I to III
together with the Arzelá-Ascoli theorem, we get that F : C([α – ,α + T]Nα– ) → C([α –
,α + T]Nα– ) is completely continuous.
Step IV. A priori bounds.We show that the set

E =
{
x ∈ C

(
[α – ,α + T]Nα– ,R

)
: x = λFx for some  < λ < 

}
is bounded.
Let x ∈ E. Then x(t) = λ(Fx)(t) for some  < λ < . Thus, for each t ∈ [α – ,α + T]Nα– ,

we have

λ(Fx)(t) = –
λtα–

	�(α)

[


�(β)

η∑
s=α

s–α∑
ξ=

(
η + β – σ (s)

)β–

× (
s – σ (ξ )

)α–f
(
ξ + α – ,x(ξ + α – )

)

–
T∑
s=

(
T + α – σ (s)

)α–f
(
s + α – ,x(s + α – )

)]

+
λ

�(α)

t–α∑
s=

(
t – σ (s)

)α–f
(
s + α – ,x(s + α – )

)
.

Therefore, for t ∈ [α – ,α + T]Nα– , we get

∣∣λ(Fx)(t)∣∣ ≤ λMtα–

|	|�(α)

[


�(β)

η∑
s=α

s–α∑
ξ=

(
η + β – σ (s)

)β–(s – σ (ξ )
)α–

+
T∑
s=

(
T + α – σ (s)

)α–
]
+

λM
�(α)

t–α∑
s=

(
t – σ (s)

)α–

≤ M�(T + α + )
|	|�(α)�(T + )

[


�(β)

η∑
s=α

s–α∑
ξ=

(
η + β – σ (s)

)β–

× (
s – σ (ξ )

)α– +
T∑
s=

(
T + α – σ (s)

)α–
]

+
M�(T + α + )

�(T + )�(α + )

=M� := L.

http://www.advancesindifferenceequations.com/content/2013/1/296


Sitthiwirattham et al. Advances in Difference Equations 2013, 2013:296 Page 11 of 13
http://www.advancesindifferenceequations.com/content/2013/1/296

This shows that the set E is bounded. As a consequence of Schaefer’s fixed point theorem,
we conclude that F has a fixed point which is a solution of problem (.). �

4 Some examples
In this section, in order to illustrate our result, we consider some examples.

Example . Consider the following three-point fractional sum boundary value problem:

�

 x(t) =

e– sin(t+ 
 )

(t + 
 )

· |x|
|x| + 

, t ∈ N 
 ,



, (.)

x
(
–



)
= , (.)

x
(



)
=�– 

 x
(



)
. (.)

Here α = 
 , β = 

 , η = 
 , T = , f (t,x) = e– sin

 t

(t+) · |x|
|x|+ . Also, we find

	 =
∑
s=

(  – s)

 �(s + 

 )

�(


 )�(s)

–
�(  )
�()

= – �= 

and

� =
�(  )

|–|�(  )�()

[


�(  )


∑

s= 


s– 
∑

ξ=

(


+


– σ (s)

) 
 –(

s – σ (ξ )
) 
 –

+
∑
s=

(
T +



– σ (s)

) 
 –

]
+

�(  )
�(  )�()

≈ ..

From |f (t,x) – f (t, y)| ≤ 
 |x – y|, we have γ = 

 . We can show that

γ� =



× . = . < .

Hence, by Theorem ., boundary value problem (.)-(.) has a unique solution.

Example . Consider the following three-point fractional sumboundary value problem:

�

 x(t) =




(
t +




)
e–


 (t+


 )|x(t+ 

 )|, t ∈N 
 ,



, (.)

x
(
–



)
= , (.)

x
(



)
=�– 

 x
(



)
. (.)
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Here α = 
 , β = 

 , η = 
 , T = , f (t,x) = 

 (t)e
– 
 t|x(t)|, 	 = – �= , � = .. It is clear

that X|f (t,x)| ≤ 
 <  =M for t ∈ N 

 ,


. Thus, we conclude from Theorem . that (.)-

(.) has at least one solution.
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