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Abstract
The purpose of this paper is to introduce and study a general split variational
inclusion problem in the setting of infinite-dimensional Hilbert spaces. Under suitable
conditions, we prove that the sequence generated by the proposed new algorithm
converges strongly to a solution of the general split variational inclusion problem. As
a particular case, we consider the algorithms for a split feasibility problem and a split
optimization problem and give some strong convergence theorems for these
problems in Hilbert spaces.

Keywords: general split variational inclusion problem; split feasibility problem; split
optimization problem; quasi-nonexpansive mapping; zero point; resolvent mapping

1 Introduction
Let C and Q be nonempty closed convex subsets of real Hilbert spaces H andH, respec-
tively. The split feasibility problem (SFP) is formulated as

to find x∗ ∈ C and Ax∗ ∈ Q, (.)

whereA :H → H is a bounded linear operator. In , Censor and Elfving [] first intro-
duced the SFP in finite-dimensional Hilbert spaces for modeling inverse problems which
arise from phase retrievals and inmedical image reconstruction []. It has been found that
the SFP can also be used in various disciplines such as image restoration, computer tomog-
raphy and radiation therapy treatment planning [–]. The SFP in an infinite-dimensional
real Hilbert space can be found in [, , –]. For comprehensive literature, bibliography
and a survey on SFP, we refer to [].
Assuming that the SFP is consistent, it is not hard to see that x∗ ∈ C solves SFP if and

only if it solves the fixed point equation

x∗ = PC
(
I – γA∗(I – PQ)A

)
x∗,

where PC and PQ are the metric projection from H onto C and from H onto Q, respec-
tively, γ >  is a positive constant, and A∗ is the adjoint of A.
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A popular algorithm to be used to solves the SFP (.) is due to Byrne’s CQ-algorithm
[]:

xk+ = PC
(
I – γkA∗(I – PQ)A

)
xk , k ≥ ,

where γk ∈ (, /λ) with λ being the spectral radius of the operator A∗A.
On the other hand, let H be a real Hilbert space, and B be a set-valued mapping with

domain D(B) := {x ∈ H : B(x) �= ∅}. Recall that B is called monotone, if 〈u – v,x,x – y〉 ≥ 
for any u ∈ Bx and v ∈ By; B is maximal monotone, if its graph {(x, y) : x ∈ D(B), y ∈ Bx}
is not properly contained in the graph of any other monotone mapping. An important
problem for set-valued monotone mappings is to find x∗ ∈ H such that  ∈ B(x∗). Here,
x∗ is called a zero point of B. A well-known method for approximating a zero point of
a maximal monotone mapping defined in a real Hilbert space H is the proximal point
algorithm first introduced by Martinet [] and generated by Rockafellar []. This is an
iterative procedure, which generates {xn} by x = x ∈H and

xn+ = JBβnxn, n≥ , (.)

where {βn} ⊂ (,∞), B is a maximal monotone mapping in a real Hilbert space, and JBr is
the resolvent mapping of B defined by JBr = (I + rB)– for each r > . Rockafellar [] proved
that if the solution set B–() is nonempty and lim infn→∞ βn > , then the sequence {xn}
in (.) converges weakly to an element of B–(). In particular, if B is the sub-differential
∂f of a proper convex and lower semicontinuous function f :H →R, then (.) is reduced
to

xn+ = argmin
y∈H

{
f (y) +


βn

‖y – xn‖
}
, ∀n≥ . (.)

In this case, {xn} converges weakly to a minimizer of f . Later, many researchers have stud-
ied the convergence problems of the proximal point algorithm in Hilbert spaces (see [–
] and the references therein).
Motivated by the works in [–] and related literature, the purpose of this paper is to

introduce and consider the following general split variational inclusion problem.
Let H and H be two real Hilbert spaces, Bi : H → H and Ki : H → H, i = , , . . .

be two families of set-valued maximal monotone mappings, A : H → H be a linear and
bounded operator, and A∗ be the adjoint of A. The so-called general split variational in-
clusion problem is

to find x∗ ∈H such that  ∈
∞⋂
i=

Bi
(
x∗) and  ∈

∞⋂
i=

Ki
(
Ax∗). (.)

The following examples are special cases of (GSVIP) (.).
Classical split variational inclusion problem. Let B : H → H and K : H → H be set-

valued maximal monotone mappings. The so-called classical split variational inclusion
problem (CSVIP) is

to find x∗ ∈H such that  ∈ B
(
x∗) and  ∈ K

(
Ax∗), (.)
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which was introduced by Moudafi []. It is obvious that problem (.) is a special case of
(GSVIP) (.). In [], Moudafi proved that the iteration process

xn+ = JBλ
(
xn + γA∗(JKλ – I

)
Axn

)

converges weakly to a solution of problem (.), where λ and γ are given positive numbers.
Split optimization problem. Let f :H →R, g :H →R be two proper convex and lower

semicontinuous functions. The so-called split optimization problem (SOP) is

to find x∗ ∈H such that f
(
x∗) =min

y∈H
f (y) and g

(
Ax∗) = min

z∈H
g(z). (.)

Denote by B = ∂(f ) andK = ∂(g), then B andK both aremaximalmonotonemappings, and
problem (.) is equivalent to the following classical split variational inclusion problem,
i.e.:

to find x∗ ∈H such that  ∈ ∂
(
f
(
x∗)) and  ∈ ∂

(
g
(
Ax∗)). (.)

Split feasibility problem. As in (.), let C and Q be two nonempty closed convex sub-
sets of real Hilbert spaces H and H, respectively and A be the same as above. The split
feasibility problem is

to find x∗ ∈ C such Ax∗ ∈Q. (.)

It is well known that this kind of problems was first introduced by Censor and Elfving []
for modeling inverse problems arising from phase retrievals and in medical image recon-
struction []. Also it can be used in various disciplines such as image restoration, computer
tomography and radiation therapy treatment planning.
Let iC (iQ) be the indicator function of C (Q), i.e.,

iC(x) =

{
, if x ∈ C,
+∞, if x /∈ C;

iQ(x) =

{
, if x ∈Q,
+∞, if x /∈Q.

(.)

Then iC and iQ both are proper convex and lower semicontinuous functions, and its sub-
differentials ∂iC and ∂iQ are maximal monotone operators. Consequently problem (.)
is equivalent to the following ‘split optimization problem’ and ‘Moudafi’s classical split
variational inclusion problem’, i.e.,

to find x∗ ∈H such that iC
(
x∗) =min

y∈H
iC(y) and iQ

(
Ax∗) = min

z∈H
iQ(z)

⇔ to find x∗ ∈H such that  ∈ ∂
(
iC

(
x∗)) and  ∈ ∂

(
iQ

(
Ax∗)). (.)

For solving (GSVIP) (.), in our paper we propose the following iterative algorithms:

xn+ = αnxn + ξnf (xn) +
∞∑
i=

γn,iJ
Bi
βi

[
xn – λn,iA∗(I – JKi

βi

)
Axn

]
, ∀n≥ , (.)
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where f : H → H is a contraction mapping with a contractive constant k ∈ (, ), {αn},
{ξn} and {γn,i} are sequence in [, ] satisfying some conditions. Under suitable conditions,
some strong convergence theorems for the sequence proposed by (.) to a solution for
(GSVIP) (.) inHilbert spaces are proved. As a particular case, we consider the algorithms
for a split feasibility problem and a split optimization problem and give some strong con-
vergence theorems for these problems in Hilbert spaces. Our results extend and improve
the related results of Censor and Elfving [], Byrne [], Censor et al. [–], Rockafellar
[], Moudafi [, ], Eslamian and Latif [], Eslamian [], and Chuang [].

2 Preliminaries
Throughout the paper, we denote by H a real Hilbert space, C be a nonempty closed and
convex subset of H . F(T) denote by the set of fixed points of a mapping T . Let {xn} be a
sequence in H and x ∈ H . Strong convergence of {xn} to x is denoted by xn → x, and weak
convergence of {xn} to x is denoted by xn ⇀ x. For every point x ∈H , there exists a unique
nearest point in C, denoted by PCx. This point satisfies.

‖x – PCx‖ ≤ ‖x – y‖, ∀y ∈ C.

The operator PC is called themetric projection. The metric projection PC is characterized
by the fact that PCx ∈ C and

〈x – PCx,PCx – y〉 ≥ , ∀x ∈H , y ∈ C.

Recall that a mapping T : C → H is said to be nonexpansive, if ‖Tx – Ty‖ ≤ ‖x – y‖ for
every x, y ∈ C. T is said to be quasi-nonexpansive, if F(T) �= ∅ and ‖Tx – p‖ ≤ ‖x – p‖ for
every x ∈ C and p ∈ F(T). It is easy to see that F(T) is a closed convex subset of C if T is a
quasi-nonexpansive mapping. Besides, T is said to be a firmly nonexpansive, if

‖Tx – Ty‖ ≤ 〈x – y,Tx – Ty〉 ∀x, y ∈ C;

⇔ ‖Tx – Ty‖ ≤ ‖x – y‖ – ∥∥(I – T)x – (I – T)y
∥∥ ∀x, y ∈ C.

Lemma . (demi-closed principle) Let C be a nonempty closed convex subset of a real
Hilbert space H . Let T : C → H be a nonexpansive mapping, and let {xn} be a sequence
in C. If xn ⇀ w and limn→∞ ‖xn – Txn‖ = , then Tw = w.

Lemma . [] Let H be a (real) Hilbert space. Then for all x, y ∈H ,

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉. (.)

Lemma . [] Let H be a Hilbert space and let {xn} be a sequence in H . Then, for any
given sequence {λn} ⊂ (, ) with

∑∞
n= λn =  and for any positive integers i, j with i < j,

∥∥∥∥∥
∞∑
n=

λnxn

∥∥∥∥∥


≤
∞∑
n=

λn‖xn‖ – λiλj‖xi – xj‖. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/171


Chang and Wang Fixed Point Theory and Applications 2014, 2014:171 Page 5 of 14
http://www.fixedpointtheoryandapplications.com/content/2014/1/171

Lemma . Let {an} be a sequence of nonnegative real numbers, {bn} be a sequence of real
numbers in (, ) with

∑∞
n= bn = ∞, {un} be a sequence of nonnegative real numbers with∑∞

n= un < ∞, {tn} be a real numbers with lim supn→∞ tn ≤ . If

an+ ≤ ( – bn)an + bntn + un, for each n ≥ ,

then limn→∞ an = .

Lemma. [] Let {an} be a sequence of real numbers such that there exists a subsequence
{ni} of {n} such that ani < ani+ for all i ∈ N. Then there exists a nondecreasing sequence
{mk} ⊂ N such that mk → ∞, amk ≤ amk+ and ak ≤ amk+ are satisfied by all (sufficiently
large) numbers k ∈N. In fact,mk =max{j ≤ k : aj < aj+}.

Lemma. [] Let H be a real Hilbert space,B :H → H be a set-valuedmaximalmono-
tone mapping, β > , and let JBβ be the resolvent mapping of B.

(i) For each β > , JBβ is a single-valued and firmly nonexpansive mapping;
(ii) D(JBβ ) =H and F(JBβ ) = B–() := {x ∈D(B) :  ∈ Bx};
(iii) (I – JBβ ) is a firmly nonexpansive mapping for each β > ;
(iv) suppose that B–() �= ∅, then for each x ∈H , each x∗ ∈ B–() and each β > 

∥∥x – JBβ x
∥∥ +

∥∥JBβ x – x∗∥∥ ≤ ∥∥x – x∗∥∥;

(v) suppose that B–() �= ∅. Then 〈x – JBβ x, JBβ x –w〉 ≥  for each x ∈ H and each
w ∈ B–(), and each β > .

Lemma . Let H, H be two real Hilbert spaces, A : H → H be a linear bounded op-
erator and A∗ be the adjoint of A. Let B : H → H be a set-valued maximal monotone
mapping, β > , and let JBβ be the resolvent mapping of B, then

(i) ‖(I – JBβ )Ax – (I – JBβ )Ay‖ ≤ 〈(I – JBβ )Ax – (I – JBβ )Ay,Ax –Ay〉;
(ii) ‖A∗(I – JBβ )Ax –A∗(I – JBβ )Ay‖ ≤ ‖A‖〈(I – JBβ )Ax – (I – JBβ )Ay,Ax –Ay〉;
(iii) if ρ ∈ (, 

‖A‖ ), then (I – ρA∗(I – JBβ )A) is a nonexpansive mapping.

Proof By Lemma .(iii), the mapping (I – JBβ ) is firmly nonexpansive, hence the conclu-
sions (i) and (ii) are obvious.
Now we prove the conclusion (iii).
In fact, for any x, y ∈H, it follows from the conclusions (i) and (ii) that

∥∥(
I – ρA∗(I – JBβ

)
A

)
x –

(
I – ρA∗(I – JBβ

)
A

)
y
∥∥

= ‖x – y‖ – ρ
〈
x – y,A∗(I – JBβ

)
Ax –A∗(I – JBβ

)
Ay

〉
+ ρ∥∥A∗(I – JBβ

)
Ax –A∗(I – JBβ

)
Ay

∥∥

≤ ‖x – y‖ – ρ
〈
Ax –Ay,

(
I – JBβ

)
Ax –

(
I – JBβ

)
Ay

〉
+ ρ‖A‖∥∥(

I – JBβ
)
Ax –

(
I – JBβ

)
Ay

∥∥

≤ ‖x – y‖ – ρ
(
 – ρ‖A‖)∥∥(

I – JBβ
)
Ax –

(
I – JBβ

)
Ay

∥∥

≤ ‖x – y‖ (
since ρ

(
 – ρ‖A‖) ≥ 

)
.

This completes the proof of Lemma .. �
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3 Main results
The following lemma will be used in proving our main results.

Lemma. Let H andH be two realHilbert spaces,A :H → H be a linear and bounded
operator, and A∗ be the adjoint of A. Let Bi : H → H , and Ki : H → H , i = , , . . . , be
two families of set-valued maximal monotone mappings, and let β >  and γ > . If 
 �= ∅
(the solution set of (GSVIP) (.)), then x∗ ∈ H is a solution of (GSVIP) (.) if and only if
for each i ≥ , for each γ >  and for each β > 

x∗ = JBiβ

(
x∗ – γA∗(I – JKi

β

)
Ax∗). (.)

Proof Indeed, if x∗ is a solution of (GSVIP) (.), then for each i≥ , γ >  and β > ,

x∗ ∈ B–
i () and Ax∗ ∈ K–

i (), i.e.,x∗ = JBiβ x∗ and Ax∗ = JKi
β Ax∗.

This implies that x∗ = JBiβ (x∗ – γAx∗(I – JKi
β )Ax∗).

Conversely, if x∗ solves (.), by Lemma .(v), we have

〈
x∗ –

(
x∗ – γA∗(I – JKi

β

)
Ax∗), y – x∗〉 ≥ , ∀y ∈ B–

i ().

Hence we have

〈(
I – JKi

β

)
Ax∗,Ay –Ax∗〉 ≥ , ∀y ∈ B–

i (). (.)

On the other hand, by Lemma .(v) again

〈
(Ax∗ – JKi

β Ax∗, JKi
β Ax∗ – v

〉 ≥ , ∀v ∈ K–
i (). (.)

Adding up (.) and (.), we have

〈
Ax∗ – JKi

β Ax∗, JKi
β Ax∗ +Ay –Ax∗ – v

〉 ≥ , ∀y ∈ B–
i (), and v ∈ K–

i ().

Simplifying it, we have

∥∥Ax∗ – JKi
β Ax∗∥∥ ≤ 〈

Ax∗ – JKi
β Ax∗,Ay – v

〉 ≥ , ∀y ∈ B–
i (), and v ∈ K–

i (). (.)

By the assumption that 
 �= ∅. Taking w ∈ 
, hence for each i ≥  w ∈ B–
i () and Aw ∈

K–
i (). In (.), taking y = w and v = Aw, then we have

∥∥Ax∗ – JKi
β Ax∗∥∥ = .

This implies that Ax∗ = JKi
β Ax∗, and so Ax∗ ∈ K–

i () for each i ≥ . Hence from (.), x∗ =
JBiβ x∗, i.e., x∗ ∈ B–

i (). Hence x∗ is a solution of (GSVIP)(.).
This completes the proof of Lemma .. �

http://www.fixedpointtheoryandapplications.com/content/2014/1/171
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We are now in a position to prove the following main result.

Theorem . Let H,H, A, A∗, {Bi}, {Ki},
 be the same as in Lemma .. Let f :H →H

be a contractive mapping with contractive constant k ∈ (, ). Let {αn}, {ξn}, {γn,i} be the
sequences in (, ) with αn + ξn +

∑∞
i= γn,i = , for each n ≥ . Let {βi} be a sequence in

(,∞), and {λn,i} be a sequence in (, 
‖A‖ ). Let {xn} be the sequence defined by (.). If


 �= ∅ and the following conditions are satisfied:
(i) limn→∞ ξn = , and

∑∞
n= ξn =∞;

(ii) lim infn→∞ αnγn,i >  for each i≥ ;
(iii)  < lim infn→∞ λn,i ≤ lim supn→∞ λn,i < 

‖A‖ ,
then xn → x∗ ∈ 
 where x∗ = P
f (x∗), where P
 is the metric projection from H onto 
.

Proof (I) First we prove that {xn} is bounded.
In fact, letting z ∈ 
, by Lemma ., for each i ≥ ,

z = JBiβi

[
z – λn,iA∗(I – JKi

βi

)
Az

]
.

Hence it follows from Lemma .(iii) that for each i≥  and each n ≥  we have

‖xn+ – z‖ =
∥∥∥∥∥αnxn + ξnf (xn) +

∞∑
i=

γn,iJ
Bi
βi

[
xn – λn,iA∗(I – JKi

βi

)
Axn

]
– z

∥∥∥∥∥
≤ αn‖xn – z‖ + ξn

∥∥f (xn) – z
∥∥ +

∞∑
i=

γn,i
∥∥JBiβi

[
xn – λn,iA∗(I – JKi

βi

)
Axn

]
– z

∥∥

≤ αn‖xn – z‖ + ξn
∥∥f (xn) – z

∥∥ +
∞∑
i=

γn,i
∥∥JBiβi

[
xn – λn,iA∗(I – JKi

βi

)
Axn

]
– z

∥∥

≤ αn‖xn – z‖ + ξn
∥∥f (xn) – z

∥∥ +
∞∑
i=

γn,i‖xn – z‖

= ( – ξn)‖xn – z‖ + ξn
∥∥f (xn) – z

∥∥
≤ ( – ξn)‖xn – z‖ + ξn

∥∥f (xn) – f (z)
∥∥ + ξn

∥∥f (z) – z
∥∥

≤ (
 – ξn( – k)

)‖xn – z‖ + ξn( – k)
 – k

∥∥f (z) – z
∥∥

≤max

{
‖xn – z‖, 

 – k
∥∥f (z) – z

∥∥}
.

By induction, we can prove that

‖xn – z‖ ≤max

{
‖x – z‖, 

 – k
∥∥f (z) – z

∥∥}
, ∀n≥ . (.)

This implies that {xn} is bounded, so is {f (xn)}.
(II) Now we prove that for each j ≥ 

αnγn,j
∥∥xn – JBiβi

[
xn – λn,iA∗(I – JKi

βi

)
Axn

]∥∥

≤ ‖xn – z‖ – ‖xn+ – z‖ + ξn
∥∥f (xn) – z

∥∥, for each i≥ . (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/171
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Indeed, it follows from Lemma . that for any positive j ≥ 

‖xn+ – z‖ =
∥∥∥∥∥αnxn + ξnf (xn) +

∞∑
i=

γn,iJ
Bi
βi

[
xn – λn,iA∗(I – JKi

βi

)
Axn

]
– z

∥∥∥∥∥


≤ αn‖xn – z‖ + ξn
∥∥f (xn) – z

∥∥

+
∞∑
i=

γn,i
∥∥JBiβi

[
xn – λn,iA∗(I – JKi

βi

)
Axn

]
– z

∥∥

– αnγn,j
∥∥xn – JBiβi

[
xn – λn,iA∗(I – JKi

βi

)
Axn

]∥∥

≤ ( – ξn)‖xn – z‖ + ξn
∥∥f (xn) – z

∥∥

– αnγn,j
∥∥xn – JBiβi

[
xn – λn,iA∗(I – JKi

βi

)
Axn

]∥∥.

Simplifying it, (.) is proved.
By the assumption that 
 �= ∅, and it is easy to prove that 
 is closed and convex. This

implies that P
 is well defined. Again since P
f : H → 
 is a contraction mapping with
contractive constant k ∈ (, ), there exists a unique x∗ ∈ 
 such that x∗ = P
fx∗. Since
x∗ ∈ 
, it solves (GSVIP) (.). By Lemma .,

x∗ = JBjβj

(
x∗ – λn,jA∗(I – JKj

βj

)
Ax∗), ∀j ≥ ,n≥ . (.)

(III) Now we prove that xn → x∗.
In order to prove that xn → x∗ (as n→ ∞), we consider two cases.
Case . Assume that {‖xn – x∗‖} is a monotone sequence. In other words, for n large

enough, {‖xn – x∗‖}n≥n is either nondecreasing or non-increasing. Since {‖xn – x∗‖} is
bounded, {‖xn – x∗‖} is convergence. Again since limn→∞ ξn = , and {f (xn)} is bounded,
from (.) we get

lim
n→∞αnγn,j

∥∥xn – JBiβi

[
xn – λn,iA∗(I – JKi

βi

)
Axn

]∥∥ = .

By condition (ii), we obtain

lim
n→∞

∥∥xn – JBiβi

[
xn – λn,iA∗(I – JKi

βi

)
Axn

]∥∥ = . (.)

Now we prove that

lim sup
n→∞

〈
f
(
x∗) – x∗,xn – x∗〉 ≤ . (.)

To show this inequality, we choose a subsequence {xnk } of {xn} such that xnk ⇀ w, λnk ,i →
λi ∈ (, 

‖A‖ ) for each i ≥ , and

lim sup
n→∞

〈
f
(
x∗) – x∗,xn – x∗〉 = lim

nk→∞
〈
f
(
x∗) – x∗,xnk – x∗〉. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/171
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It follows from (.) that

∥∥JBiβi

[
xn – λiA∗(I – JKi

βi

)
Axn

]
– xn

∥∥
≤ ∥∥JBiβi

[
xn – λiA∗(I – JKi

βi

)
Axn

]
– JBiβi

[
xn – λn,iA∗(I – JKi

βi

)
Axn

]∥∥
+

∥∥JBiβi

[
xn – λn,iA∗(I – JKi

βi

)
Axn

]
– xn

∥∥
≤ ∥∥[

xn – λiA∗(I – JKi
βi

)
Axn

]
–

[
xn – λn,iA∗(I – JKi

βi

)
Axn

]∥∥
+

∥∥JBiβi

[
xn – λn,iA∗(I – JKi

βi

)
Axn

]
– xn

∥∥
≤ |λi – λn,i|

∥∥A∗(I – JKi
βi

)
Axn

∥∥
+

∥∥JBiβi

[
xn – λn,iA∗(I – JKi

βi

)
Axn

]
– xn

∥∥ →  (as n→ ∞).

For each i ≥ , JBiβi
[I – λiA∗(I – JKi

βi
)A] is a nonexpansive mapping. Thus from Lemma .,

w = JBiβi
[I – λiA∗(I – JKi

βi
)A]w. By Lemma . w ∈ 
, i.e., w is a solution of (GSVIP) (.).

Consequently we have

lim sup
n→∞

〈
f
(
x∗) – x∗,xn – x∗〉 = lim

nk→∞
〈
f
(
x∗) – x∗,xnk – x∗〉

=
〈
f
(
x∗) – x∗,w – x∗〉 ≤ .

(IV) Finally, we prove that xn → P
f (x∗).
In fact, from Lemma . we have

∥∥xn+ – x∗∥∥

≤
∥∥∥∥∥αn

(
xn – x∗) + ∞∑

i=

γn,iJ
Bi
βi

[
xn – λn,iA∗(I – JKi

βi

)
Axn

]
– x∗

∥∥∥∥∥


+ ξn
〈
f (xn) – x∗,xn+ – x∗〉

≤ ( – ξn)
∥∥xn – x∗∥∥ + ξn

〈
f (xn) – f

(
x∗),xn+ – x∗〉 + ξn

〈
f
(
x∗) – x∗,xn+ – x∗〉

≤ ( – ξn)
∥∥xn – x∗∥∥ + ξnk

∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥ + ξn
〈
f
(
x∗) – x∗,xn+ – x∗〉

≤ ( – ξn)
∥∥xn – x∗∥∥ + ξnk

{∥∥xn+ – x∗∥∥ +
∥∥xn – x∗∥∥}

+ ξn
〈
f
(
x∗) – x∗,xn+ – x∗〉.

Simplifying it, we have

∥∥xn+ – x∗∥∥ ≤ ( – ξn) + ξnk
 – ξnk

∥∥xn – x∗∥∥ +
ξn

 – ξnk
〈
f
(
x∗) – x∗,xn+ – x∗〉

≤  – ξn + ξnk
 – ξnk

∥∥xn – x∗∥∥ +
ξ 
n

 – ξnk
∥∥xn – x∗∥∥

+
ξn

 – ξnk
〈
f
(
x∗) – x∗,xn+ – x∗〉

≤ ( – ηn)
∥∥xn – x∗∥∥ + ηnδn, ∀n≥ ,
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where δn = ξnM
(–k) +


–k 〈f (x∗) – x∗,xn+ – x∗〉, M = supn≥ ‖xn – x∗‖, and ηn = (–k)ξn

–ξnk . It is
easy to see that ηn → ,

∑∞
n= ηn = ∞, and lim supn→∞ δn ≤ . Hence by Lemma ., the

sequence {xn} converges strongly to x∗ = P
f (x∗).
Case . Assume that {‖xn – x∗‖} is not a monotone sequence. Then, by Lemma ., we

can define a sequence of positive integers: {τ (n)}, n≥ n (where n large enough) by

τ (n) =max
{
k ≤ n :

∥∥xk – x∗∥∥ ≤ ∥∥xk+ – x∗∥∥}
. (.)

Clearly {τ (n)} is a nondecreasing sequence such that τ (n) → ∞ as n → ∞, and for all
n≥ n

∥∥xτ (n) – x∗∥∥ ≤ ∥∥xτ (n)+ – x∗∥∥. (.)

Therefore {‖xτ (n) – x∗‖} is a nondecreasing sequence. According to Case (),
limn→∞ ‖xτ (n) – x∗‖ =  and limn→∞ ‖xτ (n)+ – x∗‖ = . Hence we have

 ≤ ∥∥xn – x∗∥∥ ≤max
{∥∥xn – x∗∥∥,∥∥xτ (n) – x∗∥∥} ≤ ∥∥xτ (n)+ – x∗∥∥ → , as n→ ∞.

This implies that xn → x∗ and x∗ = P
f (x∗) is a solution of (GSVIP) (.).
This completes the proof of Theorem .. �

InTheorem., ifBi = B andKi = K , for each i ≥ , whereB :H → H andK :H → H

are two set-valued maximal monotone mappings, then from Theorem . we have the
following.

Theorem . Let H, H, A, A∗, B, K , 
, f be the same as in Theorem .. Let {αn}, {ξn},
{γn} be the sequence in (, ) with αn + ξn + γn =  for each n ≥ . Let β >  be any given
positive number, and {λn} be a sequence in (, 

‖A‖ ). Let {xn} be the sequence defined by

xn+ = αnxn + ξnf (xn) + γnJBβ
[
xn – λnA∗(I – JKβ

)
Axn

]
, ∀n≥ . (.)

If 
 �= ∅ and the following conditions are satisfied:
(i) limn→∞ ξn = , and

∑∞
n= ξn =∞;

(ii) lim infn→∞ αnγn > ;
(iii)  < lim infn→∞ λn ≤ lim supn→∞ λn < 

‖A‖ ,
then xn → x∗ ∈ 
 where x∗ = P
f (x∗).

4 Applications
In this section we shall utilize the results presented in Theorem . and Theorem . to
study some problems.

4.1 Application to split optimization problem
Let H and H be two real Hilbert spaces. Let h : H → R and g : H → R be two proper,
convex and lower semicontinuous functions, and A : H → H be a linear and bounded
operators. The so-called split optimization problem (SOP) is

to find x∗ ∈H such that h
(
x∗) =min

y∈H
h(y) and g

(
Ax∗) = min

z∈H
g(z). (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/171
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Denote by ∂h = B and ∂g = K . It is know that B :H → H (resp. K :H → H ) is a maxi-
mal monotonemapping, so we can define the resolvent JBβ = (I +βB)– and JKβ = (I +βK )–,
where β > . Since x∗ and Ax∗ is a minimum of h on H and g on H, respectively, for any
given β > , we have

x∗ ∈ B–() = F
(
JBβ

)
, and Ax∗ ∈ K–() = F

(
JKβ

)
. (.)

This implies that the (SOP) (.) is equivalent to the split variational inclusion problem
(SVIP) (.). From Theorem . we have the following.

Theorem . Let H, H, A, B, K , h, g be the same as above. Let f , {αn}, {ξn}, {γn} be the
same as in Theorem .. Let β >  be any given positive number, and {λn} be a sequence in
(, 

‖A‖ ). Let {xn} be a sequence generated by x ∈H

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

yn = argminz∈H{g(z) + 
β ‖z –Axn‖},

zn = xn – λnA∗(Axn – yn),

wn = argminy∈H{h(y) + 
β ‖y – zn‖},

xn+ = αnxn + ξnf (xn) + γnwn, n≥ .

(.)

If 
 �= ∅, the solution set of the split optimization problem (.), and the following condi-
tions are satisfied:

(i) limn→∞ ξn = , and
∑∞

n= ξn =∞;
(ii) lim infn→∞ αnγn > ;
(iii)  < lim infn→∞ λn ≤ lim supn→∞ λn < 

‖A‖ ,
then xn → x∗ ∈ 
 where x∗ = P
 f (x∗).

Proof Since ∂h = B, ∂g := K , and yn = argminz∈H{g(z) + 
β ‖z –Axn‖}, we have

 ∈
[
K (z) +


β
(z –Axn)

]
z=yn

, i.e., Axn ∈ (βK + I)(yn).

This implies that

yn = JKβ (Axn). (.)

Similarly, from (.), we have

wn = JBβ (zn). (.)

From (.)-(.), we have

wn = JBβ
(
xn – λnA∗(I – JKβ

)
Axn

)
. (.)

Therefore (.) can be rewritten as

xn+ = αnxn + ξnf (xn) + γnJBβ
(
xn – λnA∗(I – JKβ

)
Axn

)
, n≥ . (.)

The conclusion of Theorem . can be obtained from Theorem . immediately. �
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Chang and Wang Fixed Point Theory and Applications 2014, 2014:171 Page 12 of 14
http://www.fixedpointtheoryandapplications.com/content/2014/1/171

4.2 Application to split feasibility problem
Let C ⊂ H and Q ⊂ H be two nonempty closed convex subsets and A : H → H be a
bounded linear operator. Now we consider the following split feasibility problem, i.e.: to
find

x∗ ∈ C such that Ax∗ ∈Q. (.)

Let iC and iQ be the indicator functions of C and Q defined by (.). Let NC(u) be the
normal cone at u ∈ H defined by

NC(u) =
{
z ∈H : 〈z, v – u〉 ≤ ,∀v ∈ C

}
.

Since iC and iQ both are proper convex and lower semicontinuous functions on H and
H, respectively, and the subdifferential ∂iC of iC (resp. ∂iQ of iQ) is a maximal monotone
operator, we can define the resolvents J∂iCβ of ∂iC and J∂iQβ of ∂iQ by

J∂iCβ (x) = (I + β∂iC)–(x), ∀x ∈H,

J∂iQβ (x) = (I + β∂iQ)–(x), ∀x ∈H,

where β > . By definition, we know that

∂iC(x) =
{
z ∈H : iC(x) + 〈z, y – x〉 ≤ iC(y),∀y ∈H

}
=

{
z ∈H : 〈z, y – x〉 ≤ ,∀y ∈ C

}
=NC(x), x ∈ C.

Hence, for each β > , we have

u = J∂iCβ (x) ⇔ x – u ∈ βNC(u)

⇔ 〈x – u, y – u〉 ≤ , ∀y ∈ C ⇔ u = PC(x).

This implies that J∂iCβ = PC . Similarly J∂iQβ = PQ. Taking h(x) = iC(x) and g(x) = iQ(x) in (.),
then the (SFP) (.) is equivalent to the following split optimization problem:

to find x∗ ∈H such that iC
(
x∗) =min

y∈H
iC(y) and iQ

(
Ax∗) = min

z∈H
iQ(z). (.)

Hence, the following result can be obtained from Theorem . immediately.

Theorem . Let H, H, A, A∗, iC , iQ be the same as above. Let f , {αn}, {ξn}, {γn} be the
same as in Theorem .. Let {λn} be a sequence in (, 

‖A‖ ). Let {xn} be the sequence defined
by

xn+ = αnxn + ξnf (xn) + γnPC
[
xn – λnA∗(I – PQ)Axn

]
, ∀n≥ . (.)

If the solution set of the split optimization problem (.) 
 �= ∅, and the following condi-
tions are satisfied:

http://www.fixedpointtheoryandapplications.com/content/2014/1/171
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(i) limn→∞ ξn = , and
∑∞

n= ξn =∞;
(ii) lim infn→∞ αnγn > ;
(iii)  < lim infn→∞ λn ≤ lim supn→∞ λn < 

‖A‖ ,
then xn → x∗ ∈ 
 where x∗ = P
 f (x∗).

Remark . Theorem . extends and improves the main results in Censor and Elfving
[] and Byrne [].

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors read and approved the final manuscript.

Acknowledgements
The authors would like to express their thanks to the referees and the editors for their kind and helpful comments and
advice. This work was supported by the National Natural Science Foundation of China (Grant No. 11361070).

Received: 1 May 2014 Accepted: 19 July 2014 Published: 18 Aug 2014

References
1. Censor, Y, Elfving, T: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8,

221-239 (1994)
2. Byrne, C: Iterative oblique projection onto convex subsets and the split feasibility problem. Inverse Probl. 18, 441-453

(2002)
3. Censor, Y, Bortfeld, T, Martin, N, Trofimov, A: A unified approach for inversion problem in intensity-modulated

radiation therapy. Phys. Med. Biol. 51, 2353-2365 (2006)
4. Censor, Y, Elfving, T, Kopf, N, Bortfeld, T: The multiple-sets split feasibility problem and its applications. Inverse Probl.

21, 2071-2084 (2005)
5. Censor, Y, Motova, A, Segal, A: Perturbed projections and subgradient projections for the multiple-sets split feasibility

problem. J. Math. Anal. Appl. 327, 1244-1256 (2007)
6. Xu, HK: A variable Krasnosel’skii-Mann algorithm and the multiple-sets split feasibility problem. Inverse Probl. 22,

2021-2034 (2006)
7. Yang, Q: The relaxed CQ algorithm for solving the split feasibility problem. Inverse Probl. 20, 1261-1266 (2004)
8. Zhao, J, Yang, Q: Several solution methods for the split feasibility problem. Inverse Probl. 21, 1791-1799 (2005)
9. Chang, SS, Cho, YJ, Kim, JK Zhang, WB, Yang, L: Multiple-set split feasibility problems for asymptotically strict

pseudocontractions. Abstr. Appl. Anal. 2012, Article ID 491760 (2012). doi:10:1155/2012/491760
10. Chang, SS, Wang, L, Tang, YK, Yang, L: The split common fixed point problem for total asymptotically strictly

pseudocontractive mappings. J. Appl. Math. 2012, Article ID 385638 (2012). doi:10.1155/2012.385638
11. Ansari, QH, Rehan, A: Split feasibility and fixed point problems. In: Nonlinear Analysis: Approximation Theory,

Optimization and Applications, pp. 281-322. Birkhäuser, New Delhi (2014)
12. Martinet, B: Régularisation d’inéquations variationnelles par approximations successives. Rev. Fr. Autom. Inform. Rech.

Opér. 4, 154-158 (1970)
13. Rockafellar, RT: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877-898 (1976)
14. Moudafi, A: A relaxed alternating CQ algorithm for convex feasibility problems. Nonlinear Anal. 79, 117-121 (2013)
15. Eslamian, M, Latif, A: General split feasibility problems in Hilbert spaces. Abstr. Appl. Anal. 2013, Article ID 805104

(2013)
16. Chen, RD, Wang, J, Zhang, HW: General split equality problems in Hilbert spaces. Fixed Point Theory Appl. 2014,

Article ID 35 (2014)
17. Moudafi, A: Split monotone variational inclusions. J. Optim. Theory Appl. 150, 275-283 (2011)
18. Güler, O: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29,

403-419 (1991)
19. Kamimura, S, Takahashi, W: Strong convergence of a proximal-type algorithm in a Banach space. SIAM J. Optim. 13,

938-945 (2002)
20. Solodov, MV, Svaiter, BF: Forcing strong convergence of proximal point iterations in a Hilbert space. Math. Program.

87, 189-202 (2000)
21. Eslamian, M: Rockafellar’s proximal point algorithm for a finite family of monotone operators. Sci. Bull. ‘Politeh.’ Univ.

Buchar., Ser. A, Appl. Math. Phys. 76(1), 43-50 (2014)
22. Chuang, C-S: Strong convergence theorems for the split variational inclusion problem in Hilbert spaces. Fixed Point

Theory Appl. 2013, Article ID 350 (2013)
23. Chang, SS: On Chidume’s open questions and approximate solutions for multi-valued strongly accretive mapping

equations in Banach spaces. J. Math. Anal. Appl. 216, 94-111 (1997)
24. Chang, S-S, Kim, JK, Wang, XR: Modified block iterative algorithm for solving convex feasibility problems in Banach

spaces. J. Inequal. Appl. 2010, Article ID 869684 (2010)
25. Maingé, P-E: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex

minimization. Set-Valued Anal. 16(7-8), 899-912 (2008)

http://www.fixedpointtheoryandapplications.com/content/2014/1/171
http://dx.doi.org/10:1155/2012/491760
http://dx.doi.org/10.1155/2012.385638


Chang and Wang Fixed Point Theory and Applications 2014, 2014:171 Page 14 of 14
http://www.fixedpointtheoryandapplications.com/content/2014/1/171

10.1186/1687-1812-2014-171
Cite this article as: Chang and Wang: Strong convergence theorems for the general split variational inclusion
problem in Hilbert spaces. Fixed Point Theory and Applications 2014, 2014:171

http://www.fixedpointtheoryandapplications.com/content/2014/1/171

	Strong convergence theorems for the general split variational inclusion problem in Hilbert spaces
	Abstract
	Keywords

	Introduction
	Preliminaries
	Main results
	Applications
	Application to split optimization problem
	Application to split feasibility problem

	Competing interests
	Authors' contributions
	Acknowledgements
	References


