Fukhar-ud-din and Khamsi Fixed Point Theory and Applications 2014, 2014:113 http://www.fixedpointtheoryandapplications.com/content/2014/1/113

RESEARCH Open Access

# Approximating common fixed points in hyperbolic spaces

Hafiz Fukhar-ud-din<sup>1,2</sup> and Mohamed Amine Khamsi<sup>3\*</sup>

\*Correspondence: mohamed@math.utep.edu <sup>3</sup>Department of Mathematical Sciences, University of Texas at El Paso, El Paso, TX 79968, USA Full list of author information is available at the end of the article

#### **Abstract**

We establish strong convergence and  $\Delta$ -convergence theorems of an iteration scheme associated to a pair of nonexpansive mappings on a nonlinear domain. In particular we prove that such a scheme converges to a common fixed point of both mappings. Our results are a generalization of well-known similar results in the linear setting. In particular, we avoid assumptions such as smoothness of the norm, necessary in the linear case.

MSC: Primary 47H09; secondary 46B20; 47H10; 47E10

**Keywords:**  $\Delta$ -convergence; fixed point; Ishikawa iterations; nonexpansive mapping; strong convergence; uniformly convex hyperbolic space

#### 1 Introduction

Let C be a nonempty subset of a metric space (X,d) and  $T:C\to C$  be a mapping. Denote the set of fixed points of T by F(T). Then T is (i) nonexpansive if  $d(Tx,Ty)\leq d(x,y)$  for  $x,y\in C$  (ii) quasi-nonexpansive if  $F(T)\neq\emptyset$  and  $d(Tx,y)\leq d(x,y)$  for  $x\in C$  and  $y\in F(T)$ . For an initial value  $x_1\in C$ , Das and Debata [1] studied the strong convergence of Ishikawa iterates  $\{x_n\}$  defined by

$$x_{n+1} = \alpha_n S(\beta_n T x_n + (1 - \beta_n) x_n) + (1 - \alpha_n) x_n$$
(1.1)

for two quasi-nonexpansive mappings S, T on a nonempty closed and convex subset of a strictly convex Banach space. Takahashi and Tamura [2] proved weak convergence of (1.1) to a common fixed point of two nonexpansive mappings in a uniformly convex Banach space which satisfies Opial's condition or whose norm is Fréchet differentiable and strong convergence in a strictly convex Banach space (see also [3, 4]). Mann and Ishikawa iterative procedures are well-defined in a vector space through its built-in convexity. In the literature, several mathematicians have introduced the notion of convexity in metric spaces; for example [5–8]. In this work, we follow the original metric convexity introduced by Menger [9] and used by many authors like Kirk [5, 6] and Takahashi [8]. Note that Mann iterative procedures were also investigated in hyperbolic metric spaces [10, 11].

In this paper we investigate the results published in [2] and generalize them to uniformly convex hyperbolic spaces. A particular example of such metric spaces is the class of CAT(0)-spaces (in the sense of Gromov) and  $\mathbb{R}$ -trees (in the sense of Tits). Heavy use of the linear structure of Banach spaces in [2] presents some difficulties when extending



these results to metric spaces. For example, a key assumption in many of their results is the smoothness of the norm which is hard to extend to metric spaces.

#### 2 Menger convexity in metric spaces

Let (X, d) be a metric space. Assume that for any x and y in X, there exists a unique metric segment [x, y], which is an isometric copy of the real line interval [0, d(x, y)]. Note by  $\mathcal{F}$  the family of the metric segments in X. For any  $\beta \in [0, 1]$ , there exists a unique point  $z \in [x, y]$  such that

$$d(x,z) = (1-\beta)d(x,y)$$
 and  $d(z,y) = \beta d(x,y)$ .

Throughout this paper we will denote such point by  $\beta x \oplus (1 - \beta)y$ . Such metric spaces are usually called *convex metric spaces* [9]. Moreover, if we have

$$d(\alpha p \oplus (1-\alpha)x, \alpha q \oplus (1-\alpha)y) \leq \alpha d(p,q) + (1-\alpha)d(x,y)$$

for all p, q, x, y in X and  $\alpha \in [0,1]$ , then X is said to be a *hyperbolic metric space* (see [11–13]). For q = y, the hyperbolic inequality reduces to the convex structure inequality [8]. Throughout this paper, we will assume

$$\alpha x \oplus (1 - \alpha)y = (1 - \alpha)y \oplus \alpha x$$

for any  $\alpha \in [0,1]$  and any  $x, y \in X$ .

An example of hyperbolic spaces is the family of Banach vector spaces or any normed vector spaces. Hadamard manifolds [14], the Hilbert open unit ball equipped with the hyperbolic metric [15], and the CAT(0) spaces [6, 16–20] (see Example 2.1) are examples of nonlinear structures which play a major role in recent research in metric fixed point theory. A subset C of a hyperbolic space X is said to be convex if  $[x,y] \subset C$ , whenever  $x,y \in C$  (see also [21]).

**Definition 2.1** [22, 23] Let (X,d) be a hyperbolic metric space. For any r > 0 and  $\varepsilon > 0$ , set

$$\delta(r,\varepsilon) = \inf \left\{ 1 - \frac{1}{r} d\left(\frac{1}{2}x \oplus \frac{1}{2}y, a\right); d(x,a) \le r, d(y,a) \le r, d(x,y) \ge r\varepsilon \right\}$$

for any  $a \in X$ . X is said to be uniformly convex whenever  $\delta(r, \varepsilon) > 0$ , for any r > 0 and  $\varepsilon > 0$ .

Throughout this paper we assume that if X is a uniformly convex hyperbolic space, then for every  $s \ge 0$  and  $\varepsilon > 0$ , there exists  $\eta(s, \varepsilon) > 0$  such that

$$\delta(r,\varepsilon) > \eta(s,\varepsilon) > 0$$
 for any  $r > s$ .

### Remark 2.1

- (i) We have  $\delta(r,0) = 0$ . Moreover,  $\delta(r,\varepsilon)$  is an increasing function of  $\varepsilon$ .
- (ii) For  $r_1 \le r_2$ , we have

$$1 - \frac{r_2}{r_1} \left( 1 - \delta \left( r_2, \varepsilon \frac{r_1}{r_2} \right) \right) \le \delta(r_1, \varepsilon).$$

Next we give a very important example of uniformly convex hyperbolic metric space.

**Example 2.1** [16] Let (X,d) be a metric space. A *geodesic* from x to y in X is a mapping c from a closed interval  $[0,l] \subset \mathbb{R}$  to X such that c(0)=x, c(l)=y, and d(c(t),c(t'))=|t-t'| for all  $t,t' \in [0,l]$ . In particular, c is an isometry and d(x,y)=l. The image  $\alpha$  of c is called a geodesic (or metric) *segment* joining x and y. The space (X,d) is said to be a *geodesic space* if every two points of X are joined by a geodesic and X is said to be *uniquely geodesic* if there is exactly one geodesic joining x and y for each  $x,y \in X$ , which will be denoted by [x,y], and called the segment joining x to y.

A geodesic triangle  $\Delta(x_1, x_2, x_3)$  in a geodesic metric space X consists of three points  $x_1$ ,  $x_2$ ,  $x_3$  in X (the *vertices* of  $\Delta$ ) and a geodesic segment between each pair of vertices (the *edges* of  $\Delta$ ). A *comparison triangle* for geodesic triangle  $\Delta(x_1, x_2, x_3)$  in (X, d) is a triangle  $\overline{\Delta}(x_1, x_2, x_3) := \Delta(\bar{x}_1, \bar{x}_2, \bar{x}_3)$  in  $\mathbb{R}^2$  such that  $d_{\mathbb{R}^2}(\bar{x}_i, \bar{x}_j) = d(x_i, x_j)$  for  $i, j \in \{1, 2, 3\}$ . Such a triangle always exists (see [18]).

A geodesic metric space is said to be a CAT(0) space if all geodesic triangles of appropriate size satisfy the following CAT(0) comparison axiom.

Let  $\Delta$  be a geodesic triangle in X and let  $\overline{\Delta} \subset \mathbb{R}^2$  be a comparison triangle for  $\Delta$ . Then  $\Delta$  is said to satisfy the CAT(0) *inequality* if for all  $x, y \in \Delta$  and all comparison points  $\bar{x}, \bar{y} \in \overline{\Delta}$ ,

$$d(x, y) \leq d(\bar{x}, \bar{y}).$$

Complete CAT(0) spaces are often called *Hadamard spaces* (see [16]). If x,  $y_1$ ,  $y_2$  are points of a CAT(0) space, then the CAT(0) inequality implies

$$d^2\left(x,\frac{1}{2}y_1\oplus\frac{1}{2}y_2\right)\leq \frac{1}{2}d^2(x,y_1)+\frac{1}{2}d^2(x,y_2)-\frac{1}{4}d^2(y_1,y_2).$$

The above inequality is known as the (CN) inequality of Bruhat and Tits [24]. The (CN) inequality implies that CAT(0) spaces are uniformly convex with

$$\delta(r,\varepsilon)=1-\sqrt{1-\frac{\varepsilon^2}{4}}.$$

In a hyperbolic space X, (1.1) is written as

$$x_{n+1} = \alpha_n S(\beta_n T x_n \oplus (1 - \beta_n) x_n) \oplus (1 - \alpha_n) x_n, \tag{2.1}$$

where  $\alpha_n$ ,  $\beta_n \in [0,1]$ . If S = T in (2.1), it reduces to the following Ishikawa iteration process of one mapping:

$$x_{n+1} = \alpha_n T(\beta_n T x_n \oplus (1 - \beta_n) x_n, n > 1,) \oplus (1 - \alpha_n) x_n, \tag{2.2}$$

where  $\alpha_n, \beta_n \in [0,1]$ . Let  $\{x_n\}$  be a bounded sequence in a metric space X and C be a nonempty subset. Define  $r(\cdot, \{x_n\}): C \to [0, \infty)$ , by

$$r(x, \{x_n\}) = \limsup_{n \to \infty} d(x, x_n).$$

The asymptotic radius  $\rho_C$  of  $\{x_n\}$  with respect to C is given by

$$\rho_C = \inf\{r(x, \{x_n\}) : x \in C\}.$$

 $\rho$  will denote the asymptotic radius of  $\{x_n\}$  with respect to X. A point  $\xi \in C$  is said to be an asymptotic center of  $\{x_n\}$  with respect to C if  $r(\xi, \{x_n\}) = r(C, \{x_n\}) = \min\{r(x, \{x_n\}) : x \in C\}$ . We denote with  $A(C, \{x_n\})$ , the set of asymptotic centers of  $\{x_n\}$  with respect to C. When C = X, we call  $\xi$  an asymptotic center of  $\{x_n\}$  and we use the notation  $A(\{x_n\})$  instead of  $A(X, \{x_n\})$ . In general, the set  $A(C, \{x_n\})$  of asymptotic centers of a bounded sequence  $\{x_n\}$  may be empty or may even contain infinitely many points. Note that in the study of the geometry of Banach spaces, the function  $r(\cdot, \{x_n\})$  is also known as a type. For more on types in metric spaces, we refer to [25].

The  $\Delta$ -convergence, introduced independently several years ago by Kuczumow [26] and Lim [27], is shown in CAT(0) spaces to behave similarly as the weak convergence in Banach spaces.

**Definition 2.2** A bounded sequence  $\{x_n\}$  in X is said to  $\Delta$ -converge to  $x \in X$  if x is the unique asymptotic center of every subsequence  $\{u_n\}$  of  $\{x_n\}$ . We write  $x_n \stackrel{\Delta}{\to} x$  ( $\{x_n\}$   $\Delta$ -converges to x).

In this paper, we study the iteration schemes (2.1)-(2.2) for nonexpansive mappings. We study strong convergence of these iterates in strictly convex hyperbolic spaces and prove  $\Delta$ -convergence results in uniformly convex hyperbolic spaces without requiring any condition similar to norm Fréchet differentiability.

In the sequel, the following results will be needed.

**Lemma 2.1** [25, 28] Let X be a hyperbolic metric spaces. Assume that X is uniformly convex. Let C be a nonempty, closed and convex subset of X. Then every bounded sequence  $\{x_n\} \in X$  has a unique asymptotic center with respect to C.

**Lemma 2.2** [25, 28] Let X be a hyperbolic metric spaces. Assume that X is uniformly convex. Let C be a nonempty, closed and convex subset of X. Let C be a nonempty closed and convex subset of X, and  $\{x_n\}$  be a bounded sequence in C such that  $A(\{x_n\}) = \{y\}$  and  $r(\{x_n\}) = \rho$ . If  $\{y_m\}$  is a sequence in C such that  $\lim_{m\to\infty} r(y_m, \{x_n\}) = \rho$ , then  $\lim_{m\to\infty} y_m = y$ .

The following lemma [29] will be useful in studying the sequence generated by (2.1) in uniformly convex metric spaces. Here we give a proof based on the ideas developed in [25].

**Lemma 2.3** Let X be a uniformly convex hyperbolic space. Then for arbitrary positive numbers  $\varepsilon > 0$  and r > 0, and  $\alpha \in [0,1]$ , we have

$$d(a, \alpha x \oplus (1 - \alpha)y) \le r(1 - \delta(r, 2 \min\{\alpha, 1 - \alpha\}\varepsilon))$$

for all  $a, x, y \in X$ , such that  $d(z, x) \le r$ ,  $d(z, y) \le r$ , and  $d(x, y) \ge r\varepsilon$ .

*Proof* Without loss of generality, we may assume  $\alpha < \frac{1}{2}$ . In this case, we have  $\min\{\alpha, 1 - \alpha\} = \alpha$ . Let  $\alpha \in X$  be fixed and  $x, y \in X$ . Set  $\bar{x} = 2\alpha x \oplus (1 - 2\alpha)y$ . Since

$$d\left(\frac{1}{2}\bar{x} \oplus \frac{1}{2}y, x\right) \le (1 - \alpha)d(x, y)$$
 and  $d\left(\frac{1}{2}\bar{x} \oplus \frac{1}{2}y, y\right) = \alpha d(x, y),$ 

the uniform convexity of X will imply  $\frac{1}{2}\bar{x} \oplus \frac{1}{2}y = \alpha x \oplus (1-\alpha)y$ . Using the uniform convexity of X, we get

$$d\left(a, \frac{1}{2}\bar{x} \oplus \frac{1}{2}y\right) \leq r\left(1 - \delta(r, 2\alpha\varepsilon)\right).$$

Hence

$$d(a,\alpha x \oplus (1-\alpha)y) \le r(1-\delta(r,2\min\{\alpha,1-\alpha\}\varepsilon)).$$

**Remark 2.2** If (X, d) is uniformly convex, then (X, d) is strictly convex, *i.e.*, whenever

$$d(\alpha x \oplus (1-\alpha)y, a) = d(x, a) = d(y, a)$$

for  $\alpha \in (0,1)$  and any  $x, y, a \in X$ , then we must have x = y.

The following result is very useful.

**Lemma 2.4** [25] Let (X,d) be a uniformly convex hyperbolic space. Let  $R \in [0, +\infty)$  be such that

$$\limsup_{n\to\infty} d(x_n,a) \le R, \qquad \limsup_{n\to\infty} d(y_n,a) \le R \quad and \quad \lim_{n\to\infty} d\left(a,\frac{1}{2}x_n \oplus \frac{1}{2}y_n\right) = R.$$

Then we have

$$\lim_{n\to\infty}d(x_n,y_n)=0.$$

But since we use convex combinations other than the middle point, we will need the following generalization obtained by using Lemma 2.3.

**Lemma 2.5** Let (X,d) be a uniformly convex hyperbolic space. Let  $R \in [0,+\infty)$  be such that  $\limsup_{n\to\infty} d(x_n,a) \le R$ ,  $\limsup_{n\to\infty} d(y_n,a) \le R$ , and

$$\lim_{n\to\infty}d(a,\alpha_nx_n\oplus(1-\alpha_n)y_n)=R,$$

where  $\alpha_n \in [a, b]$ , with  $0 < a \le b < 1$ . Then we have

$$\lim_{n\to\infty}d(x_n,y_n)=0.$$

A subset C of a metric space X is Chebyshev if for every  $x \in X$ , there exists  $c_0 \in C$  such that  $d(c_0, x) < d(c, x)$  for all  $c \in C$ ,  $c \ne c_0$ . In other words, for each point of the space, there is a well-defined nearest point of C. We can then define the nearest point projection  $P: X \to C$  by sending x to  $c_0$ . We have the following result.

**Lemma 2.6** [25] Let (X,d) be a complete uniformly convex hyperbolic space. Let C be nonempty, convex and closed subset of X. Let  $x \in X$  be such that  $d(x,C) < \infty$ . Then there exists a unique best approximant of x in C, i.e., there exists a unique  $c_0 \in C$  such that

$$d(x, c_0) = d(x, C) = \inf\{d(x, c); c \in C\},\$$

i.e., C is Chebyshev.

#### 3 Convergence in strictly convex hyperbolic space

Let (X, d) be a hyperbolic metric space. Let C be a nonempty closed convex subset of X. Let  $S, T : C \to C$  be two nonexpansive mappings. Throughout the paper, assume that  $F = F(S) \cap F(T)$ . Let  $x_1 \in C$  and  $p \in F$  (assuming F is not empty). Set  $r = d(x_1, p)$ . Then

$$C(x_1) = C \cap B(p,r) = \{x \in C; d(p,x) \le r\}$$

is nonempty and invariant by both S and T. Therefore one may always assume that C is bounded provided that S and T have a common fixed point. Moreover, if  $\{x_n\}$  is the sequence generated by (2.1), then we have

$$d(x_{n+1},p) = d(\alpha_n Sy_n \oplus (1-\alpha_n)x_n, p)$$

$$\leq \alpha_n d(Sy_n, p) + (1-\alpha_n)d(x_n, p)$$

$$\leq \alpha_n d(y_n, p) + (1-\alpha_n)d(x_n, p)$$

$$= \alpha_n d(\beta_n Tx_n \oplus (1-\beta_n)x_n, p) + (1-\alpha_n)d(x_n, p)$$

$$\leq \alpha_n [\beta_n d(Tx_n, p) + (1-\beta_n)d(x_n, p)] + (1-\alpha_n)d(x_n, p)$$

$$\leq d(x_n, p),$$

where  $y_n = \beta_n T x_n \oplus (1 - \beta_n) x_n$ . This proves that  $\{d(x_n, p)\}$  is decreasing, which implies that  $\lim_{n\to\infty} d(x_n, p)$  exists. Using the above inequalities, we get

$$\lim_{n \to \infty} d(x_n, p) = \lim_{n \to \infty} d\left(\alpha_n Sy_n \oplus (1 - \alpha_n)x_n, p\right)$$

$$= \lim_{n \to \infty} \alpha_n d(Sy_n, p) + (1 - \alpha_n)d(x_n, p)$$

$$= \lim_{n \to \infty} \alpha_n d(y_n, p) + (1 - \alpha_n)d(x_n, p)$$

$$= \lim_{n \to \infty} \alpha_n d\left(\beta_n Tx_n \oplus (1 - \beta_n)x_n, p\right) + (1 - \alpha_n)d(x_n, p)$$

$$= \lim_{n \to \infty} \alpha_n \left[\beta_n d(Tx_n, p) + (1 - \beta_n)d(x_n, p)\right] + (1 - \alpha_n)d(x_n, p).$$

The first result of this work discusses the convergence behavior of the sequence generated by (2.1).

**Theorem 3.1** Let X be a strictly convex hyperbolic space. Let C be a nonempty bounded, closed and convex subset of X. Let  $S, T : C \to C$  be two nonexpansive mappings. Assume that  $F \neq \emptyset$ . Let  $x_1 \in C$  and  $\{x_n\}$  be given by (2.1). Then the following hold:

- (i) if  $\alpha_n \in [a, b]$  and  $\beta_n \in [0, b]$ , with  $0 < a \le b < 1$ , then  $x_{n_i} \to y$  implies  $y \in F(S)$ ;
- (ii) if  $\alpha_n \in [a, 1]$  and  $\beta_n \in [a, b]$ , with  $0 < a \le b < 1$ , then  $x_{n_i} \to y$  implies  $y \in F(T)$ ;
- (iii) if  $\alpha_n, \beta_n \in [a, b]$ , with  $0 < a \le b < 1$ , then  $x_{n_i} \to y$  implies  $y \in F$ . In this case, we have  $x_n \to y$ .

*Proof* Assume that  $x_{n_i} \to y$ . Let  $p \in F$ . Without loss of generality, we may assume  $\lim_{n\to\infty} \alpha_{n_i} = \alpha$  and  $\lim_{n\to\infty} \beta_{n_i} = \beta$ . Since  $\{d(x_n, p)\}$  is decreasing, we get

$$\lim_{n_i\to\infty}d(x_n,p)=\lim_{n_i\to\infty}d(x_{n_i},p)=d(y,p).$$

The above inequalities imply

$$d(y,p) = d(\alpha S(\beta Ty \oplus (1-\beta)y) \oplus (1-\alpha)y, p)$$

$$= \alpha d(S(\beta Ty \oplus (1-\beta)y), p) + (1-\alpha)d(y, p)$$

$$= \alpha d(\beta Ty \oplus (1-\beta)y, p) + (1-\alpha)d(y, p)$$

$$= \alpha [\beta d(Ty, p) + (1-\beta)d(y, p)] + (1-\alpha)d(y, p).$$

Set r = d(y, p). Without loss of generality we may assume r > 0 otherwise most of the conclusions in the theorem are trivial. Assume that  $\liminf_{n\to\infty} \alpha_n > 0$ . Then  $\alpha \neq 0$ . Hence

$$d(S(\beta Ty \oplus (1-\beta)y), p) = d(\beta Ty \oplus (1-\beta)y, p) = \beta d(Ty, p) + (1-\beta)r = r,$$

which implies  $\beta d(Ty, p) = \beta r$ . If we assume that  $\liminf_{n\to\infty} \beta_n > 0$ , then  $\beta \neq 0$ , which implies d(Ty, p) = r.

(1) If  $\alpha \in (0,1)$  and  $\beta > 0$ , then

$$d(p, S(\beta Ty \oplus (1-\beta)y)) = d(\alpha S(\beta Ty \oplus (1-\beta)y) \oplus (1-\alpha)y, p) = r.$$

The strict convexity of *X* will imply  $S(\beta Ty \oplus (1 - \beta)y) = y$ .

(2) If  $\alpha \in (0,1)$  and  $\beta = 0$ , then

$$d(p,y) = d(p,S(y)) = d(\alpha S(y) \oplus (1-\alpha)y, p).$$

The strict convexity of *X* will imply S(y) = y.

(3) If  $\beta \in (0,1)$  and  $\alpha > 0$ , then

$$d(p,y) = d(p,T(y)) = d(p,\beta Ty \oplus (1-\beta)y).$$

The strict convexity of *X* will imply T(y) = y.

(4) If  $\alpha, \beta \in (0,1)$ , then T(y) = y and  $S(\beta Ty \oplus (1-\beta)y) = y$ . Hence S(y) = y.

Let us finish the proof of Theorem 3.1. Note that (i) implies  $\alpha \in [a,b]$  and  $\beta \in [0,b]$ . If  $\beta = 0$ , then the conclusion (2) above implies  $y \in F(S)$ . Otherwise the conclusion (4) will imply  $y \in F$ . This proves (i).

For (ii), notice that  $\alpha \in [a,1]$  and  $\beta \in [a,b]$ . Hence the conclusion (3) will imply  $y \in F(T)$  which proves (ii).

For (iii), notice that  $\alpha, \beta \in [a, b]$ . Hence the conclusion (4) will imply  $y \in F(T)$ . Since

$$\lim_{n\to\infty}d(y_n,y)=\lim_{n\to\infty}d(y_{n_i},y)=0,$$

we get  $x_n \to y$ , which completes the proof of (iii).

If we assume compactness, Theorem 3.1 will imply the following result.

**Theorem 3.2** Let X be a strictly convex hyperbolic space. Let C be a nonempty bounded, closed and convex subset of X. Let S,  $T: C \to C$  be two nonexpansive mappings. Assume

that  $F \neq \emptyset$ . Fix  $x_1 \in C$ . Assume that  $\overline{\operatorname{co}}\{\{x_1\} \cup S(C) \cup T(C)\}$  is a compact subset of C. Define  $\{x_n\}$  as in (2.1) where  $\alpha_n, \beta_n \in [a,b]$ , with  $0 < a \le b < 1$ , and  $x_1$  is the initial element of the sequence. Then  $\{x_n\}$  converges strongly to a common fixed point of S and T.

*Proof* We have  $x_n \in \overline{\operatorname{co}}\{\{x_1\} \cup S(C) \cup T(C)\}$ . Since  $\overline{\operatorname{co}}\{\{x_1\} \cup S(C) \cup T(C)\}$  is compact,  $\{x_n\}$  has a convergent subsequence  $\{x_{n_i}\}$ , *i.e.*,  $x_{n_i} \to z$ . By Theorem 3.1, we have  $z \in F$  and  $x_n \to z$ .

The existence of a common fixed point T and S is crucial. If one assumes that T and S commute, *i.e.*,  $S \circ T = T \circ S$ , then a common fixed point exists under the assumptions of Theorem 3.2. Indeed, fix  $x_0 \in C$  and define

$$T_n x = \frac{1}{n} x_0 \oplus \left(1 - \frac{1}{n}\right) T x$$

for  $x \in C$  and  $n \ge 1$ . Then

$$d(T_n x, T_n y) = d\left(\frac{1}{n}x_0 \oplus \left(1 - \frac{1}{n}\right)Tx, \frac{1}{n}x_0 \oplus \left(1 - \frac{1}{n}\right)Ty\right)$$

$$\leq \left(1 - \frac{1}{n}\right)d(Tx, Ty)$$

$$\leq \left(1 - \frac{1}{n}\right)d(x, y).$$

That is,  $T_n$  is a contraction. By the Banach contraction principle (BCP),  $T_n$  has a unique fixed point  $u_n$  in C. Since the closure of T(C) is compact, there exists a subsequence  $\{Tu_{n_i}\}$  of  $\{Tu_n\}$  such that  $Tu_{n_i} \to u$ . Since T(C) is bounded and

$$d(u_n, Tu_n) = d\left(\frac{1}{n}x_0 \oplus \left(1 - \frac{1}{n}\right)Tu_n, Tu_n\right) \le \frac{1}{n}d(x_0, Tu_n),$$

we have  $d(u_n, Tu_n) \to 0$ . In particular, we have  $u_{n_i} \to u$ . Continuity of T implies Tu = u. Since X is strictly convex, then F(T) is a nonempty convex subset of X. Since T and S commute, we have  $S(F(T)) \subset F(T)$ . Moreover, since the closure of T(C) is compact, we see that F(T) is compact. The above proof shows that S has a fixed point in F(T), *i.e.*,  $F = F(S) \cap F(T) \neq \emptyset$ .

The case S = T gives the following result.

**Theorem 3.3** Let C be a nonempty closed and convex subset of a complete strictly convex hyperbolic space X. Let  $T: C \to C$  be a nonexpansive mapping such that  $\overline{\operatorname{co}}\{\{c_0\} \cup T(C)\}$  is a compact subset of C, where  $c_0 \in C$ . Define  $\{x_n\}$  by (2.2), where  $x_1 = c_0$ ,  $\alpha_n \in [a,b]$  and  $\beta_n \in [0,b]$  or  $\alpha_n \in [a,1]$  and  $\beta_n \in [a,b]$ , with  $0 < a \le b < 1$ . Then  $\{x_n\}$  converges strongly to a fixed point of T.

*Proof* We saw that in this case, we have  $F(T) \neq \emptyset$ . Since  $x_n \in \overline{\operatorname{co}}\{\{x_1\} \cup T(C)\}$ . Then there exists a subsequence  $\{x_{n_i}\}$  of  $\{x_n\}$  such that  $x_{n_i} \to z \in C$ . By Theorem 3.1, we have Tz = z and  $x_n \to z$ .

#### 4 Convergence in uniformly convex hyperbolic spaces

The following result is similar to the well-known demi-closedness principle discovered by Göhde in uniformly convex Banach spaces [30].

**Lemma 4.1** Let C be a nonempty, closed and convex subset of a complete uniformly convex hyperbolic space X. Let  $T: C \to C$  be a nonexpansive mapping. Let  $\{x_n\} \in C$  be an approximate fixed point sequence of T, i.e.,  $\lim_{n\to\infty} d(x_n, Tx_n) = 0$ . If  $x \in C$  is the asymptotic center of  $\{x_n\}$  with respect to C, then x is a fixed point of T, i.e.,  $x \in F(T)$ . In particular, if  $\{x_n\} \in C$  is an approximate fixed point sequence of T, such that  $x_n \xrightarrow{\Delta} x$ , then  $x \in F(T)$ .

*Proof* Let  $\{x_n\}$  be an approximate fixed point sequence of T. Let  $x \in C$  be the unique asymptotic center of  $\{x_n\}$  with respect to C. Since

$$d(Tx, x_n) \le d(Tx, Tx_n) + d(Tx_n, x_n) \le d(x, x_n) + d(Tx_n, x_n),$$

we get

$$r(Tx, \{x_n\}) = \limsup_{n \to \infty} d(Tx, x_n)$$

$$\leq \limsup_{n \to \infty} [d(x, x_n) + d(Tx_n, x_n)] = r(x, \{x_n\}).$$

By the uniqueness of the asymptotic center, we get Tx = x.

The following theorem is necessary to discuss the behavior of the iterates in (2.1).

**Theorem 4.1** Let C be a nonempty, closed and convex subset of a complete uniformly convex hyperbolic space X. Let  $S, T : C \to C$  be nonexpansive mappings such that  $F \neq \emptyset$ . Fix  $x_1 \in C$  and generate  $\{x_n\}$  by (2.1). Set

$$y_n = \beta_n T x_n \oplus (1 - \beta_n) x_n$$

for any  $n \ge 1$ .

(i) *If* 
$$\alpha_n \in [a, b]$$
, *where*  $0 < a \le b < 1$ , *then*

$$\lim_{n\to\infty}d(x_n,Sy_n)=0.$$

(ii) If  $\liminf_{n\to\infty} \alpha_n > 0$  and  $\beta_n \in [a,b]$ , with  $0 < a \le b < 1$ , then

$$\lim_{n\to\infty}d(x_n,Tx_n)=0.$$

(iii) If  $\alpha_n$ ,  $\beta_n \in [a, b]$ , with  $0 < a \le b < 1$ , then

$$\lim_{n\to\infty}d(x_n,Sx_n)=0\quad and\quad \lim_{n\to\infty}d(x_n,Tx_n)=0.$$

*Proof* Let  $p \in F$ . Then the sequence  $\{d(x_n, p)\}$  is decreasing. Set  $c = \lim_{n \to \infty} d(x_n, p)$ . If c = 0, then all the conclusions are trivial. Therefore we will assume that c > 0. Note that

we have

$$d(x_{n+1}, p) \le \alpha_n d(Sy_n, p) + (1 - \alpha_n) d(x_n, p)$$
(4.1)

and

$$d(Sy_n, p) \le d(y_n, p) \le \beta_n d(Tx_n, p) + (1 - \beta_n) d(x_n, p) \le d(x_n, p)$$
(4.2)

for any  $n \ge 1$ . In order to prove (i), assume that  $\alpha_n \in [a, b]$ , where  $0 < a \le b < 1$ . From the inequalities (4.1) and (4.2), we get

$$d(x_{n+1},p) = d(\alpha_n Sy_n \oplus (1-\alpha_n)x_n, p) \le \alpha_n d(Sy_n, p) + (1-\alpha_n)d(x_n, p) \le d(x_n, p),$$

which implies  $\lim_{n\to\infty} d(Sy_n, p) = c$ . Indeed, let  $\mathcal{U}$  be an ultrafilter over  $\mathbb{N}$ . Then we have  $\lim_{\mathcal{U}} \alpha_n = \alpha \in [a, b]$  and  $\lim_{\mathcal{U}} d(x_n, p) = \lim_{\mathcal{U}} d(x_{n+1}, p) = c$ . Hence

$$c \le \alpha \lim_{\mathcal{U}} d(Sy_n, p) + (1 - \alpha)c \le c.$$

Since  $\alpha \neq 0$ , we get  $\lim_{\mathcal{U}} d(Sy_n, p) = c$ . Since  $\mathcal{U}$  was an arbitrary ultrafilter, we get  $\lim_{n\to\infty} d(Sy_n, p) = c$  as claimed. Therefore we have

$$\lim_{n\to\infty}d(x_n,p)=\lim_{n\to\infty}d(Sy_n,p)=\lim_{n\to\infty}d\Big(\alpha_nSy_n\oplus(1-\alpha_n)x_n,p\Big)=c.$$

Using Lemma 2.5, we get  $\lim_{n\to\infty} d(Sy_n, x_n) = 0$ .

Next we prove (ii). Assume  $\liminf_{n\to\infty} \alpha_n > 0$  and  $\beta_n \in [a,b]$ , with  $0 < a \le b < 1$ . First note that from (4.1) and (4.2), we get

$$d(x_{n+1}, p) \le \alpha_n d(y_n, p) + (1 - \alpha_n) d(x_n, p) \le d(x_n, p),$$

which implies  $\lim_{n\to\infty}\alpha_n d(y_n,p)+(1-\alpha_n)d(x_n,p)=c$ . Since  $\liminf_{n\to\infty}\alpha_n>0$ , we conclude that  $\lim_{n\to\infty}d(y_n,p)=c$ . Since  $\beta_n\geq a>0$ , we get in a similar fashion  $\lim_{n\to\infty}d(Tx_n,p)=c$ . Therefore we have

$$\lim_{n\to\infty}d(x_n,p)=\lim_{n\to\infty}d(Tx_n,p)=\lim_{n\to\infty}d\left(\beta_nTx_n\oplus(1-\beta_n)x_n,p\right)=c.$$

Using Lemma 2.5, we get  $\lim_{n\to\infty} d(Tx_n, x_n) = 0$ .

Finally let us prove (iii). Assume that  $\alpha_n$ ,  $\beta_n \in [a, b]$ , with  $0 < a \le b < 1$ . Then from (i) and (ii), we know that

$$\lim_{n\to\infty} d(x_n, Sy_n) = 0 \quad \text{and} \quad \lim_{n\to\infty} d(x_n, Tx_n) = 0.$$

Since

$$d(x_n, Sx_n) \le d(x_n, Sy_n) + d(Sy_n, Sx_n)$$
  
$$\le d(x_n, Sy_n) + d(y_n, x_n)$$

$$= d(x_n, Sy_n) + \beta_n d(Tx_n, x_n)$$
  
$$\leq d(x_n, Sy_n) + d(Tx_n, x_n),$$

we conclude that  $\lim_{n\to\infty} d(x_n, Sx_n) = 0$ .

The conclusion of Theorem 4.1(iii) is amazing because the sequence generated by (2.1) gives an approximate fixed point sequence for both S and T without assuming that these mappings commute.

**Remark 4.1** If we assume that  $0 \le \beta_n \le b < 1$  and  $\liminf_{n \to \infty} \alpha_n > 0$ , then

$$\lim_{n\to\infty}\beta_nd(x_n,Tx_n)=0.$$

Indeed, if we assume this not to be so, then there exists a subsequence  $\{\beta_{n'}\}$  and  $\delta > 0$  such that

$$\beta_{n'}d(x_{n'},Tx_{n'}) \geq \delta$$

for any  $n \ge 1$ . In particular, it is clear, since  $\{d(x_n, Tx_n)\}$  is bounded, that  $\lim_{n\to\infty} \beta_{n'} \ne 0$ . Without loss of generality, we may assume that  $\beta_{n'} \ge a > 0$ , for  $n \ge 1$ . The proof of (ii) will imply

$$\lim_{n\to\infty}d(x_{n'},Tx_{n'})=0,$$

which is a contradiction since  $\{\beta_n\}$  is a bounded sequence. Therefore we must have

$$\lim_{n\to\infty}\beta_n d(x_n, Tx_n)=0.$$

In particular, if we assume  $\alpha_n \in [a, b]$ , then we get

$$\lim_{n\to\infty}d(x_n,Sx_n)=0.$$

As a direct consequence to Theorem 4.1 and Remark 4.1, we get the following result which discusses the  $\Delta$ -convergence of the iterative sequence defined by (2.1).

**Theorem 4.2** Let C be a nonempty, closed and convex subset of a complete uniformly convex hyperbolic space X. Let  $S, T : C \to C$  be two nonexpansive mappings such that  $F \neq \emptyset$ . Fix  $x_1 \in C$  and generate  $\{x_n\}$  by (2.1). Then

- (i) if  $\alpha_n \in [a,b]$  and  $\beta_n \in [0,b]$ , with  $0 < a \le b < 1$ , then  $x_n \xrightarrow{\Delta} y$  and  $y \in F(S)$ ;
- (ii) if  $\alpha_n \in [a,1]$  and  $\beta_n \in [a,b]$ , with  $0 < a \le b < 1$ , then  $x_n \xrightarrow{\Delta} y$  and  $y \in F(T)$ ;
- (iii) if  $\alpha_n, \beta_n \in [a, b]$ , with  $0 < a \le b < 1$ , then  $x_n \xrightarrow{\Delta} y$  and  $y \in F$ .

*Proof* Let us prove (i). Assume  $\alpha_n \in [a,b]$  and  $\beta_n \in [0,b]$ , with  $0 < a \le b < 1$ . Theorem 4.1 and Remark 4.1 imply that  $\{x_n\}$  is an approximate fixed point sequence of *S*, *i.e.*,

$$\lim_{n\to\infty}d(x_n,Sx_n)=0.$$

Let y be the unique asymptotic center of  $\{x_n\}$ . Then Lemma 4.1 implies that  $y \in F(S)$ . Let us prove that in fact  $\{x_n\}$   $\Delta$ -converges to y. Let  $\{x_{n_i}\}$  be a subsequence of  $\{x_n\}$ . Let z be the unique asymptotic center of  $\{x_{n_i}\}$ . Again since  $\{x_{n_i}\}$  is an approximate fixed point sequence of S, we get  $z \in F(S)$ . Hence

$$\limsup_{n_i\to\infty} d(x_{n_i},z) \leq \limsup_{n_i\to\infty} d(x_{n_i},y).$$

Since  $y, z \in F(S)$ , we get

$$\limsup_{n_i\to\infty}d(x_{n_i},z)=\lim_{n\to\infty}d(x_n,z)\quad\text{and}\quad \limsup_{n_i\to\infty}d(x_{n_i},y)=\lim_{n\to\infty}d(x_n,y).$$

Since *y* is the unique asymptotic center of  $\{x_n\}$ , we get y = z. This proves that  $\{x_n\}$   $\Delta$ -converges to  $\gamma$ .

Next we prove (ii). Assume  $\alpha_n \in [a,1]$  and  $\beta_n \in [a,b]$ , with  $0 < a \le b < 1$ . Then Theorem 4.1 implies that  $\{x_n\}$  is an approximate fixed point sequence of T, *i.e.*,

$$\lim_{n\to\infty}d(x_n,Tx_n)=0.$$

Following the same proof as given above for (i), we get  $\{x_n\}$   $\Delta$ -converges to its unique asymptotic center which is a fixed point of T.

The conclusion (iii) follows easily from (i) and (ii). 
$$\Box$$

As a corollary to Theorem 4.2, we get the following result when S = T.

**Corollary 4.1** Let C be a nonempty, closed and convex subset of a complete uniformly convex hyperbolic space X. Let  $T: C \to C$  be a nonexpansive mapping with a fixed point. Suppose that  $\{x_n\}$  is given by (2.2), where  $\alpha_n \in [a,b]$  and  $\beta_n \in [0,b]$  or  $\alpha_n \in [a,1]$  and  $\beta_n \in [a,b]$ , with  $0 < a \le b < 1$ . Then  $x_n \xrightarrow{\Delta} p$ , with  $p \in F(T)$ .

Using the concept of near point projection, we establish the following amazing convergence result.

**Theorem 4.3** Let C be a nonempty, closed and convex subset of a complete uniformly convex hyperbolic space X. Let  $S, T : C \to C$  be nonexpansive mappings such that  $F \neq \emptyset$ . Let P be the nearest point projection of C onto F. For an initial value  $x_1 \in C$ , define  $\{x_n\}$  as given in (2.1), where  $\alpha_n, \beta_n \in [a, b]$ , with  $0 < a \le b < 1$ . Then  $\{Px_n\}$  converges strongly to the asymptotic center of  $\{x_n\}$ .

**Proof** First, we claim that

$$d(Px_n, x_{n+m}) \le d(Px_n, x_n)$$
 for  $m \ge 1, n \ge 1$ . (4.3)

We prove (4.3) by induction on  $m \ge 1$ . For m = 1, we have

$$d(Px_n, x_{n+1}) = d(Px_n, \alpha_n Sy_n \oplus (1 - \alpha_n)x_n)$$
  
 
$$\leq \alpha_n d(Px_n, Sy_n) + (1 - \alpha_n)d(Px_n, x_n)$$

$$\leq \alpha_{n}d(Px_{n}, y_{n}) + (1 - \alpha_{n})d(Px_{n}, x_{n})$$

$$= \alpha_{n}d(Px_{n}, \beta_{n}Tx_{n} \oplus (1 - \beta_{n})x_{n}) + (1 - \alpha_{n})d(Px_{n}, x_{n})$$

$$\leq \alpha_{n}[\beta_{n}d(Px_{n}, Tx_{n}) + (1 - \beta_{n})d(Px_{n}, x_{n})] + (1 - \alpha_{n})d(Px_{n}, x_{n})$$

$$\leq \alpha_{n}[\beta_{n}d(Px_{n}, x_{n}) + (1 - \beta_{n})d(Px_{n}, x_{n})] + (1 - \alpha_{n})d(Px_{n}, x_{n})$$

$$= d(Px_{n}, x_{n}).$$

That is,

$$d(Px_n, x_{n+1}) \le d(Px_n, x_n)$$

for  $n \ge 1$ . Assume that (4.3) is true for m = k. That is,

$$d(Px_n, x_{n+k}) \le d(Px_n, x_n)$$

for  $n \ge 1$ . Hence

$$d(Px_{n}, x_{n+k+1}) = d(Px_{n}, \alpha_{n+k}Sy_{n+k} \oplus (1 - \alpha_{n+k})x_{n+k})$$

$$\leq \alpha_{n+k}d(Px_{n}, Sy_{n+k}) + (1 - \alpha_{n+k})d(Px_{n}, x_{n+k})$$

$$\leq \alpha_{n+k}d(Px_{n}, y_{n+k}) + (1 - \alpha_{n+k})d(Px_{n}, x_{n+k})$$

$$= \alpha_{n+k}d(Px_{n}, \beta_{n+k}Tx_{n+k} \oplus (1 - \beta_{n+k})x_{n+k})$$

$$+ (1 - \alpha_{n+k})d(Px_{n}, x_{n+k})$$

$$\leq \alpha_{n+k}[\beta_{n+k}d(Px_{n}, Tx_{n+k}) + (1 - \beta_{n+k})d(Px_{n}, x_{n+k})]$$

$$+ (1 - \alpha_{n+k})d(Px_{n}, x_{n+k})$$

$$\leq \alpha_{n+k}[\beta_{n+k}d(Px_{n}, x_{n+k}) + (1 - \beta_{n+k})d(Px_{n}, x_{n+k})]$$

$$+ (1 - \alpha_{n+k})d(Px_{n}, x_{n+k})$$

$$= d(Px_{n}, x_{n+k})$$

$$\leq d(Px_{n}, x_{n}).$$

This completes the proof of (4.3). Let us complete the proof of Theorem 4.3. We know from Theorem 4.2(iii) that  $\{x_n\}$   $\Delta$ -converges to its unique asymptotic center y, which is in F. Let us prove that  $\{Px_n\}$  converges strongly to y. Assume not, *i.e.*, there exist  $\varepsilon > 0$  and a subsequence  $\{Px_{n_i}\}$  such that  $d(Px_{n_i}, y) \ge \varepsilon$ , for any  $n_i \ge 1$ . It is clear that we must have  $R = d(x_1, y) > 0$ , otherwise  $\{x_n\}$  is a constant sequence. Since

$$\begin{cases} d(x_{n_i}, y) \leq d(x_{n_i}, y), \\ d(x_{n_i}, Px_{n_i}) \leq d(x_{n_i}, y), \\ d(Px_{n_i}, y) \geq \varepsilon = d(x_{n_i}, y) \frac{\varepsilon}{d(x_{n_i}, y)} \geq d(x_{n_i}, y) \frac{\varepsilon}{R} \end{cases}$$

we get

$$d\left(x_{n_i}, \frac{1}{2}Px_{n_i} \oplus \frac{1}{2}y\right) \le d(x_{n_i}, y)\left(1 - \delta\left(d(x_{n_i}, y), \frac{\varepsilon}{R}\right)\right)$$

for any  $n_i \ge 1$ . Using the properties of the modulus of uniform convexity, there exists  $\eta > 0$  such that

$$\delta\left(d(x_{n_i},y),\frac{\varepsilon}{R}\right) \geq \eta$$

for any  $n_i \ge 1$ . Hence

$$d\left(x_{n_i}, \frac{1}{2}Px_{n_i} \oplus \frac{1}{2}y\right) \leq d(x_{n_i}, y)(1 - \eta)$$

for any  $n_i \ge 1$ . Using the definition of the nearest point projection P, we get

$$d(x_{n_i}, Px_{n_i}) \leq d(x_{n_i}, y)(1 - \eta)$$

for any  $n_i \ge 1$ . Using the inequality (4.3) above, we get

$$d(x_{n_i+m}, Px_{n_i}) \le d(x_{n_i}, y)(1-\eta)$$

for any  $n_i \ge 1$  and  $m \ge 1$ . Since  $Px_{n_i} \in F$ , we know that  $\{d(x_n, Px_{n_i})\}$  is decreasing (in n and fixed  $n_i$ ). Hence

$$\limsup_{m\to\infty} d(x_{n_i+m}, Px_{n_i}) = \lim_{n\to\infty} d(x_n, Px_{n_i}) \le d(x_{n_i}, y)(1-\eta)$$

for any  $n_i \ge 1$ . Since y is the asymptotic center of  $\{x_n\}$ , we get

$$\lim_{n\to\infty} d(x_n, y) \le \lim_{n\to\infty} d(x_n, Px_{n_i}) \le d(x_{n_i}, y)(1-\eta)$$

for any  $n_i \ge 1$ . Finally since  $y \in F$ , if we let  $n_i \to \infty$ , we get

$$\lim_{n\to\infty} d(x_n,y) \leq \lim_{n\to\infty} d(x_n,y)(1-\eta).$$

Since  $\varepsilon \le d(x_{n_i}, Px_{n_i}) \le d(x_{n_i}, y)$ , we conclude that  $\varepsilon \le \lim_{n \to \infty} d(x_n, y)$ , which implies  $1 \le 1 - \eta$  which is our desired contradiction. Therefore  $\{Px_n\}$  converges strongly to y.

#### **Competing interests**

The authors declare that they have no competing interests.

#### Authors' contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

#### **Author details**

<sup>1</sup>Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia. <sup>2</sup>Department of Mathematics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan. <sup>3</sup>Department of Mathematical Sciences, University of Texas at El Paso, El Paso, TX 79968, USA.

#### Acknowledgements

The authors are grateful to King Fahd University of Petroleum and Minerals for supporting research project IN121055.

Received: 14 February 2014 Accepted: 16 April 2014 Published: 08 May 2014

#### References

- 1. Das, G, Debata, P: Fixed points of quasi-nonexpansive mappings. Indian J. Pure Appl. Math. 17, 1263-1269 (1986)
- 2. Takahashi, W, Tamura, T: Convergence theorems for a pair of nonexpansive mappings. J. Convex Anal. 5, 45-56 (1998)
- 3. Khan, SH, Fukhar-ud-din, H: Weak and strong convergence of a scheme with errors for two nonexpansive mappings. Nonlinear Anal. **61**, 1295-1301 (2005)
- 4. Takahashi, W, Kim, GE: Approximating fixed points of nonexpansive mappings in Banach spaces. Math. Jpn. 48, 1-9 (1998)
- 5. Kirk, WA: An abstract fixed point theorem for nonexpansive mappings. Proc. Am. Math. Soc. 82, 640-642 (1981)
- 6. Kirk, WA: Fixed point theory for nonexpansive mappings II. Contemp. Math. 18, 121-140 (1983)
- 7. Penot, JP: Fixed point theorems without convexity. Bull. Soc. Math. Fr. 60, 129-152 (1979)
- 8. Takahashi, W: A convexity in metric spaces and nonexpansive mappings. Kodai Math. Semin. Rep. 22, 142-149 (1970)
- 9. Menger, K: Untersuchungen über allgemeine Metrik. Math. Ann. 100, 75-163 (1928)
- 10. Borwein, J, Reich, S, Shafrir, I: Krasnoselski-Mann iterations in normed spaces. Can. Math. Bull. 35, 21-28 (1992)
- 11. Reich, S, Shafrir, I: Nonexpansive iterations in hyperbolic spaces. Nonlinear Anal. 15, 537-558 (1990)
- 12. Khan, AR, Fukhar-ud-din, H, Khan, MAA: An implicit algorithm for two finite families of nonexpansive maps in hyperbolic spaces. Fixed Point Theory Appl. 2012, 54 (2012)
- 13. Kohlenbach, U: Some logical metatheorems with applications in functional analysis. Trans. Am. Math. Soc. **357**, 89-128 (2005)
- 14. Busemann, H: Spaces with non-positive curvature. Acta Math. 80, 259-310 (1948)
- 15. Goebel, K, Reich, S: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Series of Monographs and Textbooks in Pure and Applied Mathematics, vol. 83. Dekker, New York (1984)
- 16. Kirk, WA: A fixed point theorem in CAT(0) spaces and ℝ-trees. Fixed Point Theory Appl. 2004(4), 309-316 (2004)
- 17. Leustean, L: A quadratic rate of asymptotic regularity for CAT(0)-spaces. J. Math. Anal. Appl. 325, 386-399 (2007)
- 18. Bridson, M, Haefliger, A: Metric Spaces of Non-Positive Curvature. Springer, Berlin (1999)
- Dhompongsa, S, Panyanak, B: On Δ-convergence theorems in CAT(0) spaces. Comput. Math. Appl. 56, 2572-2579 (2008)
- Khan, AR, Khamsi, MA, Fukhar-ud-din, H: Strong convergence of a general iteration scheme in CAT(0)-spaces. Nonlinear Anal. 74, 783-791 (2011)
- 21. Shimizu, T, Takahashi, W: Fixed points of multivalued mappings in certain convex metric spaces. Topol. Methods Nonlinear Anal. **8**, 197-203 (1996)
- 22. Ibn Dehaish, BA, Khamsi, MA, Khan, AR: Mann iteration process for asymptotic pointwise nonexpansive mappings in metric spaces. J. Math. Anal. Appl. 397, 861-868 (2013)
- 23. Fukhar-ud-din, H, Khan, AR, Akhtar, Z: Fixed point results for a generalized nonexpansive map in uniformly convex metric spaces. Nonlinear Anal. **75**, 4747-4760 (2012)
- 24. Bruhat, F, Tits, J: Groupes réductifs sur un corps local. I. Données radicielles valuées. Publ. Math. IHES 41, 5-251 (1972)
- 25. Khamsi, MA, Khan, AR: Inequalities in metric spaces with applications. Nonlinear Anal. 74, 4036-4045 (2011)
- Kuczumow, T: An almost convergence and its applications. Ann. Univ. Mariae Curie-Skłodowska, Sect. A 32, 79-88 (1978)
- 27. Lim, TC: Remarks on some fixed point theorems. Proc. Am. Math. Soc. 60, 179-182 (1976)
- 28. Fukhar-ud-din, H: Existence and approximation of fixed points in convex metric spaces. Carpath. J. Math. (to appear)
- 29. Shimizu, T: A convergence theorem to common fixed points of families of nonexpansive mappings in convex metric spaces. In: Proceedings of the International Conference on Nonlinear and Convex Analysis, pp. 575-585 (2005)
- 30. Göhde, D. Zum Prinzip der kontraktiven Abbildung. Math. Nachr. 30, 251-258 (1965)

#### 10.1186/1687-1812-2014-113

Cite this article as: Fukhar-ud-din and Khamsi: Approximating common fixed points in hyperbolic spaces. Fixed Point Theory and Applications 2014, 2014:113

## Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ▶ Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com