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Abstract

We report on the theoretical studies of a recently discovered strong radiation-induced magnetoresistance spike
obtained in ultraclean two-dimensional electron systems at low temperatures. The most striking feature of this spike is
that it shows up on the second harmonic of the cyclotron resonance. We apply the radiation-driven electron orbits
model in the ultraclean scenario. Accordingly, we calculate the new average advanced distance by the electron in a
scattering event which will define the unexpected resonance spike position. Calculated results are in good agreement
with experiments.
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Background
Transport excited by radiation in a two-dimensional elec-
tron system (2DES) has been always [1-3] a central topic
in basic and especially in applied research. In the last
decade, it was discovered that when a high mobility 2DES
in a low and perpendicular magnetic field (B) is irradi-
ated, mainly withmicrowaves (MW), some striking effects
are revealed: radiation-induced magnetoresistance (Rxx)
oscillations and zero resistance states (ZRS) [4,5]. Dif-
ferent theories and experiments have been proposed to
explain these effects [6-18], but the physical origin is still
being questioned. An interesting and challenging exper-
imental results, recently obtained [19] and as intriguing
as ZRS, consists in a strong resistance spike which shows
up far off-resonance. It occurs at twice the cyclotron fre-
quency, w ≈ 2wc [19], where w is the radiation frequency,
and wc is the cyclotron frequency.
Remarkably, the only different feature in these experi-

ments [19] is the use of ultraclean samples with mobility
μ ∼ 3×107 cm2 V s−1 and lower temperatures T ∼ 0.4 K.
Yet, for the previous ‘standard’ experiments and samples
[4,5], mobility is lower (μ < 107 cm2 V s−1) and T higher
(T ≥ 1.0 K).
In this letter, we theoretically study this radiation-

induced Rxx spike, applying the theory developed by
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the authors, the radiation-driven electron orbits model
[6-10,20-25]. According to the theory, when a Hall bar
is illuminated, the electron orbit centers perform a clas-
sical trajectory consisting in a classical forced harmonic
motion along the direction of the current at the radiation
frequency, w. This motion is damped by the interaction
of electrons with the lattice ions and with the consequent
emission of acoustic phonons.
We extend this model to an ultraclean sample, where the

Landau levels (LL), which in principle are broadened by
scattering, become very narrow. This implies an increas-
ing number of states at the center of the LL sharing a
similar energy. In between LL, the opposite happens: the
density of states dramatically decreases. This will eventu-
ally affect the measured stationary current and Rxx.
We obtain that in the ultraclean scenario, the measured

current on average is the same as the one obtained in a
sample with full contribution to Rxx but delayed as if it
were irradiated with a half MW frequency (w/2). Accord-
ingly, the cyclotron resonance is apparently shifted to a
new B-position around w ≈ 2wc.

Methods
The radiation-driven electron orbits model was devel-
oped to explain the Rxx response of an irradiated 2DEG at
low magnetic field [6-10,20-25]. The corresponding time-
dependent Schrödinger equation can be exactly solved.
Thus, we first obtain an exact expression of the electronic
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wave vector for a 2DES in a perpendicular B, a DC electric
field, and radiation:

�N (x, t) ∝ φn(x − X − xcl(t), t),

where φn is the solution for the Schrödinger equation
of the unforced quantum harmonic oscillator. xcl(t) is
the classical solution of a forced and damped harmonic
oscillator:

xcl = eEo
m∗√(w2

c − w2)2 + γ 4
coswt = A coswt,

where E0 is the MW electric field, and γ is a damping
factor for the electronic interaction with the lattice ions.
Then, the obtained wave function is the same as the

standard harmonic oscillator, where the center is dis-
placed by xcl(t). Next, we apply time-dependent first-
order perturbation theory to calculate the elastic charged
impurity scattering rate between the two oscillating Lan-
dau states, the initial �n, and the final state �m [6-10,20-
24]:Wn,m = 1/τ , with τ being the elastic charged impurity
scattering time.
We find that the average effective distance advanced by

the electron in every scattering jump [6-10,20-24],
�XMW = �X0 +A coswτ , where �X0, is the advanced

distance in the dark [26]. Finally, the longitudinal conduc-
tivity σxx is given by,

σxx ∝
∫

dE
�XMW

τ
=

∫
dE

�X0 + A coswτ

τ
, (1)

with E being the energy [26], and �XMW

τ
the average elec-

tron drift velocity. To obtain Rxx, we use the usual tensor
relationships Rxx = σxx

σ 2
xx+σ 2

xy
� σxx

σ 2
xy
.

Importantly, resistance is directly proportional to con-
ductivity: Rxx ∝ σxx. Thus, finally, the dependence of the
magnetoresistance with radiation is given by:

Rxx ∝ A coswτ .

Results and discussion
For ultraclean samples, � is very small; for experimental
magnetic fields [19], � < �wc. This condition will dramat-
ically affect the average advanced distance by electron in
every scattering process. In contrast with standard sam-
ples where electrons always find available empty states
where to be scattered, in ultraclean samples, we can clearly
find two different scenarios that are described in Figure 1.
In the four panels of energy versus distance, the grey

stripes are LL tilted by the action of the DC electric field
in the x direction. Here, LL are narrow (� < �wc) and
hardly overlap each other, leaving regions with a low den-
sity of states in between (white stripes). Therefore, we can
observe regularly alternating grey (many states) and white
(few states) stripes equally spread out. The first scenario

corresponds (see Figure 1b) to an electron being scattered
to the central part of a LL. As a result, the scattering can
be completed with empty states to be occupied; we obtain
full contribution to the conductivity and Rxx. In Figure 1c,
we describe the second scenario where the electron scat-
ters to a region in between LL with a very low density of
states. Obviously, in this case, there is no much contribu-
tion to the average or stationary current. In Figure 1d, the
scattering is not efficient because the final Landau state is
occupied. Both regimes, ‘in-between LL’ and ‘center of LL’,
are distributed equally and alternately along one cycle of
the MW-driven electron orbit motion; then, only in one-
half of the cycle, we would obtain a net contribution to the
current or Rxx.
This situation is physically equivalent to having a half

amplitude harmonic motion of frequency w. On the other
hand, it is well known that for a simple harmonic motion,
it is fulfilled that averaging in one cycle,

∣∣A
2 coswt

∣∣ =∣∣A cos w
2 t

∣∣. Adapting this condition to our specific case,
our MW-driven (forced) harmonic motion can be per-
ceived on average as a forced harmonic motion of whole
amplitude (full scattering contribution during the whole
cycle) and half frequency:

∣∣∣∣A2 coswτ

∣∣∣∣ �
∣∣∣A2 cos

w
2

τ

∣∣∣ ,
being, A2 = eEo

m∗√(w2
c−( w2 )2)2+γ 4 and A = eEo

m∗√(w2
c−w2)2+γ 4 .

The last equation is only fulfilled when A � A2, which
is a good approximation according to the experimental
parameters [19], (T = 0.4 K,B ≤ 0.4 T,w = 101 GHz
and MW power P ∼ 0.4 − 1 mW). With these parame-
ters, we obtain that the amplitudes A and A2 are similar
and of the order of 10−6 to 107 m. The consequence is that
the ultraclean harmonicmotion (electron orbit center dis-
placement) behaves as if the electrons were driven by the
radiation of half frequency. Therefore, applying next the
theory [6-10] for the ultraclean scenario, it is straightfor-
ward to reach an expression for magnetoresistance:

Rxx ∝ eEo
m∗

√
(w2

c − (w2 )2)2 + γ 4
cos

w
2

τ .

According to it, now the resonance in Rxx will take place
at w ≈ 2wc, as experimentally obtained [19]. The intensity
of the Rxx spike will depend on the relative value of the
frequency term, (w2

c − (w2 )2), and the damping parameter
γ in the denominator of the latter Rxx expression. When
γ leads the denominator, the spike is smeared out. Yet, in
situations where γ is smaller than the frequency term, the
resonance effect will be more visible, and the spike will
show up.
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Figure 1 Schematic diagrams of electronic transport for a ultraclean sample (narrow Landau levels and weak overlapping). (a) In the lower
part, no MW field is present. (b) The orbits move backwards during the jump, and the scattering ends around the central part of a LL (grey stripes);
then, we have full contribution to the current. (c) The scattering jump ends in between LL (white stripes), giving rise to a negligible contribution to
the current because the low density of final Landau states. (d) We depict a ZRS situation. Dotted line represents the Fermi level before the scattering
jump; white and black circles represent empty and occupied orbits after the jump, respectively.

The damping parameter γ is given, after some lengthy
algebra, by [27]:

γ = 1
τac

∝ T × 2eB
h

∞∑
m=0

1
π

[
�

(En − �wac − Em)2 + �2

]

∝ T ×
(
1 − e

−π�
�wc

1 + e
−π�
�wc

)
,

where wac is the frequency of the acoustic phonons for the
experimental parameters [19].
For ultraclean samples � is small [19], and according to

the last expression, this makes also the term inside the
brackets and γ smaller [28-30]. In other words, it makes
the damping by acoustic phonon emission and the release
of the absorbed energy to the lattice increasingly difficult.
Therefore, we have a bottleneck effect for the emission of
acoustic phonons. Now, it is possible to reach a situation
where (w2

c − (w2 )2)2 � γ 4, making a resonance effect vis-
ible and, therefore, giving rise to a strong resonance peak
at w ≈ 2wc.

Figure 2 Calculated irradiated magnetoresistance versus static
magnetic field for a radiation frequency of f = 101 GHz. The dark
curve is also presented. For a temperature of 0.4 K, we observe an
intense spike at w ≈ 2wc.
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In Figure 2, we present a calculated irradiated Rxx vs.
static magnetic field for a radiation frequency of f = 101
GHz. The curve or a dark situation is also presented. For
a temperature T = 0.4 K, we obtain a strong spike at w ≈
2wc as in the experiments by [19].
Finally, we obtain the usual radiation-induced Rxx oscil-

lations and ZRS as in standard samples.

Conclusions
In this letter, we have presented a theoretical approach to
the striking result of the magnetoresistance spike in the
second harmonic of the cyclotron frequency. According
to our model, the strong change in the density of Lan-
dau states in ultraclean samples affects dramatically the
electron impurity scattering and eventually the conductiv-
ity. The final result is that the scattered electrons perceive
radiation as of half frequency. The calculated results are in
good agreement with experiments.
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7. Iñarrea J, Platero G: From zero resistance states to absolute negative
conductivity in microwave irradiated two-dimensional electron
systems. Appl Phys Lett 2006, 89:052109.
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