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Abstract
Transient (TNDM) and Permanent (PNDM) Neonatal Diabetes Mellitus are rare conditions
occurring in 1:300,000–400,000 live births. TNDM infants develop diabetes in the first few weeks
of life but go into remission in a few months, with possible relapse to a permanent diabetes state
usually around adolescence or as adults. The pancreatic dysfunction in this condition may be
maintained throughout life, with relapse initiated at times of metabolic stress such as puberty or
pregnancy. In PNDM, insulin secretory failure occurs in the late fetal or early post-natal period and
does not go into remission. Patients with TNDM are more likely to have intrauterine growth
retardation and less likely to develop ketoacidosis than patients with PNDM. In TNDM, patients
are younger at the diagnosis of diabetes and have lower initial insulin requirements. Considerable
overlap occurs between the two groups, so that TNDM cannot be distinguished from PNDM based
on clinical features. Very early onset diabetes mellitus seems to be unrelated to autoimmunity in
most instances. A number of conditions are associated with PNDM, some of which have been
elucidated at the molecular level. Among these, the very recently elucidated mutations in the
KCNJ11 and ABCC8 genes, encoding the Kir6.2 and SUR1 subunit of the pancreatic KATP channel
involved in regulation of insulin secretion, account for one third to half of the PNDM cases.
Molecular analysis of chromosome 6 anomalies (found in more than 60% in TNDM), and the
KCNJ11 and ABCC8 genes encoding Kir6.2 and SUR1, provides a tool to identify TNDM from
PNDM in the neonatal period. This analysis also has potentially important therapeutic
consequences leading to transfer some patients, those with mutations in KCNJ11 and ABCC8 genes,
from insulin therapy to sulfonylureas. Recurrent diabetes is common in patients with "transient"
neonatal diabetes mellitus and, consequently, prolonged follow-up is imperative. Realizing how
difficult it is to take care of a child of this age with diabetes mellitus should prompt clinicians to
transfer these children to specialized centers. Insulin therapy and high caloric intake are the basis
of the treatment. Insulin pump may offer an interesting therapeutic tool in this age group in
experienced hands.

Definition, forms and epidemiology
Neonatal diabetes mellitus (NDM) is a rare (1:300,000–
400,000 newborns) but potentially devastating metabolic

disorder characterized by hyperglycemia combined with
low levels of insulin. Two main groups have been recog-
nized on clinical grounds, transient NDM (TNDM) and
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permanent NDM (PNDM), which differ in the duration of
insulin dependence early in the disease. TNDM is a devel-
opmental disorder of insulin production that resolves
postnatally and represents 50% to 60% of cases of neona-
tal diabetes. There are no clinical features that can predict
whether a neonate with diabetes (but no other dysmor-
phic features) will eventually have permanent or transient
disease. Recently, advances have been made in the under-
standing of the molecular mechanisms of pancreatic
development that are relevant to PNDM and TNDM
(Table 1). This review focuses on the clinical features and
the molecular causes of these varied conditions. It also
underlines how the molecular understanding of some
forms of neonatal diabetes led to transfer patients from
insulin injections to oral sulfonylureas, providing a spec-
tacular example of a pharmacogenomic approach.

I. Clinical description
Neonatal diabetes mellitus presents as hyperglycemia,
failure to thrive and, in some cases, dehydration and
ketoacidosis, which may be severe with coma in a child
within the first months of life. Insulin production is inad-
equate with a low blood level in comparison with the
hyperglycemia, and therefore exogenous insulin therapy
is required.

A. Clinical description of TNDM
TNDM is a developmental disorder of insulin production
that resolves postnatally. TNDM represents 50% to 60%
of cases of neonatal diabetes [1,2]. Intrauterine growth
retardation (IUGR) is usually present. The high rate of
IUGR is in keeping with the crucial role of insulin in fetal
growth, especially during the last trimester of pregnancy.
Hyperglycemia, failure to thrive and, in some cases, dehy-
dration occur after birth. Insulin production is inade-
quate, requiring exogenous insulin therapy. Tests are
negative for anti-islet antibodies and for HLA class II hap-
lotypes conferring susceptibility to type 1 diabetes [2]. A
defect in cell maturation has been suggested [3]. Interest-
ingly, exocrine pancreatic insufficiency is present in only
a few patients [4]. However, the cellular basis of TNDM
remains unknown. Most patients recover within a year,

but a few have persistent glucose intolerance and/or recur-
rence of diabetes in late childhood or adulthood.
Although these recurrences are usually consistent with
non-autoimmune type 1 diabetes, whether they are
ascribable to insulin deficiency and/or insulin resistance
remains unclear [1,2,5]. Indeed, a permanent hyperglyc-
emia requiring insulin therapy developed in five of the
seven TNDM patients who were older than 8 years of age
in a French cohort [6]. Similarly, in another large cohort
of TNDM patients, diabetes mellitus recurred in 11 out of
18 patients older than 4 years of age [7]. Thus, the "tran-
sient" form of the disease is probably a permanent β-cell
defect with variable expression during growth and devel-
opment. A major factor in the onset of recurrent diabetes
is probably puberty, which is associated with significant
insulin resistance.

We examined derived indices of pancreatic β-cell func-
tion, peripheral insulin sensitivity and the pancreatic
response to intravenous glucose loading in children with
a previous history of transient neonatal diabetes currently
in remission repeated after a period of two years [8]. One
child had a sub-normal insulin secretory response to
intravenous glucose that remained abnormal two years
later. The other children had relatively normal or entirely
normal responses over two years. Measures of β-cell func-
tion and insulin sensitivity in the fasting state showed
comparable results to those obtained from normal con-
trols [8]. We concluded that the majority of children with
TNDM in remission have no evidence of β-cell dysfunc-
tion or insulin resistance in the fasting state. Measures of
insulin response to intravenous glucose loading are often
normal but suggestive of future recurrence if profoundly
abnormal [8].

Table 2 compares several clinical features of TNDM and
PNDM in the French cohort (n = 50) [9].

B. Clinical description of PNDM
Permanent neonatal diabetes mellitus is less common
than the transient form of the condition. By definition,
diabetes develops in the neonatal period and does not go

Table 1: Etiologies of neonatal diabetes

Transient neonatal diabetes mellitus Permanent neonatal diabetes mellitus

• Chromosome 6 anomalies detected • Heterozygous activating mutation in KCNJ11 gene and in ABCC8 gene (Kir6.2 and SUR1 
subunits of the pancreatic KATP channel)

- paternal duplications
- paternal isodisomy
- Methylation defect

• ABCC8 (SUR1) and rarely KCNJ11 (Kir6.2) mutations • IPEX syndrome: diffuse autoimmunity
• Mitochondrial disease
• Severe pancreatic hypoplasia associated with IPF1 (PDX1) mutation
• Homozygous glucokinase mutation: insensitivity to glucose
• Associated with epiphyseal dysplasia: Wolcott Rallison syndrome
• Possibly associated with enterovirus infection
• Association with cerebellar hypoplasia and PTF1A mutation
• Association with hypothyroidism, glaucoma and GLIS3 mutation
Page 2 of 11
(page number not for citation purposes)



Orphanet Journal of Rare Diseases 2007, 2:12 http://www.OJRD.com/content/2/1/12
into remission. There are no clinical features that can pre-
dict whether a neonate with diabetes but no other dys-
morphic features will eventually have permanent or
transient disease, although cases with the permanent form
do not always have IUGR as is universally seen in the tran-
sient 6q phenotype (see below) (Table 2) [6,7]. Diabetes
in infancy is nearly always unrelated to classical type 1
diabetes [10]. In an Italian study conducted in all infants
developing diabetes before the age of one year, a clear dif-
ference was demonstrated between those infants develop-
ing diabetes before the age of 180 days and those after.
The children developing diabetes early had a very high
presence of "protective" HLA alleles against classical type
1 diabetes (76% with 0 or 1 susceptibility heterodimers),
compared to only 12% in the late (>180 days) onset
group [11]. In addition, autoimmune markers were far
less prevalent in the early onset group of children com-
pared to children with late onset diabetes (15% vs 65% if
onset after 180 days).

II. Mechanisms
A. Molecular mechanisms of TNDM
TNDM is usually sporadic, but paternal transmission has
been documented in about one-third of reported patients,
some of whom had non-diabetic fathers [1,12]. Paternal
isodisomy of chromosome 6 has been demonstrated in
several unrelated patients with TNDM (Figure 1). Other
patients had partial duplications of the long arm of the
paternal chromosome 6 [13,14]. When these unbalanced
duplications are inherited within families. TNDM arises
only if the duplication is inherited from the father, sug-
gesting a disorder of imprinting. More recently, a region in
which methylation differs between the maternal and the
paternal chromosome 6 has been identified [14]. Abnor-
mal methylation patterns have been documented in some
TNDM patients without other chromosome 6 abnormali-
ties (Table 1) (Figures 2, 3, 4) [15]. These observations
strongly suggest that TNDM may result from over-expres-
sion of an imprinted gene located on chromosome 6q24
and displaying paternal expression. Two paternally
expressed genes are located in the region and, therefore,

have been considered candidate genes for the disease: one
is the gene encoding transcription factor ZAC (LOT1,
PLAGL-1) that regulates cell cycle arrest and apoptosis and
also the Pituitary Adenylate Cyclase Activating Polypep-
tide Receptor 1 (PACAP1) being a potent insulin secreta-
gogue, and the other is the HYMAI gene, whose function
is unknown [16]. No other loci have been implicated in
TNDM to date. Recently, an animal model of TNDM has
been generated by the insertion of the human TNDM
locus into a mouse. Mice over-expressing the TNDM locus
display many, but not all, of the features of human TNDM
[17]. Paternal transmission leads to neonatal hyperglyc-
emia and an increased tendency for diabetes in later life.
Interestingly, over-expression of the TNDM locus reduces
the expression of the key transcription factor PDX-1 in the
embryonic pancreas of these mice [17]. Nevertheless, the
precise link between those genetic anomalies and the
insulin secreting cell impaired function remained to be
established.

Schematic representation of paternal uniparental disomy of chromosome 6Figure 1
Schematic representation of paternal uniparental disomy of 
chromosome 6. In cases of paternal UPD 6, two alleles are 
inherited from the father.

Table 2: Comparison of several features in PNDM and TNDM cases in the French cohort (n = 50) (adapted from [9]).

PNDM n = 21 TNDM n = 29 P value

Gestational age (weeks) 39.2 ± 1.6 38.2 ± 2.2 P = 0.15
Birth weight (g) 2497 ± 690 1987 ± 510 P < 0.006
Birth length (cm) 47.5 ± 2.4 44.3 ± 3.4 P < 0.006
Head circumference (cm) 33 ± 1.9 31.5 ± 1.8 P < 0.02
Intrauterine growth retardation n = 7/19 36% n = 20/27 74% P < 0.03
Median age at diagnosis (days) (range)* 27 (1–127) 6 (1–81) P < 0.01
Initial insulin dose (unit/kg/day) 1.4 ± 1.2 0.6 ± 0.25 P < 0.006

* Given the non-Gaussian distribution of age in the study population, the nonparametric Mann-Whitney U-test was used to compare age in the two 
groups.
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B. Molecular mechanisms of PNDM
B1. The insulin cell potassium channel (Kir6.2/SUR1) (Figures 5 and 
6)
Mutations in KCNJ11 encoding the Kir6.2 subunit of the
pancreatic ATP-sensitive potassium channels (KATP) cou-
ple cell metabolism to electrical activity by regulating
potassium movement across the membrane. These chan-
nels are made up of an octameric complex with two kind
of subunits: four regulatory sulfonylurea receptors (SUR)
embracing four pore forming inwardly rectifying potas-
sium channels (Kir). A 1:1 SUR1:KIR6.2 stochiometry is
both necessary and sufficient for assembly of active KATP
channels. SUR, a member of the ABC transporter family,
originates from two separate genes and therefore occurs in
several spliced isoforms. SUR1 is found in the pancreatic
β-cells and neurons, whereas SUR2A is in heart cells and
SUR2B in smooth muscle. The Kir6.2 subunit forms the
channel pore in the majority of tissues such as pancreatic
β-cells, brain, heart and skeletal muscles, while Kir6.1 can
be found in smooth vascular muscle and astrocytes. These
different channel forms have different pore properties and
adenine nucleotide sensitivity.

Recently, Gloyn et al. reported in an ethnically diverse
patient cohort that six heterozygous activating mutations
in the KCNJ11 gene encoding the Kir6.2 subunit of the
pancreatic β-cell potassium ATP (KATP) channel caused
PNDM in ten probands [18]. Some of these mutations are
also associated with developmental delay, muscle weak-

ness and epilepsy [18]. We screened the KCNJ11 gene for
mutations in patients with PNDM recruited through the
French network for the study of neonatal diabetes. Seven-
teen at-term babies with a median age of 64 days at diag-
nosis of diabetes (range 1–260) were included [19]. We
identified seven heterozygous non-synonymous muta-
tions in nine patients: three (V59M, R201C, R201H) were
already described by Gloyn et al.; the four novel mutations
resulted in amino acid changes of Kir6.2 at positions
F35L, G53N, E322K, Y330C. More patients with a Kir6.2
mutation (6/9) were reported to have a smaller birth
weight than those without the mutation (2/8), confirm-
ing the findings of Gloyn et al. [18,19]. These mutations
lead to a permanent opening of the potassium channel,
therefore preventing any activation of the voltage-depend-
ent calcium channel and any glucose-induced insulin
secretion (Figures 5 and 6). Although Kir6.2 mutation car-
riers do not represent a phenotypically specific form of
PNDM, an impaired function of Kir6.2 is associated with
in utero insulin secretory insufficiency and growth retarda-
tion. In conclusion, Kir6.2 mutations are a common
cause, from one third to a half of PNDM in Caucasians.
This work has opened new avenues for the work-up and
treatment of those patients (see below) [20].

Mutations in ABCC8 encoding the SUR1 subunit of the pancreatic 
KATP channel
As explained above, the ATP-gated potassium (KATP) chan-
nel (composed of SUR1 and KIR6.2 proteins) is a key reg-

Dup(6)(q24): Inheritance of 2 paternal alleles (F1+F2)Figure 2
Dup(6)(q24): Inheritance of 2 paternal alleles (F1+F2). M (mother), F (father).
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ulator of insulin release. It is inhibited by the binding of
adenine nucleotides to KIR6.2 leading to closing of the
channel, and activated by nucleotide binding and/or
hydrolysis on SUR1 leading to opening of the channel.
The balance of these opposing actions determines the low
open channel probability, P0, which controls the excita-
bility of pancreatic β-cells. We hypothesized that activat-
ing mutations in ABCC8 which encodes SUR1 cause
neonatal diabetes. We therefore screened the 39 exons of
ABCC8 in 34 patients diagnosed with permanent or tran-
sient neonatal diabetes (ND) of unknown origin in a case
series of 73 ND patients [21]. We assayed the electrophys-
iological activity of mutant and wild-type KATP channels.
We identified seven missense mutations in nine patients.
Four mutations were familial and showed vertical trans-
mission with neonatal and adult onset diabetes; the
remaining mutations were de novo and not found in more
than 300 non-diabetic or early onset diabetic subjects of
similar genetic background. Mutant channels in intact
cells and in physiologic concentrations of MgATP had a
markedly higher P0 compared with wild type channels.
These over-active channels retained sulfonylurea sensitiv-
ity and treatment with sulfonylureas achieved euglycemia.
Dominant mutations in ABCC8 account for 12% (9/73)
of our ND cases. Diabetes results from a novel mechanism

whereby the basal Mg-nucleotide-dependent stimulatory
action of SUR1 on the KIR pore is elevated and block by
sulfonylureas is preserved [21] (Figures 5 and 6).

B2. "Transient" and permanent neonatal diabetes: a common 
molecular mechanism?
The clinical difference between a transient and a perma-
nent form of neonatal diabetes is not always accounted
for by a different molecular mechanism. The methylation
anomalies (chromosome 6q anomalies) have not so far
been found to be associated with permanent neonatal dia-
betes. On the contrary, mutations in the SUR1 and Kir6.2
subunit have been found in association with transient and
permanent neonatal diabetes. Of note is that mutations in
Kir6.2 have been found mostly in association with very
early forms of diabetes, usually before 6 months of age,
whereas the phenotypic variability of SUR1 mutations is
broader [21,22]. Indeed, mutations in SUR1 can be linked
to ketoacidosis in a newborn, as well as to bona fide type 2
diabetes in a young adult [21].

III. Syndromes associated with PNDM
A number of discrete clinical syndromes have been iden-
tified as associated with PNDM.

Dup(6)(q24): Increase dosage of one paternal allele (F1)Figure 3
Dup(6)(q24): Increase dosage of one paternal allele (F1). M (mother), F (father), h (peak height).
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A. Pancreas agenesis and the Insulin Promoter Factor-1 
(IPF1) gene
The first patient described was a child with pancreatic
agenesis and marked endocrine and exocrine failure. Insu-
lin Promoter Factor-1 appeared to be a good candidate for
pancreatic agenesis, given its role as a master control of
exocrine and endocrine pancreatic development identi-
fied from studies of gene disruption [23], and later, as a
regulator of insulin and somatostatin gene expression
[24]. The child was homozygous for a single nucleotide
deletion within codon 63 of IPF-1 (Pro63fsdelC) [25].

Furthermore, eight individuals from six generations with
early onset diabetes akin to type 2 diabetes have been
identified within the extended family. These were identi-
fied as heterozygotes for the same mutation, with the
mutant truncated isoform of IPF-1 acting as a dominant
negative inhibitor of wild type IPF-1 activity [26]. The ill-
ness resulting from heterozygosity was reassigned as
Maturity Onset Diabetes of the Young (MODY) 4. Addi-
tional studies have also identified that less severe IPF-1
mutations can cause autosomal dominant late onset
forms of type 2 diabetes that account for around 6% of a
French cohort of multiplex type 2 diabetic families.

B. Anomalies at the homozygous state in the Glucokinase 
gene
MODY 2 is caused by mutations in the glucokinase gene
and usually leads to mild hyperglycemia in affected indi-
viduals [27]. Glucokinase is a key regulator of glucose

PCR after digestion of the DNA with a methylation sensitive enzymeFigure 4
PCR after digestion of the DNA with a methylation sensitive 
enzyme. In the case of a methylation defect, one loses the 
amplicon normally present and due to the maternal methyl-
ated allele.

Heterozygous activating mutations in the KCNJ11 and ABCC8 genes encoding the Kir6.2 and SUR1 subunit of the pancre-atic beta-cell potassium ATP (KATP) channel cause PNDMFigure 6
Heterozygous activating mutations in the KCNJ11 and ABCC8 
genes encoding the Kir6.2 and SUR1 subunit of the pancre-
atic beta-cell potassium ATP (KATP) channel cause PNDM. 
This mutations led to an increase probability of opening of 
the potassium channel therefore preventing any activation of 
the voltage dependent calcium channel and any glucose 
induced insulin secretion.

Insulin secretion in relation to the potassium channel encoded for by KCNJ11 and ABCC8 in a normal subjectFigure 5
Insulin secretion in relation to the potassium channel 
encoded for by KCNJ11 and ABCC8 in a normal subject.
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metabolism in islet cells, controlling the levels of insulin
secretion. However, within two families (one Norwegian
and one Italian) with multiple forms of diabetes in their
pedigree, two infants with classical PNDM (presenting on
day one) have been identified. They were homozygous for
missense mutations within the glucokinase gene; this ren-
dered them completely deficient in glycolytic activity,
whilst their apparently consanguineous and mild to mod-
erately glucose intolerant parents were heterozygous for
the same mutations [28]. A search for further permanent
neonatal diabetes cases caused by homozygosity in glu-
cokinase mutations both in British and French cohorts
(total number 18) has yielded none suggesting that this is
unlikely to be a major cause of PNDM [29,30]. However,
we would recommend that if there is a history of gesta-
tional diabetes, testing for fasting glucose levels in both
parents is needed. If both parents have mild glucose intol-
erance, a screen for glucokinase mutations is then war-
ranted.

C. IPEX syndrome and FOXP3 gene
A number of authors have reported an X-linked syndrome
with a combination of exfoliative dermatitis, intractable
diarrhea with villous atrophy, hemolytic anemia, autoim-
mune thyroid disease and neonatal onset diabetes. Most
children die in the first year of life with overwhelming sep-
sis [31]. In some of these cases, agenesis of the islets of
Langerhans has been described [32]. The idea of an
autoimmune basis to this disease was strengthened by the
apparent success of cyclosporin A therapy in improving
the condition of one or two cases [33]. Identification of
Glutamic Acid Decarboxylase (GAD) antibodies in a
patient with this condition prior to bone marrow trans-
plantation suggests that this may be a form of neonatal
diabetes with an autoimmune origin. Bone marrow trans-
plantation conditioning (anti-T lymphocyte globulin,
busulfan and cyclophosphamide) led to disappearance of
the diabetes a week before transplantation. Subsequently,
the diarrhea resolved, as did the dermatitis. The patient
remained in remission for two years prior to the develop-
ment of a hemophagocytic syndrome that proved fatal
[34]. The mutation in this condition lies in the FOXP3
gene that encodes a forkhead domain-containing protein
[35]. The scurfy mouse with a frame-shift mutation in
Foxp3 is characterized by over-proliferation of CD4+/
CD8-T lymphocytes with multi-organ infiltration. The
males die 15–25 days after birth [9]. It has now been dem-
onstrated that the protein product 'scurfin' is essential for
normal immune homeostasis.

D. Wolcott-Rallison and EIF2AK3 gene
Wolcott-Rallison syndrome is an autosomal recessive dis-
order characterized by infancy onset (often within the
neonatal period) diabetes associated with a spondyloepi-
physeal dysplasia. In addition, there is a constellation of

other features such as hepatomegaly, mental retardation,
renal failure and early death [36]. In 2000, Delepine et al.
used two consanguineous families to map the condition
to the locus 2p12 [37]. Within this locus lays the gene
EIF2AK3 that is highly expressed in islet cells and acts as a
regulator of protein synthesis. Proteins and insulin are
manufactured in the endoplasmic reticulum (ER). In
response to environmental stresses, cells down regulate
protein synthesis by phosphorylation of the alpha subunit
of eukaryotic translation initiation factor-2 (eif2-alpha)
by eukaryotic translation initiation factor-2 kinase3
(EIF2AK3). Mal-folded proteins in the ER inhibit further
translation initiation mediated by increased phosphoryla-
tion of eif2-alpha. A targeted mutation of the mouse
Eif2ak3 gene (PERK) led to an accumulation of mal-
folded proteins in the ER, with resultant abnormally ele-
vated protein synthesis and increased stress on ER folding
machinery [38]. PERK is highly expressed in mouse pan-
creas. The PERK knock-out mouse demonstrates normal
pancreatic endocrine and exocrine development. How-
ever, postnatally the mice develop ER distension, accom-
panied by increased cell death and progressive diabetes
mellitus and pancreatic exocrine failure [39]. Further anal-
ysis within the consanguineous Wolcott-Rallison families
confirmed frameshift or amino-acid substitution muta-
tions occurring in EIF2AK3 segregating with the disorder
in each family [37].

E. Other syndromes with PNDM
In 1992, Christen et al. described two boys with X-linked
phosphoribosyl-ATP pyrophosphatase hyperactivity who
became diabetic on day one of life. Glucose intolerance
persisted throughout life, although there were periods off
insulin, as the children grew older. Both boys had other
major problems including mental retardation, ataxia and
progressive axonal neuropathy. The mother also had
hyperuricemia (gout) and glucose intolerance with a his-
tory of gestational diabetes [40].

In 1994, Yorifuji et al. described a condition of neonatal
diabetes associated with severe hypoplasia of the pancreas
(only head and uncus present) and congenital cyanotic
heart disease in a single family with apparent autosomal
dominant inheritance. Not all the cases developed diabe-
tes as a neonate, the timing is probably related to the size
of remaining pancreatic tissue [41].

Recently, another severe syndrome was described in
which three members of a consanguineous family devel-
oped neonatal diabetes and cerebellar hypoplasia. An
autosomal recessive inheritance pattern was suggested.
The infants all died within a few months of birth from a
combination of metabolic dysfunction, respiratory com-
promise and sepsis [42]. Interestingly, there are a number
of specific transcriptional activators which regulate gene
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expression present in both β-cells and neuronal tissues:
dysfunction of any of these might explain the two compo-
nents of this syndrome [43]. Indeed, this syndrome was
found to be linked to mutations in the PTF1A transcrip-
tion factor, a major gene involved in pancreatic develop-
ment and also expressed in the cerebellum [44]. These
patients have pancreatic hypoplasia associated with
microcephaly linked to cerebellar hypoplasia [44].

Very recently, mutations in Glis3 (another transcription
factor) were found to explain a syndrome which associ-
ated neonatal diabetes, hypothyroidism, congenital glau-
coma, kidney cysts and hepatic fibrosis [45].

A single case report has suggested that maternal enterovi-
rus (echovirus 6) infection in pregnancy (end of first tri-
mester) can lead to autoimmune, neonatal onset diabetes
with the presence of anti-insulin and glutamic acid decar-
boxylase antibodies at birth or very soon after birth. In
this female child (ruling out IPEX), the pancreas was very
hypoplastic and the authors suggested a role for mater-
nally transmitted enterovirus either by direct influence on
pancreatic organogenesis or through aggressive β-cells tar-
geted autoimmune attack [46].

It is worth mentioning that neonatal diabetes may also
exist in the context of a mitochondrial disorder [6]. It is
usually associated with other organ dysfunction, which
may be recognized after the diabetes mellitus diagnosis.

IV. Clinical and biological diagnosis
A. Diagnosis of the "transient" or permanent nature of the 
neonatal diabetes
The following conclusions can be drawn from current
knowledge on neonatal diabetes mellitus: 1) Patients with
TNDM are more likely to have intrauterine growth retar-
dation and less likely to develop ketoacidosis than
patients with PNDM; 2) TNDM patients are younger at the
age of diagnosis of diabetes and have lower initial insulin
requirements; 3) Considerable overlap occurs between
the two groups, so that TNDM cannot be distinguished
from PNDM based on clinical features; 4) Very early onset
diabetes mellitus seems to be unrelated to autoimmunity
in most instances; 5) Recurrent diabetes is common in
patients with "transient" neonatal diabetes mellitus and,
consequently, prolonged follow-up is imperative; 6)
Molecular analysis of chromosome 6 anomalies, the
KCNJ11 and ABCC8 genes (encoding Kir6.2 and SUR1
respectively) provide a tool for identifying transient from
permanent neonatal diabetes mellitus in the neonatal
period; 7) About 50% of the PNDM cases are linked to
potassium channel mutation which has potentially
important therapeutic consequences leading to transfer
some patients from insulin therapy to sulfonylureas.

B. Methods for the molecular diagnosis of the 6q2-4 
anomalies associated with "transient" neonatal diabetes
The uniparental disomy of the chromosome 6 can be evi-
denced by the analysis of polymorphic markers present
on the chromosome 6; meiotic segregation of the chro-
mosomes can be determined by comparing the allelic pro-
files of polymorphic markers in the child and his parents.
Usually, a total uniparental disomy of the chromosome 6
is evidenced, but partial one can also be found. This is
why markers close to the region of interest (6q24) should
be chosen. Chromosome 6 duplications can also be evi-
denced by that technique (Figures 2 and 3) [13]. The use
of Polymerase Chain Reaction (PCR) after digestion of the
DNA with a methylation sensitive enzyme permits detec-
tion of methylation defects (Figure 4) [15].

Whatever the technique, the presence of a chromosome
6q anomaly predicts a "transient" form of the disease. Its
absence, however, does not rule out this form of neonatal
diabetes mellitus.

V. Treatment
A. Therapeutic consequences in the case of potassium 
channel mutation
The KATP channels have a central role in cell response to
metabolic changes in many organs and especially in pan-
creatic insulin secreting cell. The advances in the compre-
hension of the physiological function of these channels,
and in particular of the Kir6.2 and SUR1 subunits, has
found a major clinical application for patients having per-
manent neonatal diabetes due to a KCNJ11 or a ABCC8
mutation. The transfer from insulin injections to oral glib-
enclamide therapy seems highly effective for most
patients and safe [21,47]. This illuminates how the molec-
ular understanding of some monogenic form of diabetes
may lead to an unexpected change of the treatment in
children. This is a spectacular example of how the phar-
macogenomic approach improves in a tremendous way
the quality of life of the young diabetic patients. In France
and some others countries, the transfer of the patients
from insulin to sulfonylureas should be made within the
legal rules of the country, most often in the context of clin-
ical trials approved by the Health Authorities, as the sulfo-
nylureas are not licensed (even contra-indicated in same
countries) to be used in children. These legal aspects of
the treatment should not be under estimated due to
potential deleterious side effects of the sulfonylureas.

B. Management of the treatment of this very early onset 
type of diabetes, in the neonatal period
Insulin therapy is crucial in NDM to obtain satisfactory
weight gain and growth in newborns with intra-uterine
growth retardation. In some cases, glucose and caloric
deprivation has been instituted in newborns in the face of
hyperglycemia to avoid insulin therapy. This leads to fur-
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ther difficulties in weight gain. In fact, high caloric intake
should be maintained in these newborns and insulin ther-
apy given. Although pediatricians face numerous difficul-
ties in managing insulin therapy in the newborn period,
very few data are available on the methods of insulin
delivery in neonatal diabetes. In infants with transient
neonatal diabetes mellitus, control of the blood glucose
concentration can be attained with ultralente insulin
treatment, without any episodes of hypoglycemia [48].
These authors recommended subcutaneous injection of
ultralente insulin, rather than lente or isophane (NPH)
insulin, to avoid hypoglycemia during the treatment of
transient neonatal diabetes mellitus. This has not been
our experience. Multiple injections of regular insulin are
sometimes difficult to manage. Short acting insulins, both
human and analogue, are best avoided except when using
intravenous soluble insulin infusions to initially stabilize
the infant. However in the UK, isophane insulin on a once
daily basis has afforded reasonable control. Potentially
the insulin analogue (insulin glargine) with its very
steady, flat pharmacokinetic profile might prove useful in
this condition, although there is currently no license for
children of this age.

In some centers in France, we have chosen the continuous
subcutaneous insulin infusion (CSII) in all the cases of
neonatal diabetes requiring subcutaneous insulin therapy
for more than 15 days. We report here our experience in
the five cases where initiation of the CSII was done in our
departments. Four of the cases were TNDM (follow-up 7
months to 10 years). The practical aspects of the treatment
were as follows. During the first days, the daily dose
requirement was evaluated with intravenous insulin and
glucose infusions. When good glycemic control was
obtained, CSII therapy was started. Insulin was diluted to
4 to 10 units per milliliter. Insulin strategy to start CSII
depended on the feeding conditions. Under enteral con-
tinuous feeding, 100% of the total daily dose was admin-
istered as basal rate. Under bottle feeding, the basal rate
represented 30% of the total daily dose and boluses 70%,
with the same insulin dose before each meal (number of
meals 8, then 7, then 6). Blood glucose was monitored
every 3 to 4 hours. Basal rate was adjusted on the night
blood glucose measurements and boluses on the post-
prandial ones. CSII therapy was started between day 7 and
55, one to 13 days after initiation of insulin therapy. Dur-
ing the first month of CSII therapy (dose at day 15 of CSII:
0.3 to 1 unit per kg/day), good glycemic control was
achieved on a mean number of 240 blood glucose meas-
urements (5 patients). Mean blood glucose was 1.73 g/l,
no severe hypoglycemia was noted, and the mean number
of hypoglycemia episodes (blood glucose <0.6 g/l) was
4.2 per month. Similar excellent results were achieved for
the rest of the CSII in both the TNDM and the PNDM
cases. We did not observe any cutaneous side effects. We

conclude that during the neonatal period, CSII therapy is
safe, more physiological, more accurate and easier to
manage than injections. CSII allows us to match the insu-
lin requirements of a newborn. CSII requires management
and supervision by a experienced team of physicians and
nurses.

Realizing how difficult it is to take care of a child of this
age with diabetes mellitus should prompt clinicians to
transfer these children to specialized centers. Insulin ther-
apy and high caloric intake are the basis of the treatment.
Insulin pump may offer an interesting therapeutic tool in
this age group in experienced hands.

VI. Genetic counseling
The risk of recurrence is different according to the "tran-
sient" or permanent form of the disease and to the differ-
ent molecular mechanisms identified.

Anomalies in the chromosome 6q region: a disease linked 
to imprinting
In the case of uniparental disomy, none of the allele of the
mother is found in the proband, the risk of recurrence
does not exist in theory and there is no transmission by
the child. Partial uniparental disomy have been described,
linked to a post-zygotic mechanism. The recurrence risk is
probably weak or close to zero, as the anomaly is post-
zygotic.

If partial duplication is present in the propositus, there is
a risk of disease recurrence in the family and parents have
to be tested. Carriers of the duplication have a 50% risk of
transmitting the defect. If it is a de novo mutation, there is
a priori no risk of recurrence, except if germinal mosaicism
exists (not described so far). Concerning the risk of trans-
mission, fathers will transmit both the genetic defect and
the disease. Half of the children will have the disease,
which will be present equally in boys and girls. If the
mother has the anomaly, her children will not have the
disease but the male offspring will eventually pass on the
disease.

Imprinting anomaly: the logic says that the mother
should pass it on (imprinting relaxation) but so far no
familial case is known and the risk of transmission is
unknown. Indeed, the cause of the imprinting relaxation
is not identified and the identified children with this
anomaly are too young to procreate.

Mendelien inheritance
Recurrence risk is 25% in the recessive autosomal disor-
ders (EIF2AK, Glis3, PTF1A, and PDX1 genes). IPEX syn-
drome is an X linked disorder.
Page 9 of 11
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The mutation in the genes encoding the potassium chan-
nel subunits are transmitted in the heterozygous state in a
dominant way. Moreover, transmission by germinal
mosaicism has here been described.

VII. Prognosis
In the neonatal period, the prognosis is linked to the
severity of the disease, the degree of dehydration and aci-
dosis, as well the rapidity with which the disease is recog-
nized and treated. In the following period, the prognosis
is determined by the associated malformations and
lesions. For example, in the case of potassium channel
anomalies, neuropsychological and neuromuscular dis-
turbances can be present. Finally, the prognosis rely on
the metabolic control, as in all the forms of diabetes mel-
litus, which will determine the timing of appearance of
the long standing diabetes complications.

VIII. Conclusions, unresolved questions
Neonatal diabetes is a rare condition. However, it is prob-
ably of great relevance to our understanding of the cause
of type 2 diabetes within the general population. We
believe these rare single gene disorders are natural models
for identifying new genes with possible relevance to type
2 diabetes. As discussed, the IPF-1 mutation is important
in MODY 4 and in some familial forms of early onset type
2 diabetes and the SUR1 mutation plays a role in newborn
diabetes as well as in type 2 diabetes in young adults. We
hope that elucidating the etiology of other forms of neo-
natal diabetes will provide information on normal pan-
creatic development and the basis of the pathology
underlying pancreatic dysfunction.

Acknowledgements
We thank the non profit organization Aide aux Jeunes Diabétiques (AJD) for 
its support of some of our work on neonatal diabetes. We thank our col-
laborators in the field of the study of neonatal diabetes: Prof. P. Czerni-
chow, Dr K Busiah, Dr I. Flechtner Prof. J. J. Robert and the nursing team, 
pediatric endocrinology, Dr R. Scharfmann INSERM U845, Hôpital Necker 
Enfants Malades, Paris, France.

We thank for their long standing and fruitful cooperation in the field of 
genetics: Ms S. Pereira, genetic biochemistry, Hôpital Robert Debré, Paris, 
France, Dr M. Vaxillaire, Ms A. Dechaume, Prof. P. Froguel, Centre 
National de la Recherche Scientifique UMR 8090, Institute of Biology and 
Pasteur Institute (MV AD PF), Lille, France, Imperial College, Hammersmith 
Hospital (PF), London, United Kingdom.

We also thank for the electrophysiological studies, A. Babenko, J. Bryan, 
Lydia Aguilar-Bryan, from the Departments of Molecular and Cellular Biol-
ogy (A.P.B., J.B.) and Medicine (L.A-B.), Baylor College of Medicine, Hou-
ston, TX, USA.

We also thank all the physicians and families involved in the French Net-
work for the Study of Neonatal Diabetes: Drs and Profs G. Perez de Nan-
clares, L. Castano, Grupo de Investigacion en Endocrinologia y Diabetes, 
Hospital de Cruces, Barakaldo, Bizkaia, Spain, N. Tubiana-Rufi, Hopital Rob-
ert Debre, Paris France; M. Gonthier Sainte Justine Hospital, Montréal Can-

ada; C. Fernandez Bilbao and J. L. Lechuga Cadiz Spain; B. Dundar Turkey; 
P. Ganga-Zandzou H. Ythier, Roubaix, D. Kaufman Caen, H. Bruel, Le 
Havre, A. Grimaldi, Paris, France; D. Paul, USA; Y. Nimri and M. Phillip, Tel 
Aviv, Israel, AM Bertrand Besancon, H Crosnier Saint Germain en Laye, C 
Metz Brest, S Soskin, Strasbourg, C Stuckens Lille, Veronique Sulmont 
Reims, all in France.

References
1. von Muhlendahl KE, Herkenhoff H: Long-term course of neonatal

diabetes.  N Engl J Med 1995, 333(11):704-708.
2. Shield JP, Gardner RJ, Wadsworth EJ, Whiteford ML, James RS, Rob-

inson DO, Baum JD, Temple IK: Aetiopathology and genetic
basis of neonatal diabetes.  Arch Dis Child Fetal Neonatal Ed 1997,
76(1):F39-42.

3. Ferguson AW, Milner RD: Transient neonatal diabetes mellitus
in sibs.  Arch Dis Child 1970, 45(239):80-83.

4. Fosel S: Transient and permanent neonatal diabetes.  Eur J Pedi-
atr 1995, 154(12):944-948.

5. Shield JP, Baum JD: Transient neonatal diabetes and later onset
diabetes: a case of inherited insulin resistance.  Arch Dis Child
1995, 72(1):56-57.

6. Metz C, Cave H, Bertrand AM, Deffert C, Gueguen-Giroux B, Czerni-
chow P, Polak M: Neonatal diabetes mellitus: chromosomal
analysis in transient and permanent cases.  J Pediatr 2002,
141(4):483-489.

7. Temple IK, Gardner RJ, Mackay DJ, Barber JC, Robinson DO, Shield
JP: Transient neonatal diabetes: widening the understanding
of the etiopathogenesis of diabetes.  Diabetes 2000,
49(8):1359-1366.

8. Shield JP, Temple IK, Sabin M, Mackay D, Robinson DO, Betts PR,
Carson DJ, Cave H, Chevenne D, Polak M: An assessment of pan-
creatic endocrine function and insulin sensitivity in patients
with transient neonatal diabetes in remission.  Arch Dis Child
Fetal Neonatal Ed 2004, 89(4):F341-3.

9. Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko
SA, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F: Disruption of a
new forkhead/winged-helix protein, scurfin, results in the
fatal lymphoproliferative disorder of the scurfy mouse.  Nat
Genet 2001, 27(1):68-73.

10. Marquis E, Le Monnier de Gouville I, Bouvattier C, Robert JJ, Junien
C, Charron D, Hors J, Diatloff-Zito C: HLA-DRB1 and DQB1
genotypes in patients with insulin-dependent neonatal diabe-
tes mellitus. A study of 13 cases.  Tissue Antigens 2000,
56(3):217-222.

11. Iafusco D, Stazi MA, Cotichini R, Cotellessa M, Martinucci ME, Maz-
zella M, Cherubini V, Barbetti F, Martinetti M, Cerutti F, Prisco F:
Permanent diabetes mellitus in the first year of life.  Diabeto-
logia 2002, 45(6):798-804.

12. Temple IK, James RS, Crolla JA, Sitch FL, Jacobs PA, Howell WM,
Betts P, Baum JD, Shield JP: An imprinted gene(s) for diabetes?
Nat Genet 1995, 9(2):110-112.

13. Cave H, Polak M, Drunat S, Denamur E, Czernichow P: Refinement
of the 6q chromosomal region implicated in transient neona-
tal diabetes.  Diabetes 2000, 49(1):108-113.

14. Temple IK, Gardner RJ, Robinson DO, Kibirige MS, Ferguson AW,
Baum JD, Barber JC, James RS, Shield JP: Further evidence for an
imprinted gene for neonatal diabetes localised to chromo-
some 6q22-q23.  Hum Mol Genet 1996, 5(8):1117-1121.

15. Gardner RJ, Mackay DJ, Mungall AJ, Polychronakos C, Siebert R,
Shield JP, Temple IK, Robinson DO: An imprinted locus associ-
ated with transient neonatal diabetes mellitus.  Hum Mol Genet
2000, 9(4):589-596.

16. Arima T, Drewell RA, Arney KL, Inoue J, Makita Y, Hata A, Oshimura
M, Wake N, Surani MA: A conserved imprinting control region
at the HYMAI/ZAC domain is implicated in transient neona-
tal diabetes mellitus.  Hum Mol Genet 2001, 10(14):1475-1483.

17. Ma D, Shield JP, Dean W, Leclerc I, Knauf C, Burcelin RR, Rutter GA,
Kelsey G: Impaired glucose homeostasis in transgenic mice
expressing the human transient neonatal diabetes mellitus
locus, TNDM.  J Clin Invest 2004, 114(3):339-348.

18. Gloyn AL, Pearson ER, Antcliff JF, Proks P, Bruining GJ, Slingerland AS,
Howard N, Srinivasan S, Silva JM, Molnes J, Edghill EL, Frayling TM,
Temple IK, Mackay D, Shield JP, Sumnik Z, van Rhijn A, Wales JK,
Clark P, Gorman S, Aisenberg J, Ellard S, Njolstad PR, Ashcroft FM,
Page 10 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7637748
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7637748
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9059185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9059185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5440211
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5440211
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8801100
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7717741
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7717741
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12378186
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12378186
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10923638
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10923638
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15210671
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15210671
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15210671
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11138001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11138001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11138001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11034557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11034557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11034557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12107723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12107723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7719335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10615957
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10615957
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10615957
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8842729
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8842729
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8842729
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10699182
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10699182
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11448939
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11448939
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11448939
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15286800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15286800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15286800


Orphanet Journal of Rare Diseases 2007, 2:12 http://www.OJRD.com/content/2/1/12
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

Hattersley AT: Activating mutations in the gene encoding the
ATP-sensitive potassium-channel subunit Kir6.2 and perma-
nent neonatal diabetes.  N Engl J Med 2004, 350(18):1838-1849.

19. Vaxillaire M, Populaire C, Busiah K, Cave H, Gloyn AL, Hattersley AT,
Czernichow P, Froguel P, Polak M: Kir6.2 mutations are a com-
mon cause of permanent neonatal diabetes in a large cohort
of French patients.  Diabetes 2004, 53(10):2719-2722.

20. Sagen JV, Raeder H, Hathout E, Shehadeh N, Gudmundsson K, Baevre
H, Abuelo D, Phornphutkul C, Molnes J, Bell GI, Gloyn AL, Hattersley
AT, Molven A, Sovik O, Njolstad PR: Permanent neonatal diabe-
tes due to mutations in KCNJ11 encoding Kir6.2: patient
characteristics and initial response to sulfonylurea therapy.
Diabetes 2004, 53(10):2713-2718.

21. Babenko AP, Polak M, Cave H, Busiah K, Czernichow P, Scharfmann
R, Bryan J, Aguilar-Bryan L, Vaxillaire M, Froguel P: Activating
mutations in the ABCC8 gene in neonatal diabetes mellitus.
N Engl J Med 2006, 355(5):456-466.

22. Gloyn AL, Reimann F, Girard C, Edghill EL, Proks P, Pearson ER, Tem-
ple IK, Mackay DJ, Shield JP, Freedenberg D, Noyes K, Ellard S, Ash-
croft FM, Gribble FM, Hattersley AT: Relapsing diabetes can
result from moderately activating mutations in KCNJ11.
Hum Mol Genet 2005, 14(7):925-934.

23. Jonsson J, Carlsson L, Edlund T, Edlund H: Insulin-promoter-factor
1 is required for pancreas development in mice.  Nature 1994,
371(6498):606-609.

24. Vaulont S, Vasseur-Cognet M, Kahn A: Glucose regulation of gene
transcription.  J Biol Chem 2000, 275(41):31555-31558.

25. Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF: Pan-
creatic agenesis attributable to a single nucleotide deletion
in the human IPF1 gene coding sequence.  Nat Genet 1997,
15(1):106-110.

26. Stoffers DA, Stanojevic V, Habener JF: Insulin promoter factor-1
gene mutation linked to early-onset type 2 diabetes mellitus
directs expression of a dominant negative isoprotein.  J Clin
Invest 1998, 102(1):232-241.

27. Velho G, Froguel P: Genetic, metabolic and clinical character-
istics of maturity onset diabetes of the young.  Eur J Endocrinol
1998, 138(3):233-239.

28. Njolstad PR, Sovik O, Cuesta-Munoz A, Bjorkhaug L, Massa O, Bar-
betti F, Undlien DE, Shiota C, Magnuson MA, Molven A, Matschinsky
FM, Bell GI: Neonatal diabetes mellitus due to complete glu-
cokinase deficiency.  N Engl J Med 2001, 344(21):1588-1592.

29. Gloyn AL, Ellard S, Shield JP, Temple IK, Mackay DJ, Polak M, Barrett
T, Hattersley AT: Complete glucokinase deficiency is not a
common cause of permanent neonatal diabetes.  Diabetologia
2002, 45(2):290.

30. Vaxillaire M, Samson C, Cave H, Metz C, Froguel P, Polak M: Glu-
cokinase gene mutations are not a common cause of perma-
nent neonatal diabetes in France.  Diabetologia 2002,
45(3):454-455.

31. Peake JE, McCrossin RB, Byrne G, Shepherd R: X-linked immune
dysregulation, neonatal insulin dependent diabetes, and
intractable diarrhoea.  Arch Dis Child Fetal Neonatal Ed 1996,
74(3):F195-9.

32. Roberts J, Searle J: Neonatal diabetes mellitus associated with
severe diarrhea, hyperimmunoglobulin E syndrome, and
absence of islets of Langerhans.  Pediatr Pathol Lab Med 1995,
15(3):477-483.

33. Satake N, Nakanishi M, Okano M, Tomizawa K, Ishizaka A, Kojima K,
Onodera M, Ariga T, Satake A, Sakiyama Y, et al.: A Japanese family
of X-linked auto-immune enteropathy with haemolytic
anaemia and polyendocrinopathy.  Eur J Pediatr 1993,
152(4):313-315.

34. Baud O, Goulet O, Canioni D, Le Deist F, Radford I, Rieu D, Dupuis-
Girod S, Cerf-Bensussan N, Cavazzana-Calvo M, Brousse N, Fischer
A, Casanova JL: Treatment of the immune dysregulation, pol-
yendocrinopathy, enteropathy, X-linked syndrome (IPEX)
by allogeneic bone marrow transplantation.  N Engl J Med 2001,
344(23):1758-1762.

35. Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ,
Whitesell L, Kelly TE, Saulsbury FT, Chance PF, Ochs HD: The
immune dysregulation, polyendocrinopathy, enteropathy,
X-linked syndrome (IPEX) is caused by mutations of FOXP3.
Nat Genet 2001, 27(1):20-21.

36. Wolcott CD, Rallison ML: Infancy-onset diabetes mellitus and
multiple epiphyseal dysplasia.  J Pediatr 1972, 80(2):292-297.

37. Delepine M, Nicolino M, Barrett T, Golamaully M, Lathrop GM, Julier
C: EIF2AK3, encoding translation initiation factor 2-alpha
kinase 3, is mutated in patients with Wolcott-Rallison syn-
drome.  Nat Genet 2000, 25(4):406-409.

38. Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D: Perk is essen-
tial for translational regulation and cell survival during the
unfolded protein response.  Mol Cell 2000, 5(5):897-904.

39. Harding HP, Zeng H, Zhang Y, Jungries R, Chung P, Plesken H,
Sabatini DD, Ron D: Diabetes mellitus and exocrine pancreatic
dysfunction in perk-/- mice reveals a role for translational
control in secretory cell survival.  Mol Cell 2001, 7(6):1153-1163.

40. Christen HJ, Hanefeld F, Duley JA, Simmonds HA: Distinct neuro-
logical syndrome in two brothers with hyperuricaemia.  Lan-
cet 1992, 340(8828):1167-1168.

41. Yorifuji T, Matsumura M, Okuno T, Shimizu K, Sonomura T, Muroi J,
Kuno C, Takahashi Y, Okuno T: Hereditary pancreatic hypopla-
sia, diabetes mellitus, and congenital heart disease: a new
syndrome?  J Med Genet 1994, 31(4):331-333.

42. Hoveyda N, Shield JP, Garrett C, Chong WK, Beardsall K, Bentsi-
Enchill E, Mallya H, Thompson MH: Neonatal diabetes mellitus
and cerebellar hypoplasia/agenesis: report of a new recessive
syndrome.  J Med Genet 1999, 36(9):700-704.

43. Atouf F, Czernichow P, Scharfmann R: Expression of neuronal
traits in pancreatic beta cells. Implication of neuron-restric-
tive silencing factor/repressor element silencing transcrip-
tion factor, a neuron-restrictive silencer.  J Biol Chem 1997,
272(3):1929-1934.

44. Sellick GS, Barker KT, Stolte-Dijkstra I, Fleischmann C, Coleman RJ,
Garrett C, Gloyn AL, Edghill EL, Hattersley AT, Wellauer PK, Good-
win G, Houlston RS: Mutations in PTF1A cause pancreatic and
cerebellar agenesis.  Nat Genet 2004, 36(12):1301-1305.

45. Senee V, Chelala C, Duchatelet S, Feng D, Blanc H, Cossec JC, Cha-
ron C, Nicolino M, Boileau P, Cavener DR, Bougneres P, Taha D, Jul-
ier C: Mutations in GLIS3 are responsible for a rare
syndrome with neonatal diabetes mellitus and congenital
hypothyroidism.  Nat Genet 2006, 38(6):682-687.

46. Otonkoski T, Roivainen M, Vaarala O, Dinesen B, Leipala JA, Hovi T,
Knip M: Neonatal Type I diabetes associated with maternal
echovirus 6 infection: a case report.  Diabetologia 2000,
43(10):1235-1238.

47. Pearson ER, Flechtner I, Njolstad PR, Malecki MT, Flanagan SE, Larkin
B, Ashcroft FM, Klimes I, Codner E, Iotova V, Slingerland AS, Shield J,
Robert JJ, Holst JJ, Clark PM, Ellard S, Sovik O, Polak M, Hattersley
AT: Switching from insulin to oral sulfonylureas in patients
with diabetes due to Kir6.2 mutations.  N Engl J Med 2006,
355(5):467-477.

48. Mitamura R, Kimura H, Murakami Y, Nagaya K, Makita Y, Okuno A:
Ultralente insulin treatment of transient neonatal diabetes
mellitus.  J Pediatr 1996, 128(2):268-270.
Page 11 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15115830
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15115830
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15115830
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15448107
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15448107
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15448107
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15448106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15448106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16885549
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16885549
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15718250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15718250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7935793
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7935793
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10934218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10934218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8988180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8988180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8988180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9649577
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9649577
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9649577
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9539292
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9539292
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11372010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11372010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11942315
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11942315
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11914755
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11914755
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11914755
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8777684
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8777684
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8777684
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8597835
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8597835
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8597835
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8482279
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8482279
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8482279
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11396442
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11396442
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11396442
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11137993
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11137993
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5008828
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5008828
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10932183
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10932183
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10932183
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10882126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10882126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10882126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11430819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11430819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11430819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1359249
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1359249
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8071961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8071961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8071961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10507728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10507728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10507728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8999882
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8999882
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8999882
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15543146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15543146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16715098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16715098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16715098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11079741
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11079741
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16885550
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16885550
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8636827
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8636827
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8636827
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Definition, forms and epidemiology
	I. Clinical description
	A. Clinical description of TNDM
	B. Clinical description of PNDM

	II. Mechanisms
	A. Molecular mechanisms of TNDM
	B. Molecular mechanisms of PNDM
	B1. The insulin cell potassium channel (Kir6.2/SUR1) (Figures 
	Mutations in ABCC8 encoding the SUR1 subunit of the pancreatic KATP channel

	B2. "Transient" and permanent neonatal diabetes: a common molecular mechanism?


	III. Syndromes associated with PNDM
	A. Pancreas agenesis and the Insulin Promoter Factor-1  (IPF1) gene
	B. Anomalies at the homozygous state in the Glucokinase gene
	C. IPEX syndrome and FOXP3 gene
	D. Wolcott-Rallison and EIF2AK3 gene
	E. Other syndromes with PNDM

	IV. Clinical and biological diagnosis
	A. Diagnosis of the "transient" or permanent nature of the neonatal diabetes
	B. Methods for the molecular diagnosis of the 6q2-4 anomalies associated with "transient" neonatal diabetes

	V. Treatment
	A. Therapeutic consequences in the case of potassium channel mutation
	B. Management of the treatment of this very early onset type of diabetes, in the neonatal period

	VI. Genetic counseling
	Anomalies in the chromosome 6q region: a disease linked to imprinting
	Mendelien inheritance

	VII. Prognosis
	VIII. Conclusions, unresolved questions
	Acknowledgements
	References

