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Abstract

We investigate the existence of principal eigenvalues (i.e., eigenvalues corresponding
to positive eigenfunctions) the boundary value problem⎧⎨

⎩
−�pu(x) = λg(x)

∣∣u(x)∣∣p−2
u(x), in �,

Ru =
∣∣∇u(x)

∣∣p−2 ∂u
∂ν

(x) + α
∣∣u(x)∣∣p−2

u(x) = 0, on ∂�.

where Ω ⊆ ℝN is a bounded domain, 1 <p < ∞ and a is a real number.
AMS Subject Classification: 35J60; 35B30; 35B40.
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1. Introduction
Mathematical models described by nonlinear partial differential equations have become

more common recently. In particular, the p-Laplacian operator appears in subjects such as

filtration problem, power-low materials, non-Newtonian fluids, reaction-diffusion pro-

blems, nonlinear elasticity, petroleum extraction, etc., see,[1]. The nonlinear boundary

condition describes the flux through the boundary ∂Ω which depends on the solution

itself.

The purpose of this study is to discuss the existence of principal eigenvalues (i.e.,

eigenvalues corresponding to positive eigenfunctions) for the boundary value problem
⎧⎨
⎩

−�pu(x) = λg(x)
∣∣u(x)∣∣p−2

u(x), in �,

Ru =
∣∣∇u(x)

∣∣p−2 ∂u
∂ν

(x) + α
∣∣u(x)∣∣p−2

u(x) = 0, on ∂�.
(1:1)

where Ω ⊆ ℝN is a bounded domain, 1 <p < ∞ and a is a real number. Attention has

been confined mainly to the cases of Dirichlet and Neumann boundary conditions but

we have the Robin boundary in (1.1).

We discuss about to exist principal eigenvalue for (1.1). In the case 0 <a < ∞, We

shall show that there has exactly two principal eigenvalues, one positive and one

negative.

2. Main result
Our analysis is based on a method used by Afrouzi and Brown [2]. Consider, for fixed l,
the eigenvalue problem
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⎧⎨
⎩

−�pu(x) − λg(x)
∣∣u(x)∣∣p−2

u(x), = μ
∣∣u(x)∣∣p−2

u(x), in �,

Ru =
∣∣∇u(x)

∣∣p−2 ∂u
∂ν

(x) + α
∣∣u(x)∣∣p−2

u(x) = 0, on ∂�.
(2:1)

We denote the lowest eigenvalue of (2.1) by μ(a, l). Let

Sα,λ =

⎧⎨
⎩

∫

�

|∇φ|pdx + α

∫

∂�

|φ|pdSx − λ

∫

�

g|φ|pdx : φ ∈ W1,p(�),
∫

�

|φ|p = 1

⎫⎬
⎭

When a ≥ 0, it is clear that Sa,l is bounded below. It is shown by variational argu-

ments that μ(a, l) = inf Sa,l and that an eigenfunction corresponding to μ(a, l) does
not change sign on Ω [3]. Thus, clearly, l is a principal eigenvalue of (1.1) if and only

if μ(a, l) = 0.

When a < 0, the boundedness below of Sa,l is not obvious, but is a consequence of

the following lemma.

Lemma 2.1. For every ε > 0 there exists a constant C(ε) such that
∫

∂�

|φ|pdSx ≤ ε

∫

�

|∇φ|pdx + C(ε)
∫

�

|φ|pdx

for all j Î W1,p(Ω).

Proof. Suppose that the result does not hold. Then ε0 > 0 and sequence {un} ⊆ W1,p

(Ω) such that ∫Ω|∇un|p = 1 and
∫

∂�

|un|pdSx ≥ ε0 + n
∫

�

|un|pdx. (2:2)

Suppose first that {∫Ω |un|
p dx} is unbounded. Let vn =

un
‖un‖Lp(�)

. Clearly, {υn} is

bounded in W1,p(Ω), and so in Lp(∂Ω). But ∫∂Ω |υn|
p dSx ≥ n ∫Ω |υn|

p dx = n, which is

impossible.

Suppose now that {∫Ω |un|
p dx} is bounded, then {un} is bounded in W1,p and so has

a subsequence, which we again denote by {un}, converging weakly to u in W1,p. Since

W1,pis compactly embedded in Lp(∂Ω) and in Lp(Ω), it follows that {un} converges to

some function u in Lp(∂Ω) and in Lp(Ω). Thus {∫∂Ω |un|
p dx} is bounded, and so it fol-

lows from (2.2) that limn®∞ ∫Ω |un|
p dx = 0, i.e.,, {un} converges to zero in Lp(Ω).

Hence {un} converges to zero in Lp(∂Ω), and this is impossible because (2.2).

Choosing ε < 1
α
, it is easy to deduce from the above result the Sa,l is bounded below,

and it follows exactly as in [3] that μ(a, l) = inf Sa,l and that an eigenfunction corre-

sponding to μ(a, l) does not change sign on Ω. Thus it is again l is a principal eigen-

value of (1.1) if and only if μ(a, l) = 0.

For fixed j Î W1,p(Ω), l ® ∫Ω |∇j|p dx+a ∫∂ Ω |j|p dSx-l ∫Ω g|j|p dx is an affine and

so concave function. As the infimum of any collection of concave functions is concave,

it follows that l ® μ(a, l) is concave. Also, by considering test functions j1, j2 Î W1,p

(Ω) such that ∫Ω g |j1|p dx > 0 and ∫Ω g|j2|p dx < 0, it is easy to see that μ(a, l) ® -∞ as

l ® ± ∞. Thus l ® μ(a, l) is an increasing function until it attains its maximum, and is

an decreasing function thereafter.
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It is natural that the flux across the boundary should be outwards if there is a posi-

tive concentration at the boundary. This motivates the fact that the sign of a > 0. For

a physical motivation of such conditions, see for example [4]. Suppose that 0 <a < ∞,

i.e., we have the Robin boundary condition. Then, as can be seen from the the varia-

tional characterization of μ(a, l) or -Δp has a positive principal eigenvalue, μ(a, 0) > 0

and so l ® μ(a, l) must has exactly two zero. Thus in this case (1.1) exactly two prin-

cipal eigenvalues, one positive and one negative.

Our results may be summarized in the following theorem.

Theorem 2.2. If 0 <a < ∞, then (1.1) exactly two principal eigenvalues, one positive

and one negative.

However, for a < 0 we have μ(a, 0) ≤ 0. For p = 2, if u0 is eigenfunction of (2.1)

corresponding to principal eigenvalue μ(a, l), then

dμ

dλ
(α,λ) = −

∫
�
gu20dx∫

�
u20dx

. (2:3)

Therefore, l ® μ(a, l) is an increasing (decreasing) function, if we have∫
�
gu20dx∫

�
u20dx

< 0(> 0) and at critical points we must have

∫
�
gu20dx∫

�
u20dx

= 0 (see, [2], Lemma 2]).

But, we cannot generalize it for p ≠ 2. Because, if v(λ) = dμ
dλ
, then we have

− d
dλ

�pu(λ) = −(p − 1)div(∇v|∇u|p−2).

So, we cannot get a similar result (2.3).

Now our analysis is based by Drabek and Schindler [5]. We define the space Vp as

completion of W1,p(�) ∩ C(�̄) with respect to the norm

‖u‖Vp =

⎛
⎝

∫

�

|∇u|pdx +
∫

∂�

|u|pds
⎞
⎠

1
p

. (2:4)

The spaces equivalent to Vp were introduced in [6]. In particular, Vp is a uniformly

convex (and hence a reflexive) Banach space, Vp ↪ Lq(Ω) continuously for 1 ≤ q ≤ Np
N−1

and Vp ↪ Lq(Ω) compactly for 1 ≤ q ≤ Np
N−1[6].

We say that u Î Vp is a weak solution to (1.1) if for all j Î Vp we have
∫

�

|∇u|p−2∇u.∇φdx + α

∫

∂�

|u|p−2uφds =
∫

�

λg(x)|u|p−2uφdx. (2:5)

In fact there are domains Ω for which the embedding Vp ↪ Lp (Ω) is not injective.

This is to the influence of the wildness of the boundary ∂Ω. The domains for which

the above embedding is injective are then called admissible. Ω is called admissible irre-

gular domain for which W1,p(Ω) is not subset Lq(Ω) for all p >q.

We assume that the domain Ω ⊂ ℝN is bounded, N > 1, a > 0, and 1 <p <N. We

apply variational for (1.1) with l = 1. We introduce the C1-functionals

l(u) =
∫

�

|∇u|p + α

∫

∂�

|u|pds. (2:6)
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and

j(u) =
∫

�

g(x)|u|p. (2:7)

If w Î Vp be a global minimizer of l subject to the constraint j(w) = 1, then the

Lagrange multiplier method yields a l Î ℝ such that l’(u) = lj’(u), i.e.,

p
∫

�

|∇w|p−2∇w.∇φdx + pα
∫

∂�

|w|p−2wφds = λp
∫

�

g(x)|u|p−2uφdx

holds for any j Î Vp. Then w is a weak solution (1.1). The existence of a minimizer

follows from the fact that l(u) is bounded from below on the manifold M = {u Î Vp : j

(u) = 1} and from Palais-Smale condition satisfied by the functional l on M.
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