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Abstract
We introduce the concept of ψ -firmly nonexpansive mapping, which includes a
firmly nonexpansive mapping as a special case in a uniformly convex Banach space. It
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weakly converges to a fixed point.
MSC: 47H06; 47J05; 47J25; 47H10; 47H17

Keywords: ψ -firmly nonexpansive mappings; fixed points; reflexive Banach spaces;
Picard iteration

1 Introduction
Throughout this paper, a Banach space E will be over the real scalar field. We denote its
norm by ‖ · ‖ and its dual space by E∗. Let F(T) = {x ∈ E : Tx = x}, the set of all fixed points
for a mapping T and N denote the set of all positive integer.
Let K be a nonempty bounded closed convex subset of E. We say that K has the fixed

point property for nonexpansive mapping if for every nonexpansive mapping T : K → K
(i.e. ‖Tx–Ty‖ ≤ ‖x–y‖ ∀x, y ∈ K ), K contains a fixed point x∗ of T (i.e. Tx∗ = x∗); E has the
fixed point property (FPP for short) if any nonempty bounded closed convex subset of E
has the fixed point property for nonexpansivemapping;E has theweak fixed point property
(WFPP for short) if any weakly compact convex subset of E has the fixed point property
for nonexpansivemapping. For a reflexive Banach space, both properties are obviously the
same.
The famous question whether a Banach space has the fixed point property (WFPP) had

remained open for a long time [, ]. It has been answered in the negative by Sadovski []
and Alspach [] who constructed the following examples, respectively.

Example . (Sadovski [] or Istrăţescu [, Example ..]) Let E = c and K = {x ∈
c;‖x‖ ≤ }. Define T : K → K by

Tx = (,x,x,x, . . .), ∀x = (x,x,x, . . .) ∈ K .

Example . (Alspach [] or Kirk-Sims [, Example ]) Let E = L[, ] and

K =
{
x ∈ L[, ]; ≤ x(t)≤  and

∫ 


x(t)dt =




}
.
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Define T : K → K by

(Tx)(t) =

⎧⎨
⎩
min{, x(t)}  ≤ t ≤ 

 ,

max{, x(t – ) – } 
 < t ≤ .

ThenK is bounded, closed, and convex; and T is an isometry (‖Tx–Ty‖ = ‖x–y‖ ∀x, y ∈
K ) and is fixed point free. For more details, see [, ] or [–]. Namely, it is proved that c
and L[, ] do not have the fixed point property.
The above two examples suggest that to obtain positive results in the problem of the

existence of fixed points for nonexpansive mappings, it is necessary to impose some re-
strictions either on T or on the Banach space E. Naturally, the following questions are
asked also.

Problem . Which Banach spaces satisfy the WFPP?

Problem . Determine a subclass of nonexpansive mappings such that every Banach
space satisfies the FPP for this subclass.

Considerable effort in the development of a fixed point theory for nonexpansive map-
pings, mainly for Problem ., has been done in the last  years. A well-known result of
Browder [] asserts that if E is uniformly convex, then E has the weak fixed point property.
This theorem was also proved independently by Göhde []. At the same time, Kirk []
established a more general result by showing that if E has normal structure, then E has
the weak fixed point property. Normal structure is a geometric property somewhat more
general than uniform convexity. In [], one can see a detailed study of sufficient condi-
tions for this property as well as their permanence properties. It has also been shown []
that a condition weaker than normal structure is sufficient to guarantee the weak fixed
point property (WFPP). In , it has been showed by Maurey [] that the Hardy space
H and the reflexive subspace of L[, ] have the weak fixed point property (WFPP). For
other examples of Banach spaces with the weak fixed point property see [, , ] and [,
] for more details.
However, the result about Problem . is not many. Up to now, a most relevant example

is nonlinear isometries in a superreflexive Banach space who is proved byMaurey (see [,
] for a proof ).
One of our main aims is to give an affirmative answer to Problem .. In other words,

wewill study fixed point properties ofψ-firmly nonexpansivemapping, an important sub-
class of nonexpansive mappings, on weakly compact convex subsets of a Banach space.
On the other hand, using the Picard iterative method, the well-known Banach Contrac-

tion Principle is obtained: Let (E,d) be a complete metric space and T : E → E is a con-
traction (i.e. d(Tx,Ty)≤ kd(x, y), ∀x, y ∈ K and some k ∈ [, )). Then T has a unique fixed
point x∗ and for each x ∈ E, Picard iteration {Tnx} strongly converges to x∗.
It is known for some time that even in a Hilbert space setting, Picard iteration {Tnx}

of a nonexpansive mapping T need not actually converge to a fixed point. However, for
some special nonexpansive mapping (or some nonexpansive mapping who is modified
necessarily), the weak convergence of such iteration can be proved. Fox example, in the
frame of a uniformly convex Banach space E with a Fréchet differentiable norm, Reich []
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showed that if S = I+T
 where I is an identity operator and T is a nonexpansive self-mapping

defined on a nonempty bounded closed convex subset K of E, then for each x ∈ K, Picard
iteration {Snx} weakly converges to a fixed point of T; Bruck [, ] proved that for each
x ∈ K, the Cesàro means Tnx = 

n+
∑n

i=Tix of the nonexpansive self-mapping T weakly
converges to a fixed point of T. This fact was first established by Baillon [] for the Lp

spaces ( < p < ∞). Naturally, the following question is put forward.

Problem. Does there exist a subclass of nonexpansivemappings (not contraction) such
that Picard iteration (weakly) converges to a fixed point of such mapping?

Another purpose of ours is to show that Picard iteration ofψ-firmly nonexpansive map-
ping weakly converges to its fixed point. That is, ψ-firmly nonexpansive mapping is actu-
ally an answer to Problem ..
We also show that in a uniformly convex space, ψ-firmly nonexpansive mapping in-

cludes a firmly nonexpansive mapping and the resolvent of an accretive operator as a spe-
cial case.

2 Fixed point property forψ -firmly nonexpansive mapping
The concept of firmly nonexpansive mapping was introduced by Bruck []. A mapping
T with domain D(T) and range R(T) in Banach space E is said to be firmly nonexpansive
if for all x, y ∈D(T) the function

�x,y(t) =
∥∥( – t)(x – y) + t(Tx – Ty)

∥∥, t ∈ [, ]

is non-increasing on [, ], or equivalently,

‖Tx – Ty‖ ≤ ∥∥( – t)(x – y) + t(Tx – Ty)
∥∥, x, y ∈D(T), t ∈ [, ]. (.)

Obviously any firmly nonexpansive mapping is nonexpansive mapping (�x,y() ≤ �x,y()).
The converse is not true (consider the mapping Tx = –x in E). However, there is an inter-
esting observation. For any u ∈ D(T) and t ∈ [, ) consider the Ft by Ft = tu + ( – t)T .
Banach Contraction Principle guarantees that Ft has a unique fixed point xt , i.e.,

xt = Ftxt = tu + ( – t)Txt .

Since xt depends on u and t, we can define a family mappings Ftu = xt . It is minor techni-
cality to prove that all mappings Ft are firmly nonexpansive. Moreover, for any t ∈ [, ),
F(Ft) = F(T) (see [, pp.-] for a proof ). This shows that the fixed point property for
firmly nonexpansive mapping coincides with the fixed point property for nonexpansive
mapping.
In a Hilbert space, T is firmly nonexpansive if and only if

〈Tx – Ty,x – y〉 ≥ ‖Tx – Ty‖, x, y ∈D(T) (.)

(see [, pp.-] for a proof). Clearly, the inequality (.) is equivalent to the following:

‖Tx – Ty‖ ≤ ‖x – y‖ – ∥∥(x – Tx) – (y – Ty)
∥∥, x, y ∈D(T). (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/81
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In view of the above one might expect firmly nonexpansive mappings to exhibit better
behavior than nonexpansivemappings in general. However, from the point of view of fixed
point theory, the restriction is mild. Naturally, Song and Chai [] introduced the notion
of firmly type nonexpansive mapping.
A mapping T is said to be firmly type nonexpansive if for all x, y ∈ D(T), there exists

k ∈ (, +∞) such that

‖Tx – Ty‖ ≤ ‖x – y‖ – k
∥∥(x – Tx) – (y – Ty)

∥∥.

Obviously, the firmly type nonexpansive mapping contains the firmly nonexpansive map-
ping and the resolvent of monotone operator as a special case in Hilbert space. For a de-
tailed proof and more examples, see [, Examples -].
Now we introduce the concept of ψ-firmly nonexpansive mapping which includes the

firmly type nonexpansive mapping as a special case (ψ(t) = kt).
A mapping T is said to be ψ-firmly nonexpansive if for all x, y ∈ D(T), if there exists a

continuous strictly increasing function ψ : [, +∞)→ [, +∞) with ψ() =  such that

‖Tx – Ty‖ ≤ ‖x – y‖ –ψ
(∥∥x – Tx – (y – Ty)

∥∥)
. (.)

In order to achieving the objects mentioned in Section , solving Problem ., we need
the following fact.

Lemma . ([, Propositions ..]) Let C be a weakly compact subset in Banach space E
and let f : C → R be a weakly lower semi-continuous function. Then the function f attains
its minimum on C. That is,

∃x∗ ∈ C such that f
(
x∗) ≤ f (x), for all x ∈ C.

Now we show our main results.

Theorem . Let K be a weakly compact convex subsets of a Banach space E and T : K →
K be a ψ-firmly nonexpansive mapping. Then T has a fixed point, i.e. F(T) = ∅.

Proof Since K is bounded and convex, it is well known (even for nonexpansive mappings)
that there exists a sequence {xn} in K such that

lim
n→∞‖xn – Txn‖ = . (.)

Let a real valued function ϕ be defined on K by

ϕ(y) = lim sup
n→∞

‖xn – y‖, ∀y ∈ K .

Then ϕ is convex and continuous, and hence weakly lower semi-continuous (see [, p.,
Proposition ]). It follows from Lemma . that there exists x∗ ∈ K such that

ϕ
(
x∗) ≤ ϕ(y) for all y ∈ K .

http://www.fixedpointtheoryandapplications.com/content/2014/1/81


Song and Huang Fixed Point Theory and Applications 2014, 2014:81 Page 5 of 11
http://www.fixedpointtheoryandapplications.com/content/2014/1/81

In particular,

ϕ
(
x∗) ≤ ϕ

(
Tx∗). (.)

Next, we show that x∗ = Tx∗. It is immediate from (.) that

lim
n→∞

∥∥(xn – Txn) –
(
x∗ – Tx∗)∥∥ =

∥∥x∗ – Tx∗∥∥,
and hence,

lim
n→∞ψ

(∥∥(xn – Txn) –
(
x∗ – Tx∗)∥∥)

=ψ
(∥∥x∗ – Tx∗∥∥)

. (.)

Thus, we have

ϕ
(
Tx∗) = lim sup

n→∞

∥∥xn – Tx∗∥∥

≤ lim sup
n→∞

(‖xn – Txn‖ +
∥∥Txn – Tx∗∥∥)

= lim sup
n→∞

∥∥Txn – Tx∗∥∥ (
using (.)

)

≤ lim sup
n→∞

(∥∥xn – x∗∥∥ –ψ
(∥∥(xn – Txn) –

(
x∗ – Tx∗)∥∥))

≤ lim sup
n→∞

∥∥xn – x∗∥∥ –ψ
(∥∥x∗ – Tx∗∥∥) (

using (.)
)

= ϕ
(
x∗) –ψ

(∥∥x∗ – Tx∗∥∥)
.

Therefore together with (.), we have

ψ
(∥∥x∗ – Tx∗∥∥) ≤ ϕ

(
x∗) – ϕ

(
Tx∗) ≤ ,

and so x∗ = Tx∗ by the property of ψ . This yields the desired conclusion. �

Obviously, we also have the following.

Theorem . Let K be a nonempty bounded closed convex subset of a reflexive Banach
space E and T : K → K be a ψ-firmly nonexpansive mapping. Then T has a fixed point,
i.e. F(T) = ∅.

Now we show that the firmly nonexpansive mapping is a subclass of ψ-firmly nonex-
pansive mapping in uniformly convex Banach space.

Lemma . (Xu [, Theorem ]) Let q >  and M >  be two fixed real numbers. Then a
Banach space is uniformly convex if and only if there exists a continuous strictly increasing
convex function g : [, +∞) → [, +∞) with g() =  such that

∥∥λx + ( – λ)y
∥∥q ≤ λ‖x‖q + ( – λ)‖y‖q –ωq(λ)g

(‖x – y‖), (.)

for all x, y ∈ BM() = {x ∈ E;‖x‖ ≤M} and λ ∈ [, ], where ωq(λ) = λq( – λ) + λ( – λ)q.

http://www.fixedpointtheoryandapplications.com/content/2014/1/81
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Theorem . Let K be a nonempty bounded closed convex subset of a uniformly convex
Banach space E and T : K → K be a firmly nonexpansive mapping. Then T is a ψ-firmly
nonexpansive mapping.

Proof Since T is firmly nonexpansive, by (.), we have

‖Tx – Ty‖ ≤
∥∥∥∥x – y


+
Tx – Ty



∥∥∥∥, ∀x, y ∈ K .

By Lemma . (q = , λ = 
 ), we obtain

‖Tx – Ty‖ ≤
∥∥∥∥x – y


+
Tx – Ty



∥∥∥∥


≤ 

‖x – y‖ + 


‖Tx – Ty‖ – 


g
(∥∥x – y – (Tx – Ty)

∥∥)

≤ 

‖x – y‖ + 


‖x – y‖ – 


g
(∥∥x – Tx – (y – Ty)

∥∥)

= ‖x – y‖ – 

g
(∥∥x – Tx – (y – Ty)

∥∥)
.

Let ψ(s) = 
g(s) for all s ∈ [,∞). The desired result is reached. �

Let A : D(A) ⊂ E → E be an accretive operator. Let JAr = (I + rA)–, the resolvent of A.
It is well known that JAr : R(I + rA) → D(A) is nonexpansive, where R(I + rA) is range of
(I + rA) and I is an identity operator of E. Furthermore, for r >  and t >  and x ∈ E,

JAr x = JAt

(
t
r
x +

(
 –

t
r

)
JAr x

)
, (.)

which is referred to as the Resolvent Identity. Now we show that for each r > , the resol-
vent of A is an ψ-firmly nonexpansive mapping also.

Example . Let E be a uniformly convex Banach space and A : D(A) ⊂ E → E be an
accretive operator. Then for each r > , JAr is aψ-firmly nonexpansive mapping defined on
R(I + rA)∩ BM() (M > ).

Proof It follows from the Resolvent Identity (.) that

JAr x = JAr


(


x +



JAr x

)
.

Then we have

∥∥JAr x – JAr y
∥∥ ≤

∥∥∥∥JAr
(


x +



JAr x

)
– JAr



(


y +



JAr y

)∥∥∥∥ ≤
∥∥∥∥  (x – y) +



(
JAr x – JAr y

)∥∥∥∥.

Using the same proof techniques as Theorem ., we also have

∥∥JAr x – JAr y
∥∥ ≤ ‖xn – y‖ –ψ

(∥∥x – JAr x –
(
y – JAr y

)∥∥)
,

where ψ = 
g . �

http://www.fixedpointtheoryandapplications.com/content/2014/1/81
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The other three similar mappings were introduced by Aoyama et al. []. For a subset
C of a smooth Banach space E, a mapping T : C → E is of

(i) type (P) (or firmly nonexpansive-like) if

〈
Tx – Ty, J(x – Tx) – J(y – Ty)

〉 ≥  ∀x, y ∈ C,

(ii) type (Q) (or firmly nonexpansive type; see Kohsaka et al. []) if

〈
Tx – Ty, (Jx – JTx) – (Jy – JTy)

〉 ≥  ∀x, y ∈ C,

(iii) type (R) (or firmly generalized nonexpansive) if

〈
(x – Tx) – (y – Ty), JTx – JTy

〉 ≥  ∀x, y ∈ C,

where J is the normalized duality mapping of E and 〈· , ·〉 is generalized dual pairs
on E × E∗.

Remark . The common point between ψ-firmly nonexpansive mapping and the above
three mappings is that they all include a firmly nonexpansive mapping in Hilbert spaces
as a special case. However, in a uniformly convex Banach space, each firmly nonexpan-
sive mapping is a ψ-firmly nonexpansive mapping, but it is not one of the above three
mappings since a uniformly convex Banach space may not be smooth.

Remark . In the framework of a smooth, strictly convex and reflexive Banach space,
the fixed point properties of the above three mappings were studied by Aoyama et al.
[], Kohsaka et al. [] and many mathematical workers. Only in reflexive Banach space,
we can obtain the fixed point property of ψ-firmly nonexpansive mappings.

3 Approximationmethods ofψ -firmly nonexpansive mappings
We discuss the weak convergence of Picard iteration for ψ-firmly nonexpansive mapping.

Lemma . Let K be a nonempty closed convex subset of a Banach space E and T : K → K
be ψ-firmly nonexpansive with F(T) = ∅. If for any given x ∈ K , {xn} is defined by Picard
iteration sequence

xn+ = Txn = Txn– = · · · = Tnx. (.)

Then {xn} is an asymptotic fixed point sequence of T , i.e.

lim
n→∞‖xn – Txn‖ = .

Proof Take p ∈ F(T). Then

‖xn+ – p‖ = ‖Txn – p‖ ≤ ‖xn – p‖ –ψ
(‖xn – Txn‖

)
.

Therefore, we have

‖xn+ – p‖ ≤ ‖xn – p‖ ≤ · · · ≤ ‖x – p‖

http://www.fixedpointtheoryandapplications.com/content/2014/1/81
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and

ψ
(‖xn – Txn‖

) ≤ ‖xn – p‖ – ‖xn+ – p‖. (.)

Consequently, {‖xn–p‖} is non-increasing and bounded, and hence the limit limn→∞ ‖xn–
p‖ exists. So, {xn} is bounded also. It follows from (.) that

lim
n→∞ψ

(‖xn – Txn‖
)
= ,

and hence, by the property of ψ . The desired result is obtained. �

A Banach space E is said to satisfy Opial’s condition [] if, for any sequence {xn} in E,
xn ⇀ x implies

lim sup
n→∞

‖xn – x‖ < lim sup
n→∞

‖xn – y‖, ∀y ∈ E with x = y.

In particular, Opial’s condition is independent of uniformly convex (smooth) since the
lp spaces satisfy this condition for  < p < ∞ while it fails for the Lp (p = ) spaces. In
fact, spaces satisfying Opial’s condition need not even by isomorphic to uniformly convex
spaces [].

Theorem . Let K be a weakly compact convex subset of a Banach space E satisfying
Opial’s condition and T : K → K be firmly type nonexpansive. Then for any given x ∈ K ,
{xn}, defined by Picard iteration (.) weakly converges to some fixed point of T .

Proof It follows from Theorem . that F(T) = ∅. Then following Lemma ., we see that
{xn} is bounded, the limit limn→∞ ‖xn – p‖ exists for each p ∈ F(T) and

lim
n→∞‖xn – Txn‖ = .

The weak compactness of K means that there exists a subsequence {xnk } of {xn} such that
{xnk } weakly converges to some point of K , say x∗. Then using the proof technique of
Theorem ., we have x∗ = Tx∗ since by Opial’s condition,

lim sup
k→∞

∥∥xnk – x∗∥∥ ≤ lim sup
k→∞

‖xnk – x‖ for all x ∈ K .

Next we show that {xn} weakly converges to x∗. Let y is another weak limit point of {xn}
and x∗ = y. Then we can choose a subsequence {xnj} that weakly converges to y, and hence
y = Ty. Since limn→∞ ‖xn – p‖ exists for each p ∈ F(T), we have

lim
n→∞

∥∥xn – x∗∥∥ = lim sup
k→∞

∥∥xnk – x∗∥∥
< lim sup

k→∞
‖xnk – y‖ = lim

n→∞‖xn – y‖

= lim sup
j→∞

‖xnj – y‖ < lim sup
j→∞

∥∥xnj – x∗∥∥ = lim
n→∞

∥∥xn – x∗∥∥,

a contradiction, and hence x∗ = y. �

http://www.fixedpointtheoryandapplications.com/content/2014/1/81
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Similarly, we also have the following.

Theorem . Let K be a nonempty closed convex subset of a reflexive Banach space E
satisfying Opial’s condition and T : K → K be firmly type nonexpansive with F(T) = ∅.
Then for any given x ∈ K , {xn}, defined by Picard iteration (.) weakly converges to some
fixed point of T .

Remark . Theorem . is applicable to lp ( < p <∞) and L. However, we do not know
whether it works in Lp for  < p <  and  < p < ∞.

Recall a Banach space E is said to have (i) a Gâteaux differentiable norm (we also say
that E is smooth), if the limit

Dx(y) = lim
t→

‖x + ty‖ – ‖x‖
t

(.)

exists for each x (x = ), y ∈ E; (ii) a uniformly Gâteaux differentiable norm, if for each y in
E, the limit Dx(y) is uniformly attained for bounded  = x ∈ E; (iii) a Fréchet differentiable
norm, if for each x ∈ E, x = , the limit Dx(y) is attained uniformly for bounded y ∈ E.
The value of x∗ ∈ E∗ at y ∈ E is denoted by 〈y,x〉, and the normalized duality mapping

from E into E∗ is denoted by J , that is,

J(x) =
{
f ∈ E∗ : 〈x, f 〉 = ‖x‖‖f ‖,‖x‖ = ‖f ‖}, ∀x ∈ E.

It is well known (see Brower [, p.]) that for a smooth Banch space E, the normalized
duality mapping J is single-valued, and, moreover,

Dx(y) =
〈y, J(x)〉

‖x‖ . (.)

A Banach space E is said to be (iv) strictly convex if ‖x‖ = ‖y‖ = , x = y implies ‖x+y‖
 < ;

(v) uniformly convex if for all ε ∈ [, ], ∃δε >  such that ‖x‖ = ‖y‖ =  implies ‖x+y‖
 < – δε

whenever ‖x – y‖ ≥ ε.
In , Bruck [] explicitly introduced the following concept. Let 
 denote the set of

strictly increasing convex functions γ :R+ →R
+ with γ () = . A mapping T is said to be

of type 
 if there exists γ ∈ 
 such that for all x, y ∈D(T) and c ∈ [, ]

γ
(∥∥cTx + ( – c)Ty – T

(
cx + ( – c)y

)∥∥) ≤ ‖x – y‖ – ‖Tx – Ty‖.

Three facts about such mappings are easy to observe. Mappings of type 
 are nonexpan-
sive; affine nonexpansive mappings are of type 
; Mappings of type 
 have convex fixed
point sets. Bruck [, ] showed that each nonexpansive mapping is of type 
 in a uni-
formly convex Banach space. See also [, Proposition .] for a proof.
Next we give the weak convergence of Picard iteration in a uniformly convex Banach

space by using the proof technique developed in Reich [, ].

Theorem. Let E be a uniformly convex Banach spacewith a Fréchet differentiable norm
and K be a nonempty closed convex subset of E. If T : K → K isψ-firmly nonexpansive with

http://www.fixedpointtheoryandapplications.com/content/2014/1/81
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F(T) = ∅, then for any given x ∈ K , {xn}, defined by Picard iteration (.) weakly converges
to some fixed point of T .

Proof It follows from Lemma . that {xn} is bounded, the limit limn→∞ ‖xn – y‖ exists for
each y ∈ F(T) and

lim
n→∞‖xn – Txn‖ = .

Then {xn} is weakly compact. Similarly to the proof of Theorem ., we only need show
that {xn} has unique weak limit point. Let p and q are two weak limit points of {xn}.
Then Browder Demiclosedness Principle []means that p,q ∈ F(T). Thus both the limits
limn→∞ ‖xn – p‖ and limn→∞ ‖xn – q‖ exist. Then the remainder of the proof is identical
to the proof of Theorem . in Reference [, pp.-] with the help of the mappings
of type 
. Which is a repeat works, we omit it. �

ByTheorem., the following corollary about firmly nonexpansivemappings is obvious.

Corollary . Let E be a uniformly convex Banach space with a Fréchet differentiable
norm and K be a nonempty closed convex subset of E. If T : K → K is firmly nonexpan-
sive with F(T) = ∅, then for any given x ∈ K , {xn}, defined by Picard iteration (.) weakly
converges to some fixed point of T .

Remark . Theorem . is dependent of Theorem . or . since the lp spaces sat-
isfy Opial’s condition for  < p < ∞ while it fails for the Lp (p = ) spaces. On the other
hand, spaces satisfying Opial’s condition need not even by isomorphic to uniformly con-
vex spaces [].
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