
Simpson et al. BMC Systems Biology  (2017) 11:39 
DOI 10.1186/s12918-017-0413-5

RESEARCH ARTICLE Open Access

Quantifying the roles of randommotility
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Abstract

Background: Directed cell migration can be driven by a range of external stimuli, such as spatial gradients of:
chemical signals (chemotaxis); adhesion sites (haptotaxis); or temperature (thermotaxis). Continuummodels of cell
migration typically include a diffusion term to capture the undirected component of cell motility and an advection
term to capture the directed component of cell motility. However, there is no consensus in the literature about the
form that the advection term takes. Some theoretical studies suggest that the advection term ought to include
receptor saturation effects. However, others adopt a much simpler constant coefficient. One of the limitations of
including receptor saturation effects is that it introduces several additional unknown parameters into the model.
Therefore, a relevant research question is to investigate whether directed cell migration is best described by a simple
constant tactic coefficient or a more complicated model incorporating saturation effects.

Results: We study directed cell migration using an experimental device in which the directed component of the cell
motility is driven by a spatial gradient of electric potential, which is known as electrotaxis. The electric field (EF) is
proportional to the spatial gradient of the electric potential. The spatial variation of electric potential across the
experimental device varies in such a way that there are several subregions on the device in which the EF takes on
different values that are approximately constant within those subregions. We use cell trajectory data to quantify the
motion of 3T3 fibroblast cells at different locations on the device to examine how different values of the EF influences
cell motility. The undirected (random) motility of the cells is quantified in terms of the cell diffusivity, D, and the
directed motility is quantified in terms of a cell drift velocity, v. Estimates D and v are obtained under a range of four
different EF conditions, which correspond to normal physiological conditions. Our results suggest that there is no
anisotropy in D, and that D appears to be approximately independent of the EF and the electric potential. The drift
velocity increases approximately linearly with the EF, suggesting that the simplest linear advection term, with no
additional saturation parameters, provides a good explanation of these physiologically relevant data.

Conclusions: We find that the simplest linear advection term in a continuummodel of directed cell motility is
sufficient to describe a range of different electrotaxis experiments for 3T3 fibroblast cells subject to normal
physiological values of the electric field. This is useful information because alternative models that include saturation
effects involve additional parameters that need to be estimated before a partial differential equation model can be
applied to interpret or predict a cell migration experiment.
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Background
Continuum models are used to describe cell migration in
a number of contexts including wound repair [1–3] and
malignant invasion [4, 5]. Here, we consider a continuum
partial differential equation to describe the motion of a
population of cells, with cell density C(x, y, t), where x
and y are the Cartesian coordinates, and t is time. The
continuum model allows the cell migration mechanism
to involve an undirected (diffusive) and directed (tactic)
component. Conservation arguments lead to
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where D(S) > 0 is the cell diffusivity, and χ(S) is the tac-
tic sensitivity function. In this Keller-Segel [6] type model,
the tactic flux is proportional to the gradient of some sig-
nal, S(x, y, t), and the strength of the tactic response is
governed by the tactic sensitivity function, χ(S) [6, 7]. Set-
ting χ(S) > 0 represents attraction, since the directed
component of the cell flux is in the direction of increas-
ing S. Alternatively, setting χ(S) < 0 represents repulsion.
To maintain generality, the cell diffusivity D(S) > 0
is also written as a function of the signal, S [1, 8, 9].
If D(S) is increasing, this model represents an increase
in undirected motility with the signal, as in the case of
chemokinesis [10]. Since there is no source/sink term in
Eq. (1) we are focusing on cell migration processes on
short time scales so that cell proliferation and cell death
have a negligible impact on the cell density.
Directed cell migration can occur in response to various

types of external spatial gradients. In Eq. (1) we have
not specified the physical interpretation of S. In a model
of chemotaxis S would represent the concentration of
a chemical signal, whereas in a model of thermotaxis
S would represent the temperature. In a model of
electrotaxis S represents the electric potential. In this
work we focus on stimulating directed cell migration in an
electric field.
Electrotaxis plays an important role in guiding epithelial

and corneal wound healing processes, and could poten-
tially be used to design novel therapies [11–16]. While the
precise molecular-level mechanisms behind electrotaxis
remain unresolved, a common hypothesis is that expos-
ing cells to an electric field leads to changes in plasma
membrane potentials [11, 12] with the membrane facing
the cathode becoming depolarized, and the membrane
facing the anode becoming hyperpolarized [11, 12]. In a
cell with negligible voltage-gated conductance, the hyper-
polarized membrane attracts calcium ions, leading to a
contraction of this side of the cell which propels the cell
toward the cathode [11, 12]. In a cell with voltage-gated
calcium channels, the channels near the depolarized side

open to allow an influx of calcium ions leading to a rise
in the intracellular calcium ion level throughout such a
cell. The direction of cell movement in this situation will
depend on the balance between the opposing contractile
forces [11, 12].
A key question in applying Eq. (1) is to determine the

functional forms of D(S) and χ(S). In many theoretical
studies focusing on directed cell movement, an explicit
relationship between the tactic response function and the
signal, S, is emphasized. Often, particularly in more theo-
retical studies, an argument about saturation of receptor
cites on cells is made to suggest that χ(S) ought to be
a decreasing function of S, so that dχ/dS < 0 [6, 7].
Several putative functional forms have been put forward.
For example, relationships such as χ(S) = χ0/S and
χ(S) = χ0 K / (K + S)2, and several others, have been
suggested [13, 18–23]. In contrast, other studies simply
adopt a constant χ(S) = χ [24–33]. Under the situa-
tion where we treat D(S) and χ(S) as constants, Eq. (1)
simplifies to
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The advantage of working with Eq. (2) compared to
Eq. (1), is that there are just two unknown parameters in
Eq. (2), χ and D. In contrast, the more complicated mod-
els involving receptor saturation effects can involve six or
more unknown parameters [13, 18–23].
Making a distinction between choosing models where

the tactic sensitivity incorporates receptor saturation
effect (Eq. (1)) and a simpler model where the tactic sensi-
tivity coefficient is constant (Eq. (2)) is not obvious unless
we are guided by a reasonable quantity of experimental
data. From a theoretical point of view, it might be attrac-
tive to incorporate receptor saturation dynamics into a
mathematical model, but this comes with the trade off
that this is typically achieved by introducing a complicated
relationship between the tactic sensitivity coefficient and
the attractant concentration, which can introduce sev-
eral unknown parameters into the mathematical model
thereby over complicating the process of model calibra-
tion [17]. To provide some insight into this question, here
we analyze a suite of cell migration data. The data we
analyze comes from an electrotaxis experiment where the
strength of the attraction gradient is carefully varied so
that we can analyze both the random component of the
cell migration as well as the directed component over a
range of applied gradients.

Results
Qualitative assessment of trajectory data
Cell trajectory data, describing the motion of 80
randomly-chosen 3T3 fibroblast cells [34] (Fig. 1b) under
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Fig. 1 a Schematic of the microfluidic device indicating the direction of current flow, which corresponds to the direction in which cell migration is
biased. b Image of 3T3 fibroblast cells, distributed at low density, during a typical experiment. The scale bar corresponds to 100 μm. c COMSOL
(COMSOL, USA) simulation showing the spatial distribution of the electric field EF (mV/mm) on the microfluidic device.Markers i, ii, iii and iv are
placed on the approximate location where EF = 0, 100, 200 and 400 mV/mm, respectively. Thesemarkers indicate the approximate location where
the cell migration, for each value of EF, is observed. d COMSOL (COMSOL, USA) simulation of the spatial distribution of the potential (V) on the
microfluidic device

a range of gradients, EF = 0, 100, 200 and 400 mV/mm,
within the experimental apparatus (Fig. 1a, c-d) are anal-
ysed [35]. Since 3T3 fibroblast cells are known to migrate
towards the cathode in these types of experiments [35],
the Cartesian coordinate axes are aligned so that the posi-
tive x-direction points towards the cathode (Fig. 1c-d).We
note that there is no gradient in the y-direction (Fig. 1c-d).
The data involves recording the initial position of

each trajectory, (x′(0), y′(0)) and the position of each
cell every half-hour over a two hour interval, giv-
ing: (x′(0.5), y′(0.5)), (x′(1), y′(1)), (x′(1.5), y′(1.5)) and
(x′(2), y′(2)). Using this data, we shift the coordinate sys-
tem for each trajectory so that the initial location of
the cell is at the origin, giving (x(t), y(t)) = (x′(t) −
x′(0), y′(t)−y′(0)). Plots showing (x(2), y(2)) for 80 trajec-
tories under four different gradients are shown in Fig. 2.
The scatter plot in Fig. 2a, under the action of no gradient,

shows an approximately symmetric distribution of the
end points of the trajectories. In this case the trajectories
extend no further than approximately 40 μm away from
the origin. Since these trajectories appear to follow no par-
ticular preferred direction, this cells seem to undergo an
unbiased migration process. In comparison, the scatter
plot in Fig. 2b shows that there is some drift in the pos-
itive x-direction when the cells move under the action of
a gradient. Despite the fact that there is an obvious drift
in the positive x-direction in Fig. 2b, there remains some
randomness in the distribution of (x(2), y(2)). Therefore,
under the action of the electric field, these 3T3 fibrob-
last cells move with both a directed and an undirected
component. Comparing results in Fig. 2b-d confirms that
the drift in the positive x-direction increases with the
increasing electric field, and there appears to be some
randomness in the distribution of cells regardless of the
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Fig. 2 End points of cell trajectories under different experimental conditions. Results correspond to: a EF = 0; b EF = 100; c EF = 200, and
d EF = 400 mV/mm. All trajectories are shifted so that the initial location of the trajectory is at the origin. In each subfigure there are 80 red dots,
each corresponding to the location of the each cell after a duration of two hours

strength of the electric field. To provide more informa-
tion about the roles of directed and undirected motion
in these experiments, we will now interpret this data
using a biased random walk model that is related to an
advection-diffusion equation.

Quantitative assessment of trajectory data
We first quantify the directed component of the motil-
ity depicted in Fig. 2. Estimates of the drift velocity are
obtained, in both the x and y directions, for each of the 80
trajectories, under the four different gradient conditions.
These data are presented as histograms in Fig. 3. Results
in Fig. 3a-b characterize the estimates of vx and vy when
there is no gradient, and averaging these 80 estimates gives
us an approximation of the average drift velocity in each
direction. This gives 〈vx〉 = −1 μm/h and 〈vy〉 = −1
μm/h. Therefore, the average drift velocity in both direc-
tions is approximately zero, as we anticipate intuitively
by inspecting the data in Fig. 2a. Results in Fig. 3c-h
show estimates of vx and vy for EF = 100, 200 and 400
mV/mm, respectively. In each case we see that 〈vy〉 ≈ 0
μm/h, which is consistent with the experimental design
since there is no gradient in the y direction (Fig. 1c-d). In
contrast, estimates of 〈vx〉 increase with EF, as we have
〈vx〉 = −1, 9, 14 and 25 μm/h when EF = 0, 100, 200
and 400 mV/mm, respectively. In addition to characteriz-
ing the mean drift velocities, 〈vx〉 and 〈vy〉, the data in the
histograms in Fig. 3a-h show how the individual estimates
of vx and vy are distributed for each of the 80 trajectories

considered. A qualitative assessment of these distributions
indicates that, for each value of the EF, estimates of vx and
vy are approximately symmetrically distributed about the
mean. Furthermore, the spread about the mean appears to
be approximately constant for each value of the EF.
Given our estimates of 〈vx〉 and 〈vy〉 (Fig. 3a-h), we now

estimate the diffusivity coefficients, Dx and Dy, for each
experiment. Results showing estimates ofDx andDy under
the application of no gradient are summarised in Fig. 3i-
j. Averaging our estimates across the 80 trajectories we
obtain 〈Dx〉 = 59 μm2/h and 〈Dy〉 = 50 μm2/h for the
experiments in which there is no gradient. The magnitude
of these estimates of cell diffusivity are consistent with
previous estimates 3T3 fibroblast cells obtained using sin-
gle cell trajectory data [36, 37]. Additional estimates of
Dx and Dy, and 〈Dx〉 and 〈Dy〉 are shown in Fig. 3k-p for
cell migration under the influence of gradients of 100,
200 and 400 mV/mm, respectively. For each of these data
sets we have 〈Dx〉 ≈ 〈Dy〉, indicating that the random
motility coefficient is isotropic. Furthermore, unlike our
estimates of 〈vx〉, our estimates of 〈Dx〉 and 〈Dy〉 appear
not to depend on the electric field.

Relationship between the applied gradient, cell
diffusivities and drift velocities
To further explore the relationships between Dx, Dy, vx,
vy and the applied gradient, we calculate the sample mean
and sample standard deviation for each of the 16 his-
tograms in Fig. 3. Results in Fig. 3 show 〈vx〉, 〈vy〉, 〈Dx〉
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Fig. 3 Histograms showing: a vx for EF = 0 mV/mm; b vy for EF = 0 mV/mm; c vx for EF = 100 mV/mm; d vy for EF = 100 mV/mm; e vx for
EF = 200 mV/mm; f vy for EF = 200 mV/mm; g vx for EF = 400 mV/mm; h vy for EF = 400 mV/mm; i Dx for EF = 0 mV/mm; j Dy for EF = 0
mV/mm; k Dx for EF = 100 mV/mm; l Dy for EF = 100 mV/mm;m Dx for EF = 200 mV/mm; n Dy for EF = 200 mV/mm; o Dx for EF = 400 mV/mm;
p Dy for EF = 400 mV/mm. A red vertical line is superimposed on each histogram to indicate the sample mean. The sample mean value for each
histogram is indicated in the top left of each subfigure

and 〈Dy〉, each plotted as a function of the electric field.
The plots show the variation in the average transport coef-
ficients with the EF. In addition, the variability in the
estimates of the average transport coefficients is indicated
by the error bars. The error bars indicate the sample mean
plus or minus one sample standard deviation.
Results in Fig. 3a-b show 〈vx〉 and 〈vy〉 as a function of

the EF. As we anticipate, 〈vx〉 increases with EF whereas
〈vy〉 ≈ 0 for all EF considered. To examine the putative
relationship between 〈vx〉 and EF, and between 〈vy〉 and
EF, we perform an unconstrained linear regression. The
coefficient of determination for the 〈vx〉 data is very high,
r2 = 0.98, suggesting that the linear relationship between
〈vx〉 and EF provides a good explanation of the variabil-
ity. In contrast, the coefficient of determination for 〈vy〉 is
very low, r2 = 0.00, suggesting that the null hypothesis
is valid and there is no relationship between 〈vy〉 and EF.
In summary, these results imply that a linear relationship

between 〈vx〉 and EF is consistent with the observed data.
To match the drift term in Eq. (1) with the advection-
diffusion (Eq. (6)) we require that vx = χ(S)∂S/∂x. Since
our data is consistent with a linear relationship between
vx and the applied gradient, ∂S/∂x, it appears that a con-
stant tactic sensitivity function, χ(S) = χ , provides the
simplest explanation of our experimental results.
Results in Fig. 3c-d show 〈Dx〉 and 〈Dy〉 as a function of

EF. Visually, we see no discernible trend in the data for dif-
ferent values of EF. This visual interpretation is consistent
with the fact that we obtain a small coefficient for each
of the linear regressions in Fig. 3c-d. Therefore, it is rea-
sonable to assume that the cell diffusivities appear to be
independent of the electric field. If we accept this assump-
tion and further average the data in Fig. 3i-p in each
direction we obtain overall estimates of 〈Dx〉 = 48 μm2/h
and 〈Dy〉 = 46 μm2/h. Again, this suggests that the diffu-
sion of 3T3 fibroblast cells is approximately isotropic since
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Fig. 4 Summary of the average transport coefficients as a function of the applied gradient. a 〈vx〉 as a function of EF; b 〈vy〉 as a function of EF; c 〈Dx〉
as a function of EF; and d 〈Dy〉 as a function of EF. In each plot the sample mean is shown (grey circle), and the error bars indicate the variability. In this
case the variability is reported as the one sample standard deviation about the mean. In each case an unconstrained linear regression is superimposed
in each subfigure

we have Dx ≈ Dy, across all the experimental conditions
considered.
Now that we have summarised the estimates of the

directed and undirected components of cell migration in
the experiments, we can quantify the relative roles in
terms of the dimensionless Peclet number [38],

Pe = vL
D
, (3)

where v is the drift velocity, D is the diffusivity and L is
a relevant length-scale, which here we will take to be the
cell diameter of fibroblast cells, L ≈ 25 μm [37]. The
Peclet number is a measure of the time scale of advec-
tion to the time scale of diffusion [38]. When Pe � 1,
undirected diffusive transport dominates, when Pe � 1,
directed transport dominates, and when Pe ≈ 1 to two
mechanisms are in balance. Comparing estimates of the
drift velocity and the diffusivity in the x-direction sug-
gests that our experiments deal with a range of Peclet
numbers from Pe ≈ 0 when EF=0 mV/mm to Pe ≈ 10
when EF=400 mV/mm. Therefore, our experimental data
covers a wide range of transport conditions ranging from
purely undirected, diffusive transport to highly directed,
advection-dominant conditions.
To summarise our findings, results in Fig. 3 suggest

that 〈vx〉 increases linearly with EF, whereas the data sug-
gests that the other transport coefficients, 〈vy〉, 〈Dx〉 and
〈Dy〉, appear to be independent of EF. Guided by these
results, we assume that 〈vx〉 increases linearly with EF,

and that the other transport coefficients are indepen-
dent of EF. Comparing the results in Fig. 1c and d also
allows us to also consider whether there is any possi-
ble relationship between the transport coefficients and
the electric potential. Repeating the process of plotting
our estimates of the four transport coefficients as a func-
tion of the electric potential (not shown) suggests that
there is no obvious trends in the data. Furthermore, lin-
ear regressions between each transport coefficient and
the associated value of the electric potential reveals a low
coefficient of determination, r2 < 1. Therefore, based
on the data, we assume that the transport coefficients
appear to be independent of the electric potential in these
experiments.

Discussion
Our results indicate that when we quantify the roles
of directed and undirected migration of 3T3 fibroblast
cells under the influence of an applied electric field,
the undirected component of the migration appears to
be independent of the EF, and the directed migration
appears to increase linearly with EF. Furthermore, we
observe no consistent differences in the cell diffusivity
estimates in the x and y Cartesian directions, implying
that the undirected migration is isotropic. The simplest
way to explain these results in terms of a Keller-Segel-
type continuum model (Eq. (1)) is that we have a con-
stant diffusivity, D(S) = D, and a constant chemotactic
sensitivity function, χ(S) = χ . While the assumption
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that the chemotactic sensitivity function can be treated
as a constant is widely invoked [24–33], this assump-
tion is infrequently tested using experimental data col-
lected under a range of gradient conditions. The question
of whether the tactic sensitivity function ought to be
treated as a constant or a more complicated expression is
of interest because many theoretical models incorporate
these kinds of details, such as receptor saturation, with-
out necessarily being guided by experimental observations
[6, 7, 13, 18–23].

Conclusion
By examining trajectories of 3T3 fibroblast cells under
a range of physiologically-relevant electric gradients
[11, 14], we quantify the roles of directed and undirected
migration. In summary we find that the undirected migra-
tion is isotropic and the cell diffusivity is approximately 50
μm2/h, and that the drift velocity increases approximately
linearly with the applied electric field, suggesting that the
tactic sensitivity function is a constant.
Although our results apply to 3T3 fibroblast cells, we

anticipate that repeating the experiments and analysis
outlined here for different cell lines would provide insight
into the roles of directed and undirected motility for any
cell line of interest. Although we have found that the drift
of fibroblasts to increase approximately linearly with the
electric field in the range of EF = 0 − 400 mV/mm, it is
possible that we may observe a different response for dif-
ferent cell lines, or wemay observe a different response for
the same cell line when we apply a stronger electric field.
However, here we deal only with gradients in the range
of 0-400 mV/mm because this is a physiologically relevant
range [11, 14].

Methods
Experimental methods
As shown in Fig. 1a, we use a specifically designed and fab-
ricated microfluidic chip to study the electrotaxis of NIH
3T3 fibroblasts. A CO2 laser scriber (ILS2, Laser Tools &
Technics Corp, Taiwan) is used to ablate desired patterns
on polymethylmethacrylate (PMMA) substrates [39–41].
Four layers of PMMA sheets are thermally bonded to
form the fluidic channel, which is then attached to a
cover glass to act as the cell culture area. The thick-
ness of the fluidic channel is 1 mm, and the widths of
the four culture areas (two copies) are 4.00, 8.28, 4.14
and 2.07 mm, respectively. By applying a direct current
(dc) of 80 μA, the EF inside these areas are calculated
to be 0, 100, 200, and 400 mV/mm, respectively, based
on Ohm’s law [35]. Numerical simulations of the EF and
the potential inside the microfluidic chip is simulated
using the commercial software package COMSOL Mul-
tiphysics (COMSOL, USA) to confirm these calculations
(see Fig. 1c and d).

The NIH 3T3 fibroblast cell line, purchased from Biore-
source Collection and Research Center (BCRC, Taiwan),
is cultured in a complete medium composed of Dul-
becco’s modified Eagle medium (Gibco, USA) and 10%
calf serum (Invitrogen, USA). 106 cells are injected into
the chip and the temperature is maintained at 37 ±
0.5 oC using a customized temperature controller. Dif-
ferent EF strengths are introduced by connecting the
Ag(anode)/AgCl(cathode) electrodes (see Fig. 1a) to a dc
power supply (GWInstek, Taiwan) set at the constant-
current model [42]. The microfluidic chip is mounted on
a motorized, bright-field inverted microscope (CKX41,
Olympus, USA) to observe cell migration. Figure 1b shows
an image of the cells in one culture area. For each culture
area, corresponding to a different EF, images are taken
over a period of 2 h. In each area, at least 80 cells were
selected at random for data analysis.

Modelling methods
Since we are dealing with trajectory data over a finite
period of time for which no trajectory touches any phys-
ical boundary, we model the system as a random walk on
� = {

(x, y) : −∞ < x < ∞,−∞ < y < ∞}
. For the anal-

ysis we denote the position of a cell at time t, relative to
the position at t = 0 as a random vector (x(t), y(t)), where
x(t) and y(t) are the Cartesian coordinates at time t. These
coordinates are related to a probability density function,
p(x, y, t) so that

P
{
(x(t), y(t)) ∈ A

} =
∫∫

A
p(x, y, t) dx dy, (4)

where A is a plane region that is a subset of �.
We take the simplest possible, standard approach by set-

ting the transport coefficients, D and χ , to be constants
[36, 43]. Furthermore, we alsomake use of the fact that the
spatial gradient of electric field (∂S/∂x) is approximately
constant across several subregions on the experimental
device. However, at this stage we allow for the transport
coefficients to potentially take on different values in differ-
ent directions. These simplifications allow us to work with
an anisotropic analogue of the linear advection-diffusion
equation in a two-dimensional Cartesian geometry, which
can be written as

∂p
∂t

= Dx
∂2p
∂x2

+ Dy
∂2p
∂y2

− vx
∂p
∂x

− vy
∂p
∂y

, (5)

on �. Since the distribution of cells on the experimen-
tal device is deliberately kept low so that the density of
cells is well below carrying capacity, we deal with a lin-
ear model which is appropriate for cell migration under
low cell density conditions where cell-to-cell collisions are
relatively infrequent [44, 45]. If we consider the initial con-
dition p(x, y, 0) = δ(x)δ(y), which is relevant to following



Simpson et al. BMC Systems Biology  (2017) 11:39 Page 8 of 9

the motion of a single agent in the random walk starting
from the origin [36], the solution of Eq. (5) is [43]

p(x, y, t) = 1
4π t

√
DxDy

exp
[
−

(
(x − vxt)2

4Dxt
+ (y − vyt)2

4Dyt

)]
.

(6)

To interpret the random walk data in terms of this
model we will deal with a series of individual trajectory
data, (x(t), y(t)) with (x(0), y(0)) = (0, 0). We analyze
each spatial component of the shifted trajectory sepa-
rately. To achieve this we consider the marginal probabil-
ity density functions for each spatial component,

px(x, t) =
∫ ∞

−∞
p(x, y, t) dy, py(y, t)=

∫ ∞

−∞
p(x, y, t) dx,

and we evaluate the first two positive moments, the
mean and variance, of x(t) and y(t), respectively. The first
moments of the marginal probability density functions are
given by

〈x1(t)〉 =
∫ ∞

−∞
x px(x, t) dx, 〈y1(t)〉 =

∫ ∞

−∞
y py(y, t) dy.

Using Eq. (6) we obtain

〈x1(t)〉 = vxt, 〈y1(t)〉 = vyt.

Therefore, for each trajectory, (x(t), y(t)), we can obtain
separate estimates of vx and vy. Fitting a series of straight
lines constrained to pass through the origin gives us an
estimate of vx and vy for each trajectory. Since we have 80
trajectories for each gradient condition, we obtain 80 esti-
mates of vx and 80 estimates of vy. The variability amongst
these estimates can be observed by plotting the results as
a histogram. Furthermore, we can characterise the aver-
age coefficients by evaluating the samplemean and sample
standard deviation of these 80 estimates. We will denote
the sample mean as 〈vx〉 and 〈vy〉, respectively.
To provide information about the diffusivity, we will

make use of the second moments of the marginal proba-
bility density functions are given by

〈
x2(t)

〉 =
∫ ∞

−∞
(
x − 〈

x1(t)
〉)2 px(x, t) dx,

× 〈
y2(t)

〉 =
∫ ∞

−∞
(
y − 〈

y1(t)
〉)2 py(y, t) dy.

Using Eq. (6) we obtain〈
x2(t)

〉 = 2Dxt,
〈
y2(t)

〉 = 2Dyt.

Therefore, given our previous estimates of the average
drift velocity in each direction 〈vx〉 and 〈vy〉, for each
trajectory we can obtain separate estimates of Dx and
Dy. Fitting a series of straight lines constrained to pass
through the origin give us estimates of Dx and Dy for
each trajectory. Since we have 80 trajectories for each
gradient condition, we obtain 80 estimates of Dx and 80

estimates of Dy. The variability amongst these estimates
can be observed by plotting the results as a histogram.
Furthermore, we can characterise the average coefficients
by evaluating the sample mean and sample standard devi-
ation of these 80 estimates. We will denote the sample
mean as 〈Dx〉 and 〈Dy〉, respectively.

Additional file

Additional file 1: Additional data. Numerical estimates of transport
coefficients. (XLSX 21 kb)
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EF: electric field
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