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Abstract

In this paper, we establish a modified reduced differential transform method and a
new iterative Elzaki transform method, which are successfully applied to obtain the
analytical solutions of the time-fractional Navier-Stokes equations. The obtained
results show that the proposed techniques are simple, efficient, and easy to
implement for fractional differential equations.
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1 Introduction

In recent years, the fractional differential equations have been used in various fields such
as colored noise, electromagnetic waves, boundary layer effects in ducts, viscoelastic me-
chanics, diffusion processes, and so on [1-5]. However, most fractional differential equa-
tions are very difficult to exactly solve, so numerical and approximation techniques have
to be used. Recently, many powerful methods have been used to approximate linear and
nonlinear fractional differential equations. These methods include the Adomain decom-
position method (ADM) [6, 7], the homotopy perturbation method (HPM) [8-12], the
variational iteration method (VIM) [13, 14], and so on.

The time-fractional Navier-Stokes equation can be written in operator form as [15, 16]

3 1.1)

Deu+(u-Vu=-1vp+vviy,
V.u=0, 0<ac=l,

where DY = % is the Caputo fractional derivative of order «, p is the pressure, p is the

density, u is the velocity, v is the kinematic viscosity, and ¢ is the time. When « = 1, equation
(1.1) is the classical Navier-Stokes equation, the form given by

(1.2)

U+ u-Vu= —%Vp+vV2u,
V-u=0.

In this paper, we consider the unsteady flow of a viscous fluid in a tube, the velocity field is
a function of only one space coordinate, the time is a dependent variable. This kind of time-
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fractional Navier-Stokes equation has been studied by Momani and Odibat [15], Kumar
et al. [16, 17], and Khan [18] by using the Adomian decomposition method (ADM), the
homotopy perturbation transform method (HPTM), the modified Laplace decomposition
method (MLDM), the variational iteration method (VIM), and the homotopy perturbation
method (HPM), respectively.

In 2006, Daftardar-Gejji and Jafari [19] were first to propose the Gejji-Jafari iteration
method for solving a linear and nonlinear fractional differential equation. The Gejji-Jafari
iteration method is easy to implement and obtains a highly accurate result. The reduced
differential transform method (RDTM) was first proposed by Keskin and Oturanc [20, 21].
The RDTM was also applied by many researchers to handle nonlinear equations arising
in science and engineering. In recent years, Kumar et al. [22—-28] used various methods to
study the solutions of linear and nonlinear fractional differential equation combined with
a Laplace transform.

Based on the Gejji-Jafari iteration method and RDTM, we established the new itera-
tive Elzaki transform method (NIETM) and the modified reduced differential transform
method (MRDTM) with the help of the Elzaki transform [29, 30] and we successfully ap-
plied this to time-fractional Navier-Stokes equations. The results show that our proposed
methods are efficient and easy to implement with less computation for fractional differ-
ential equations.

2 Basic definitions
In this section, we set up notation and review some basic definitions from fractional cal-
culus and Elzaki transforms.

Definition 2.1 A real function f(x), x > 0, is said to be in the space C,,, . € R if there exists
a real number p (p > ), such that f(x) = ¥f;(x), where fi(x) € C[0, 00), and it is said to be
in the space C;T iff(’”> eCy,,meN.

Definition 2.2 The Riemann-Liouville fractional integral operator of order & > 0, of a
function f(x) € C,,, u > -1 is defined as [5]

1 X a-1
Ffw) = T@ Jo =" f()dt, a>0,x>0, 2.1)
I°f(x)=f(x), a=0,
where I'(+) is the well-known Gamma function.

Definition 2.3 The fractional derivative of f(x) in the Caputo sense is defined as [5]

DY (x) = I"“D"f(x) = ﬁ /0 (x— )" Y (t) dt, (2.2)

wheren-1<a<n,neN,x>0,feC".

The following are the basic properties of the operator D*:
1) DI°f(x) =f(x),

n-1
@) DY) =flx) =Y f® (0+)%, x>0,

k=0
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Definition 2.4 The Elzaki transform is defined over the set of functions A = {f(¢) :
£ .
AM, ky, ke > 0, |f(8)] < Me% ,t € (1Y, X € [0,00)} by the following formula [29, 30]:
o0
-

Sf(odt,  se ki k).

T(s) = E[f (0] = 5 /

Lemma 2.1 The Elzaki transform of the Riemann-Liouville fractional integral is defined
as follows [29, 30]:

E[I°f(£)] = s"*' T (s). (2.3)

Lemma 2.2 The Elzaki transform of the Caputo fractional derivative is given as follows

[29, 30]:
no T(S) — 2—na+k , (k)
E[Dx u(x, t)] = — Zs u(0,t), n-l<na<n. (2.4)
S}’IC(
k=0

3 New iterative Elzaki transform method (NIETM)
Consider an unsteady, one-dimensional motion of a viscous fluid in a tube. The equa-
tions of motions which govern the flow field in the tube are the Navier-Stokes equations
in cylindrical coordinates and they are given by [15, 16]

:Mt = —%Pz + vty + %u,), (3.1)

u(r,0) =f(r).

If the fractional derivative model is used to present the time derivative term, the equation
of motion (3.1) assumes the form

{u‘;‘ =P +v(uy +1u,), O<a <1, (3.2)

M(}",O) :f(r);

where P = —%pz.
Applying the Elzaki transform on both sides of equation (3.2), we have

1
E[uf] =E|:P+v<u,,+ —u,)]. (3.3)
r
Using the property of the Elzaki transform and the initial condition, we get
2 o4 1
E[u(r,t)]:sf(r)+s E(P+v|u,+-u)]|. (3.4)
r

Applying the inverse Elzaki operator on both sides of (3.4), we obtain

u(r,t) = E™ [szf(r)] +EL |:s°‘E|:P + v(u,, + %u,)ﬂ (3.5)
Assume

g(r,t) = E7[sf ()],

N(u(r,t) = E[S*E[P + v(syy + Lu1)]]. (36)
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We can obtain
u(r,t)=g(rt) + N(u(r, t)). (3.7)

The solution of equation (3.7) has the series form
u(r,t) =Y wilr,t). (3.8)
i=0

The operator N can be decomposed as
oo oo i i-1
N(Z u,) = N(uo) + Z{N(Z u,) —N(Z u,) } (3.9)
i=0 i=1 j=0 j=0
According to equations (3.8) and (3.9), equation (3.7) is equivalent to
oo oo i i-1
Zui:g+N(u0)+Z{N<Zuj>—N(Zu])}. (3.10)
i=0 i=1 j=0 j=0
We define the recurrence relation

up =4,
uy = N(u), (3.11)
U1 =N(ug + 1 + -+ U) —N(uo+ g + -+ thyy1), m=12,3,....

Then
(y + s+ + ) =N +ug + - +u,,), m=1,2,3,..., (3.12)

and
o0 o0
Z u =g+ N(Z I/ll'). (313)
i=0 i=0

The k-term approximate solution of equation (3.7) is given by u = ug + ug + 4y + - - - + tg_1.
Similarly, for the proof of the convergence of the NIETM, see [19].

4 Modified reduced differential transform method (MRDTM)
In this section, the basic definition of the modified reduced differential transform method

is introduced as in [31, 32].

Definition 4.1 The modified reduced differential transform of u(x,t) at ¢t = £, is repre-
sented as

1 ak
Uy (x) = m [Wu(x’ t):| ) (4.1)

where « is a parameter which describes the order of the time-fractional derivative.
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Definition 4.2 The differential inverse transform of Uy(x, ) is represented as
ule,t) =Y U@x)(E—to) 4=y ——— ulx, t ke, 4.2
(% 1) kXOj (%) (£~ to) kX_OjF(kaﬂ)[atk ( )} (4.2)

According to (4.1) and (4.2), the following theorems can be obtained.
Theorem 4.1 Ifw(x,t) = u(x,t) £ v(x,t), then MRDT [w(x,t)] = Ui(x) £ Vi(x).
Theorem 4.2 If w(x,t) = Au(x, t), then MRDT [w(x, t)] = AU (x).

Theorem 4.3 If w(x,t) = x™t", then MRDT [w(x,t)] = x"58(k — n), where

S(k—n) = 1, k=mn
0, k#n.

Theorem 4.4 If w(x, t) = u(x, t)v(x, t), then MRDT [w(x,t)] = Zr o Ur(%) Vi_p(x).

Theorem 4.5 If w(x,t) = " u(x, t), then MRDT [w(x,t)] = 9 o Uy (%).

()t’

Theorem 4.6 If w(x, ) = 2 u(x,t), then MRDT [wi(x, )] = “4Nasll 1, ().

atNa I (ka+1)
Theorem 4.7 If w(x,t) = [u(x,t)]X, then
Up(x), k=0,
MRDT st =W =
[W(x ] k(x) {ZIZ . UZZ[BW ku ( )Wk—n(x): k > 1.

Applying the modified reduced differential transform on both sides of equation (3.2),
we have

MRDT[u‘;‘] = MRDT|P] + MRDT[V(u,r)] + MRDT|:V|: (’lju,> ] ] . (4.3)

Using the property of MRDT, we can obtain

I'ka + o +1)

1
Fker 1) Ugn = V[(Uk)rr + ;(uk)r] +P3(k - 0). (4.4)

According to equation (4.4), we have the following result:

Uy (%) = ¢1(%), Uy (x) = @2 (x), Uz (x) = @3(x),

Uy (x) = ¢4 (%),
So, we get the solution of equation (3.2) as follows:

u(x, £) = Up()2° + Uy ()% + Us ()% + Us (%)% + « - + U, ()™ + - - - . (4.5)

Page 5 of 12
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5 lllustrative examples
Example 1 Consider the following time-fractional Navier-Stokes equation:

M?(}", t) =P+ urr(r; t) + %Mr(}”, t),

5.1
u(r,0)=1-r2. (6.1)
5.1 Applying the NIETM
Applying the Elzaki transform on both sides of equation (5.1), we have
2 o 1
E[u(r,t)]:sf(r)+s E\P+uy,+-u|. (5.2)
r

Using the inverse Elzaki transform and the initial condition on both sides of equation (5.2),
we get

u(r,t) =E'[s(1-7r*)] +E™ [SO’E[P + Uy + %uﬂ (5.3)

Assume

g(r,t) =E[s*(1 - 1)),

L 1 (5.4)
N(u(r,t)) = E"[SE[P + tpr + ;1]
According to (3.11), we get the following results:
Ug = 1- }"2,
(P—4)t*
U =—-,
T T+l
uy =0,
uz =0,
u, =0.
Therefore, the solution of equation (5.1) is
[o¢]
u(r,t) = Z u;
i=0
P —4)t”
=1—r2+!. (5.5)
Mo +1)

Remark 5.1 The result is the same as ADM, HPTM, HPM, and VIM by Momani and
Odibat [15], Kumar et al. [16, 17], and Khan [18].

Remark 5.2 When « = 1, equation (5.5) is the exact solution of the classical Navier-Stokes
equation as follows:

u(r,t) = (1 - r2) + (P —-4)t.
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5.2 Applying the MRDTM
Applying the MRDT on both sides of equation (5.1), we get

MRDT[u‘t"(r, t)] = MRDT|P] + MRDT[utt(r, t)] + MRDT[’lju,(r, t)].

Using the property of MRDT, we have

ko +a +1)

1
Ui = (U), + —(Ug), + PS(k = 0).
Mo v 1) e (U) +r( r + P8(k - 0)

2

By iteration with Uy = 1 — r*, we get the result

Uy=1-72,
P-4
T

u, =0,

Us =0,

u,=0.

So, the solution of equation (5.1) is given as

[ee]
u(r,t) = Z u,t"™
n=0

(P—4)~

P B
" T+ D)

Example 2 We consider the following time-fractional Navier-Stokes equation:

M?(r;t):urr(’ﬂvt)+%ur(rrt)r O<a <1,
u(r,0) =r.

5.3 Applying the NIETM
Applying the Elzaki transform on both sides of equation (5.9), we have

1
E[u(r, t)] — s2u(r,0) — s“E[u,, + —ur] =0.
r
According to the initial condition, we can obtain
2 o 1
E[u(r,t)] —sr—s"E|ttyr + —u, | = 0.
r
Using the inverse Elzaki operator on both sides of equation (5.11), we have

u(r,t)=E'[s*r] + E™ [s"‘E[urr + %urﬂ

Page 7 of 12
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(5.10)

(5.11)

(5.12)
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Assume

g(r,t) = E1[s%r],

N(u(r,t)) = E7 [s*Eluty + 1u4,]]. (5.13)

According to (3.11), we have the result

Uy =r,
t*

(e +1)
t20{
PrQa+1)
9t3a
P (3a +1)

225t
(4o +1)

u =

Uy =

Uus =

Uy

12x3%x---x(2n=-3)2% ™
r2n-1 Cnoe +1)°

Uy =

Therefore, the solution of equation (5.9) is given as

tVlOt

o0
12 %32 x--- x (2n-3)?
wrt)=r+ Z r2n-1 I'na+1)°

(5.14)

n=1

Remark 5.3 The result is the same as ADM, HPTM, HPM, and VIM by Momani and
Odibat [15], Kumar et al. [16, 17], and Khan [18].

Remark 5.4 When o =1, equation (5.14) is the same as the exact solution of the classical
Navier-Stokes equation [15],

[o¢]
12x3%2x---x(2n-3)*t"
u(r,t)=r+ Z =l prk
n=1 :

5.4 Applying the MRDTM
Applying the MRDT on both sides of equation (5.9), we get

MRDT[u‘;‘(r, t)] = MRDT[uW(r, t)] + MRDT|}ur(r, t)]. (5.15)

Applying the property of MRDT, we get

I'ka + o +1)

1
l"(koz + 1) Uk+1 = (uk)rr + ;(Uk)r' (516)

Using Uy =r, we get

Up=r,

Page 8 of 12
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Figure 1 The solution of equation (5.1) for a = 0.5,
P=5.

Figure 2 The solution of equation (5.1) for

@=07,P=5.
1
"= T +1)
1
2= PBrQa+1)
9
" = Pr(Ba +1)
225
h T e+ 1)

12%x3%x---x(2u-3)? 1
p2n-1 Ina +1)°

Uy =

So, the solution of equation (5.9) is given as

t}’l(l

2
I(no +1)

o0 oo
12x32x---x(2n-3
S I S
n=0 n=1

(5.17)

Remark 5.5 We apply the NIETM and MRDTM to solve the time-fractional Navier-
Stokes equations, and we get complete agreement with HPM, HPTM, ADM, and VIM.
By comparing, NIETM and MRDTM are more easy to understand and implement than
other methods with less computation.
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Figure 3 The solution of equation (5.1) forat =1,
P=5.

Figure 4 The exact solution of equation (5.1) for
o=1,P=5.

Figure 5 The different solutions of equation (5.1) for -18
a=0.6,0.8,1atP=>5,r=2.5olidline: a = 0.6, dotted
line: ¢ = 0.8, dashed line: ¢ = 1.

—22f -
_ .
g P
El -

24t -

—26f 7

-
-28f P
3 L L L L
0 02 04 06 08 1

Remark 5.6 Figures 1-3, respectively, show the approximate solution of equation (5.1)
for @ = 0.5,0.7,1 at P = 5. Figure 4 shows the exact solution of equation (5.1) for « = 1.
Figure 5 shows the different solution of equation (5.1) for « = 0.6,0.8,1 at P =5, r = 2.
Figure 6 shows the different solution of equation (5.1) for « = 0.6,0.8,1 at P =5, t = 1. By
comparison, it is easy for us to find that the solution continuously depends on the values
of the time-fractional derivative.

6 Conclusion

In this paper, we apply the modified reduced differential transform method and new it-
erative Elzaki transform method for solving the time-fractional Navier-Stokes equation.
The numerical results show that the MRDTM and NIETM are very powerful and efficient
techniques for fractional differential equations.

Page 10 of 12
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2.4

Figure 6 The different solutions of equation (5.1) for
o« =0.6,0.8,1atP=>5,t=1.5olid line: = 0.6, dotted
line: ¢ = 0.8, dashed line:ax = 1.

u(r,1)
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