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Abstract

The block diagonalization (BD) precoding technique is a well-known linear transmit strategy for multiuser multi-input
multi-output (MU-MIMO) systems. The MU-MIMO broadcast channel is decomposed into multiple independent parallel
single user MIMO (SU-MIMO) channels and achieves the maximum diversity order at high data rates. The
lattice reduction-aided decoding (LRAD) features the reduced decoding complexity in MIMO communications.
The Lenstra-Lenstra-Lovasz (LLL) algorithm has been extensively used to obtain better bases of the channel
matrix while the complex lattice reduction (CLR) is aimed at improving orthogonality of basis vectors and
shortening them. The orthogonalization and size reduction work are left for the CLR algorithm so that a
modification of the channel matrix is carried out, resulting in better precoding and detection performances.
We also derive bounds for lattice decoding. Simulation results show that the bit error rate (BER) performance
of our proposed algorithm is better than that of conventional ones and it reduces the complexity compared
with the LLL algorithm-based schemes.

Keywords: Complex lattice reduction, Block diagonalization, Multiuser MIMO, Detection algorithms, Proximity
factors, Low complexity
1 Introduction
Multiple-input multiple-output (MIMO) systems have
been proposed for the next-generation wireless commu-
nication systems to increase the transmission capacity,
and therefore, a high-performance and low-complexity
MIMO detector becomes an important issue. The max-
imum likelihood detector (MLD) is known to be an opti-
mal detector; however, it is impractical for realization
owing to its great computational complexity. Signal pro-
cessing is performed on a per-cell basis in conventional
wireless systems. The zero-forcing (ZF) and minimum
mean-square error (MMSE) precoding are the well-
known linear precoding schemes. Although linear pre-
coding techniques have considerably low computational
complexity, they show relatively low performance due to
the susceptible noise amplification, particularly when the
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channel matrix is ill-conditioned. The block diagonaliza-
tion (BD) is one of the key processing techniques for
multiuser MIMO (MU-MIMO) systems. The MU-
MIMO downlink channel can be decomposed into mul-
tiple parallel single user MIMO (SU-MIMO) channels
with the use of BD which was first proposed in [1]. Be-
cause of no interference between the users after BD, the
MU-MIMO channel can be transformed into equivalent
SU-MIMO channels [2], and then the SU-MIMO tech-
niques can be applied. Two singular value decompos-
ition (SVD) operations have to be implemented through
the BD algorithm for the complete or full BD reported
in [1, 3]. By using the first SVD, the multiuser interference
(MUI) is forced to be zero and the second SVD is used to
produce orthogonal parallel SU-MIMO channels. By
replacing the first SVD operation with a less complex so-
lution to mitigate the MUI, a QR decomposition-based
BD precoding scheme is presented in [4] for MU-MIMO
systems. QR-BD utilizes a QR decomposition to the MUI-
MIMO channel to obtain the null space of MUI. There-
fore, the complexity of SVD operation on BD precoding is
distributed under the terms of the Creative Commons Attribution 4.0
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reduced by QR operation in QR-BD precoding. A
generalized ZF channel inversion (GZI) precoding
method is developed in [4], where the MUI-MIMO
channel is operated by pseudo inversion and QR
decomposition to mitigate the MUI. Furthermore, the
generalized MMSE channel inversion precoding scheme
denoted as GMI is proposed in [4] to balance the MUI
and the noise for each user effectively.
Lattice reduction (LR) is another preprocessing and

detection technique that has recently attracted significant
research efforts. Yao and Wornell used the LR algorithm
in conjunction with MIMO detection techniques [5]. LR
is a powerful concept for solving diverse problems involv-
ing point lattices. The LR has been successfully used in
signal processing applications including global positioning
system (GPS), frequency estimation, and particularly data
detection and precoding in wireless communication sys-
tems. Besides linear detection schemes based on the ZF or
the MMSE criterion, successive interference cancelation
(SIC) is a popular way to detect the transmitted signals at
the receiver side [6]. The LR has been proposed in order
to transform the system model into an equivalent one
with a better-conditioned channel matrix prior to low-
complexity linear or SIC detection [6]. The symbol error
rate (SER) curves can parallel those of the MLD algo-
rithms by using LR-aided detection schemes, which has
devoted a great deal of interest to exploring the applica-
tion of LR in MIMO systems. The LR-aided detection
schemes with respect to the MMSE criterion have been
extended by Wuebben et al. [6]. In [7], both the LR-aided
SU-MIMO detection and the LR-aided SU-MIMO pre-
coding have been investigated. LR-aided MIMO precoding
for decentralized receivers was discussed in [8–12]. The
aim of the complex LR (CLR) algorithm is to find a new
basis which is shorter and nearly orthogonal as compared
to the original matrix [12]. Therefore, if the second pre-
coding filters for the equivalent SU-MIMO channels after
the first SVD were designed based on the lattice-reduced
channel matrix, a better bit error rate (BER) performance
can be achieved. Then, a CLR-aided regularized BD (RBD)
precoding algorithm is proposed, which not only has a
lower complexity but also achieves a better BER perform-
ance than the RBD or QR/SVD RBD [12, 13].
Among the LR algorithms, the Lenstra-Lenstra-Lovasz

(LLL) algorithm is most commonly used, which was first
proposed by Lenstra et al. in [14]. However, a real value-
based matrix can be processed which may lead to high
complexity when the channel has large dimensions. The
complex LLL (CLLL) algorithm was proposed in order
to reduce the computational complexity [15]. The over-
all complexity of the CLLL algorithm is nearly half of
the LLL algorithm without any performance degradation
[15]. The essence of the LR algorithm is to try to orthog-
onalize the columns of the channel matrix and reduce
its size as well [12]. Gram-Schmidt orthogonalization
(GSO) procedure and size reduction are the two core
components of the LR algorithm. The main contribu-
tions of our paper are summarized as below:

� We propose complex lattice reduction aided with
block diagonalization for MU-MIMO systems.

� A BD-based precoding algorithm is able to separate
several SU-MIMO channels from the MU-MIMO
downlink channel as well as achieve the maximum
diversity order at high data rates and reduce the
interference.

� To reduce the complexity of precoding scheme, we
employ the CLR to replace the SVD of conventional
BD-based precoding algorithm by introducing a
combined channel inversion to eliminate the MUI.

� The LLL algorithm has been used to obtain better
bases of the channel matrix, while the CLR is aimed
at improving orthogonality of basis vectors and
shortening them. We also derive the bounds for
lattice decoding.

� The simulation results show that the BER
performance of our proposed algorithm is better
than that of conventional algorithms and the
complexity is reduced compared with the LLL
algorithm-based schemes.

This paper is organized as follows. A system model is
introduced in Section 2. In Section 3, we present pre-
coding techniques in detail. In Section 4, we describe
complex LR-aided block diagonalization. In Section 5,
MIMO detection algorithms are presented. In Section 6,
we introduce performance bounds for lattice decoding,
and complexity analysis is described in Section 7. Simu-
lation results are presented in Section 8, and conclusions
are drawn in Section 9.

2 System model
The MU-MIMO broadcast model is shown in Fig. 1,
where K users equipped with Ni receiving antennas on
an individual basis and data streams manipulated at the
base station by a precoder with NT antennas are sent to
the corresponding receiving antennas, respectively. The

total number of receiving antennas is NR ¼
Xk
i¼1

Ni . We

assume that the total number of transmitted data
streams is r ≤min(NR,NT). The received signal vector
y can be expressed as

y ¼ D HWsþnð Þ; ð1Þ
where D∈ℂ r�NR is the detection matrix, H∈ℂNR�NT is
the complex Gaussian channel matrix with zero mean
and unit variance, W∈ℂNT�r is the precoding matrix,



Fig. 1 Structure of CLR-aided BD system
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s ∈ℂr × 1 is the data vector, and n ∈ℂr is the Gaussian
noise with independent and identically distributed (i.i.d)
entries of zero mean and variance N0.

3 Precoding technique
In this section, we discuss conventional BD and CLR al-
gorithms. This drawback would be more serious when
the channel is highly correlated. One solution for this
problem is known as BD which was first proposed in [3].

3.1 Block diagonalization
The MUI constraint forces all interference terms to be
zero, which is known as the ZF precoding. The precod-
ing matrix W is designed to satisfy the transmit power
constraint. The channel inversion is applied to both the
ZF and MMSE precoding approaches. An additional
power is needed to force two closely spaced antennas of
a single user in order to receive different signals, which
would be a more serious disadvantage in the event of
the highly correlated channel. The BD is well known as
one of the solutions for this problem. The precoding
matrix is defined as

W ¼ W1;W2;⋯;WK½ �; ð2Þ
where Wi∈ℂNT�ri is the i-th user’s precoding matrix
which lies in the null space of the other users’ channel
matrices. Without losing generality, excluding the i-th
user’s channel matrix, ~Hi is defined as

~Hi ¼ HT
i ;⋯;HT

i−1H
T
iþ1;⋯;HT

K

� �T
: ð3Þ

From the SVD of ~Hi, we obtain

~Hi;eff ¼ ~Ui
~Λi ~V 1ð Þ

i
~V 0ð Þ
i

h iH
; ð4Þ

where Ũi and ~Λi denote the left singular vector matrix
and the matrix of ordered singular values of ~Hi , respect-

ively. Matrices ~V 1ð Þ
i and ~V 0ð Þ

i denote the right singular
matrices where each consists of the singular vectors
corresponding to non-zero singular values and zero singu-

lar values, respectively. ~V 0ð Þ
i forms an orthogonal basis for

the null space of ~Hi , that is, we choose Wi¼~V 0ð Þ
i to force

the MUI to be zero. After removing the effect of the inter-
fering users’ streams, the BD maximizes the data through-
put by the well-known water-filling (WF) algorithm and the
highest sum rate is achieved. The SVD is defined as

Hi ~V
0ð Þ
i ¼ UiΛi V 0ð Þ

i V 0ð Þ
i

h iH
: ð5Þ

The product of V 1ð Þ
i and ~V 0ð Þ

i can yield an equivalent
SU-MIMO channel with orthogonal bases. Orthogonal-

ity can be measured by the coefficients μi;j ¼ hi;hjh i
hjk k2 ,

where hi, hj are the columns of the equivalent channel

Hi ~V
0ð Þ
i V 1ð Þ

i .

3.2 CLLL reduction algorithm
A complex lattice is a set of points [9],

ℒ Hð Þ ¼ Hx=hi∈ℂNi�NT ; xi∈ℤ þ jℤ ;
� � ð6Þ

where H ¼ h1; h2;⋯; hNTf g contains the bases of the
lattice ℒ(H). It is well known that HHH is diagonal when
the channel matrix H in Eq. (1) is orthogonal, and the
decision region of the linear detectors required to find
the nearest lattice point is the same as that of the ML
detector. Actually, any matrix HLR can generate the
same lattice if and only if HLR =HeffT with a uni-
modular matrix. Since the LR scheme is adopted, the
complex valued system model given in Eq. (1) is trans-
formed into the equivalent real valued system as

H¼ ℛ Hð Þ −J Hð Þ
J Hð Þ ℛ Hð Þ
� �

; ð7Þ

y¼ ℛ yð Þ
J yð Þ
h i

; s¼ ℛ sð Þ
J sð Þ
h i

;n¼ ℛ nð Þ
J nð Þ
h i

; ð8Þ

where ℛ ⋅ð Þ;J ⋅ð Þ is the real and imaginary part,
respectively.
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The LR algorithm aims to find a new basis HLR for a
given ℒ(H) which is shorter and nearly orthogonal com-
pared with the original matrix H. Let the orthogonal fac-

tor be represented as μi;j ¼
hi;h

�
jh i

h�jk k2 , where h�j represents

the vectors generated by the GSO procedure.
Definition (δ-LLL-reduced basis): A basis HLR by the

QR decomposition, i.e., HLR ¼ ~Q ~R , is regarded as δ-
LLL-reduced basis where 1/4 < δ < 1, if

ui;j≤1=2; 1≤j < i≤NT ð9Þ

h�k
�� ��2 þ uk;k−1

		 		 h�k−1
�� ��2≥δ h�k−1

�� ��2; 1 < k≤NT ; ð10Þ
where δ ∈ (1/2, 1) is a factor chosen to achieve a good
performance with lower complexity. If only Eq. (9) is sat-
isfied, this basis is the size-reduced basis as well. The
parameter δ influences the quality of the reduced basis.
Throughout this paper, δ = 3/4 as in [14].

4 Proposed complex LR-aided BD
In this section, we combined the BD and CLR techniques.
To cancel the MUI, we took the similar design concept from
BD and thus the MU-MIMO channel can be transformed
into equivalent SU-MIMO channels. We assume that the
channel information is perfectly known both at the transmit
side and the receiving side. We remark that a performance
study of the proposed scheme with imperfect channel infor-
mation and limited feedback can be considered.
We employ a similar strategy derived from the BD

scheme in order to eliminate the interference between
users. We successfully transform the MU-MIMO chan-
nel into equivalent SU-MIMO channels after the pre-
coding. Each equivalent SU-MIMO channel has the
same properties as a conventional SU-MIMO channel,
and when increasing the number of transmit antennas of
the MU-MIMO system by one, the number of spatial
channels of each user is also increased by one. The
equivalent SU-MIMO channel is given by

Heff ¼ HW ð11Þ
The received signal at the receiving side is

y¼Heff sþn ð12Þ
By using the CLLL algorithm, we can make the col-

umns of Heff orthogonal and shorter, that is

HLR ¼ HeffT: ð13Þ
We can rewrite Eq. (12) as

y¼HeffTT−1sþn¼HLRzþn; ð14Þ
where z = T− 1s and HLR possesses a better channel qual-
ity, and we can design the detector based on the better
detector performance which can be achieved due to less
noise enhancement increased by HLR. The basic idea
behind approximate lattice decoding (LD) is to use
LR in conjunction with traditional low-complexity
decoders. With LR, the basis B is transformed into a
new basis consisting of roughly orthogonal vectors.
And the complexity is reduced also compared to the
SVD technique.

5 MIMO detection algorithms
5.1 ZF and MMSE detection algorithms
The interference is completely suppressed in a ZF detector
by multiplying the receiving signal vector y with the

pseudo-inverse of the channel matrix H†
LR ¼ HT

LRHLR

 �−1

HT
LR . Given the received signal y in Eq. (14), the MLD

problem consists of determining the vector z with the
highest likelihood, that is, solving the following integer
least squares problem [7]:

~zML ¼ arg min
z∈ℤ r

y−HLRzk k2: ð15Þ

However, the MLD is usually impractical due to its
complexity that grows exponentially with the number of
constellation points and the number of transmitted
streams r. The decision step consists of mapping each
element of the filter output vector

~sZF ¼ H†
LRy ¼ sþ HT

LRHLR

 �−1

HT
LRn ð16Þ

onto an element of the symbol alphabet by a minimum
distance quantization, which in case of M-QAM corre-
sponds to a simple rounding operation to the allowed
range of values. For an orthogonal channel matrix, ZF is
identical to ML. The MMSE detector takes the noise
term into account and thereby leads to an improved
performance.

~sMMSE ¼ H†
LRy ¼ HT

LRHLR þ σ2nI

 �−1

HT
LRy: ð17Þ

5.2 Lattice-reduction-aided linear detection
Linear detection is optimal for an orthogonal channel
matrix. For s ∈ ℤm, we also have z ∈ ℤm, so s and z stem
from the same set. The idea behind LR-aided linear
detection is to consider the equivalent system model in
Eq. (14) and perform the nonlinear quantization on z
instead of s. For LR-aided ZF, this means that first

~zLR−ZF ¼ T−1~sZF ¼ HLRy¼zþHLRn ð18Þ
is calculated, where the multiplication with HLR usually
causes less noise amplification than the multiplication
with H†

LR in Eq. (14) due to the roughly orthogonal col-
umns of HLR. Therefore, a hard decision based on
~zLR−ZF is in general more reliable than one on ~sZF . We



Table 2 Computational complexity of QR/SVD-BD [22]

Steps Operations Flops Case

1 H =QR 16K N2
TNi þ NTN2

i þ 1=3N3
i


 �
12544

2 Heff = HW 8NRN2
T 1728

3 Hi;eff¼UiΛiVH
i 64 9=8N3

i þ NTN2
i þ 1=2N2

i Ni

 �

13248

Table 1 Complexity of LR algorithm

Steps Operations Flops Case (2, 2, 2) × 6

1 QR 16K N2
TNi þ NTN2

1 þ 1=3N3
1


 �
12544

2 HW 8NRN2
T 1728

3ZF CLR HT
LR


 �T
25:6K N2

TNi−NTN2
i þ 1=3N3

i


 �
3891

4ZF HT
LR HLRHT

LR


 �−1
K 2N3

1−2N
2
i þ Ni þ 16NTN2

i


 �
1192

4MMSE HT
LR HLRHT

LR


 �−1
K 18N3

1−2N
2
i þ Ni þ 16NTN2

i


 �
1566
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may apply a MMSE filter instead of the ZF solution in
order to get an improved estimate for z. One obvious
way is given by the MMSE-solution of the lattice-
reduced system (Eq. (14))

~zLR–MMSE ¼ HT
LRHLR þ σ2

nTT
–1


 �–1
HT

LRy¼T–1~sMMSE

ð19Þ

5.3 Lattice-reduction aided SIC
As shown in several publications, e.g., [16, 17], SIC can
be well described in terms of the QR decomposition of
the channel matrix. Applying this strategy to the system
model from Eq. (14), we get

~zLR–ZF–SIC ¼ ~QTy¼~Rzþ ~QTn; ð20Þ

where ~Q and ~R have already been calculated by the LLL
algorithm. Similar to linear detection, we can consider
the lattice-reduced version of the extended system
model with the equivalent channel matrix HLR¼ ~Q ~R .
This leads to LR-aided MMSE-SIC with decision vari-
ables given by

~zLR–MMSE–SIC ¼ ~QTy¼~Rzþη; ð21Þ

where the newly defined noise term η also incorporates
residual interference. The detection procedure equals
that of LR-aided ZF-SIC.

6 Performance bounds for lattice decoding
In this section, we shall introduce an analytic tool for
approximate LD. However, such results do not directly
translate into how close approximate LD is to LD in
terms of the minimum distance, which is more useful in
digital communications [18].
Consider a fixed but arbitrary n-D complex lattice Λ.

The decision regions of ZF and SIC have 2n faces. We
only have to study n distances due to symmetry. The i-
th distance of ZF is di,ZF = (1/2)‖hi‖ sin θi, for i = 1,…, n,
where θi denotes the acute angle between and the linear
space spanned by the other n − 1 basis vectors h1,…, hi −
1, hi + 1,...., hn. For the SIC detector, the i-th distance is
given by 1=2ð Þ h�i

�� ��.
The minimum distance of the lattice decoder is

dLD = (1/2)λ(Λ), where λ(Λ) is the length of the short-
est vector of lattice Λ. We are motivated to define
the proximity factors measuring the proximity be-
tween the performances of LD and approximate LD
as follows:

ρi;ZF≜ sup
d2
LD

d2
i;ZF

¼ sup
λ2 Λð Þ

hik k2 sin2θi
ð22Þ
ρi;SIC≜ sup
d2
LD

d2
i;SIC

¼ sup
λ2 Λð Þ
h�i
�� ��2 ð23Þ

For each decoder, an error occurs when the noise falls
outside of R. Accordingly, given the basis B, the error
probability for vector x is given by

Pe Bð Þ ¼ P x≠0=x ¼ 0ð Þ ¼ P n∈Rð Þ ð24Þ
To keep the results general, we write SNR = c/σ2,

where c is a constant depending on the problem. By the
symmetry of the Voronoi cell, we have the lower bound
on the conditional decoding error probability of LD

Pe;LD SNR;Bð Þ≥2Q dLD

σ

� 

¼ 2Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
LD:SNR

c

s0
@

1
A:

ð25Þ
Meanwhile, the union bound on the conditional error

probability of ZF reads

Pe;ZF SNR;Bð Þ≤2
Xn
i¼1

Q
di;ZF

σ

� 

ð26Þ

where the factor 2 is due to symmetry. The union
bound for SIC admits a form similar to Eq. (26). Given
the same basis matrix B, the conditional error probabil-
ity of LR-aided ZF can be bounded above as

Pe;ZF SNR;Bð Þ≤2
Xn
i¼1

Q
dLD

ρi;ZFσ

 !

¼ 2
Xn
i¼1

Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
LD:SNR
c:ρi;ZF

dLDffiffiffiffiffiffiffiffiffiffiffiffi
ρi;ZFσ

p
s !

: ð27Þ

since d2
i;ZF≥ρi;ZF :d

2
LD by definition (Eqs. (22)–(23)) and

since Q(·) is a decreasing function. It is worth pointing
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out that while the distance dLD is a function of B, ρi,ZF is
not. Now, combining (25) and (26), we have

Pe;ZF SNR;Bð Þ≤
Xn
i¼1

Pe;LD
SNR
ρi;ZF

;B

 !
: ð28Þ

Since Eq. (28) holds for any B, averaging out B, we obtain

Pe;ZF SNRð Þ≤
Xn
i¼1

Pe;LD
SNR
ρi;ZF

 !
ð29Þ

for arbitrary SNR. In particular,

Pe;ZF SNRð Þ≤nPe;LD
SNR
ρZF

� 

: ð30Þ

The relations Eq. (29) and Eq. (30) hold irrespective of
fading statistics, and similar relations exist for SIC. They
reveal, in a quantitative manner, that approximate LD
performs within a constant bound from LD. The mere
effect on the error rate curve is a shift from that of LD,
up to a multiplicative factor n, which obviously does not
change the diversity order. In other words, the diversity
order is the same as that of LD [18]. Therefore, existing
results on the diversity order of LD can be extended to
approximate LD. Moreover, since LD achieves full
receive diversity in the uncoded V-BLAST system [19],
approximate LD also achieves full diversity. This provides
an alternative way of showing the diversity order of
LR-aided decoding given in [19, 20].
7 Complexity analysis
The LLL algorithm leads to a significant reduction of
the computational complexity. The complexity of the
LLL reduction algorithm depends on the random basis
matrix H. We use the total number of flops to measure
the computational complexity of the existing algorithms
[12, 13, 21, 22]. We summarize the total flops needed
for the matrix operations below:

� Multiplication of m × n and n × p complex matrices:
8mnp

� QR decomposition of an m × n(m ≤ n) complex
matrix: 16(n2m − nm2 + 1/3m3)

� SVD of an m × n(m ≤ n) complex matrix where only
Σ and V are obtained: 32(nm2 + 2m2)

� SVD of an m × n(m ≤ n) complex matrix where
U, Σ, and V are obtained: 8(4n2m + 8nm2 + 9m3)

� Inversion of an m ×m real matrix: 2m3 − 2m2 +m

For the case shown in Tables 1 and 2, the complexity
of the LR-ZF is about 46.1 % of BD and 70.3 % of QR/
SVD-BD, while the complexity of the LR-MMSE is about
55.8 % of BD and 85.1 % of the QR/SVD-BD [12].
Clearly, the algorithm requires the lowest complexity.
We focus on the computational complexity reduction

of the alternative BD methods. The complexities of the
alternative methods are usually compared by the number
of floating point operations (flops). A flop is defined as a
real floating operation, e.g., a real addition, multiplica-
tion, division, and so on. Based on the analysis, we
summarize the computational costs of the alternative
BD methods, where QR-BD denotes the BD method
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similar as SVD-BD but replacing the SVD operation
with the fast Givens QR operation.
We give the calculated results of the flops of the alterna-

tive methods in Figs. 2 and 3. We consider the case that
NT =KNk as shown in Fig. 2. We set Nk = 2 and express
the computation cost as a function of NT. We consider
the case that KNk <NT while expressing the computation
cost as a function of Nk.
8 Simulations results
In this section, we evaluate the BER performance of the
LR-aided linear precoding. We use both linear ZF and
MMSE precoding schemes with the conventional LLL
algorithm. From Fig. 4, linear precoding jointly applied
with LLL algorithm clearly outperforms the linear
precoding. At a target BER of 10− 3, the gain in the
transmission power is 7.5 dB.
The performances of the successive detection schemes

with optimum ordering are provided in Fig. 5. Note that
this improvement comes at almost no cost because the
complexity of SIC is comparable to that of linear de-
tection. Again, detection with respect to the LR sys-
tem significantly reduces the BER. The LR-MMSE-SIC
scheme achieves almost ML performance, while the
main computational effort is required only once per
transmitted frame.
The analysis of probability of error is compared to the

BER results of simulations.
We investigate the performance comparison in terms

of BER given a bit SNR, i.e., Eb/N0 in Fig. 6. The 4×4
MIMO precoding and detection techniques are given
and compared with the proposed schemes. Figure 6
shows the comparison where 16-QAM modulation is
used. The ML is the best performance of all techniques,
while the LR-MMSE outperforms the LR-ZF. It is clear
that the performance of BD precoding with LR is as
almost similar to the LR-MMSE detection in Fig. 6.
9 Conclusions
In this paper, several detection schemes for multiple
antenna systems are investigated, which make use of
the LR algorithm proposed by [14]. It is shown that
the performance of our proposed algorithm is better
than that of conventional methods and the complexity
is reduced compared with the LLL-based schemes. It
is clear that the performance of BD precoding with
LR is as almost similar to the LR-MMSE detection.
Aside from the improved performance, it is suggested
that the MMSE-based LR has a significantly smaller
complexity than the ZF-based LR. Simulation results
evidence that our proposed algorithms have substan-
tial performance gains compared to the existing MU-
MIMO linear precoding and BD detection.
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