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Abstract
We study a new class of boundary value problems of nonlinear fractional differential
equations whose nonlinear term depends on a lower-order fractional derivative with
fractional separated boundary conditions. Some existence and uniqueness results are
obtained by using standard fixed point theorems. Examples are given to illustrate the
results.
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1 Introduction
In this paper, we study the existence anduniqueness of solutions for a class of fractional dif-
ferential equations whose nonlinear term f depends on the lower-order fractional deriva-
tive of the unknown function x(t) with the fractional separated boundary conditions given
by

⎧⎨
⎩

cDαx(t) = f (t,x(t), cDβx(t)), t ∈ [,T],  < α ≤ ,  < β ≤ ,

ax() + b(cDγ x()) = c, ax(T) + b(cDγ x(T)) = c,  < γ < ,
()

where cDq denotes the Caputo fractional derivative of order q, f is a continuous function
on [,T]×R×R and ai, bi, ci, i = ,  are real constants with a �=  and T > .
Ahmad and Ntouyas [] investigated the existence of solutions for a fractional boundary

value problem with fractional separated boundary conditions given by

cDqx(t) = f
(
t,x(t)

)
, t ∈ [, ],  < q ≤ ,

αx() + β
(cDpx()

)
= γ, αx() + β

(cDpx()
)
= γ,  < p < ,

()

where cDq denotes the Caputo fractional derivative of order q, f is a given continuous
function and αi, βi, γi (i = , ) are real constants, with α �= .
In [] the same authors considered the following fractional differential inclusion:

cDqx(t) ∈ F
(
t,x(t)

)
, t ∈ [, ],  < q ≤ ,

with the boundary condition given by (). Here F : [, ]×R→ R is a multivalued map.
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Recently, the subject of fractional differential equations has emerged as an important
area of investigation. Indeed, we can findnumerous applications of fractional order deriva-
tives in engineering and sciences such as physics, mechanics, chemistry, economics and
biology, etc. [–]. For some recent developments on the existence results of fractional
differential equations, we can refer to, for instance, [–] and the references therein.
Fractional differential equations whose nonlinear term f depends on a fractional deriva-

tive of the unknown function x(t) have not been studied extensively. In this direction, we
can see [, ] (fractional anti-periodic boundary value problem) and [] (anti-periodic
boundary value problem) for example.
We remark that when the third variable of the function f in () vanishes, the problem

() reduces to the case considered in [] by Ahmad and Ntouyas.

2 Preliminaries
Definition . ([]) The Riemann-Liouville fractional integral of order q for a function
f is defined as

Iqf (t) =


�(q)

∫ t



f (s)
(t – s)–q

ds, q > ,

provided the integral exists.

Definition . ([]) For a continuous function f , the Caputo derivative of order q is
defined as

cDqf (t) =


�(n – q)

∫ t


(t – s)n–q–f (n)(s)ds, n –  < q < n,n = [q] + ,

where [q] denotes the integer part of the real number q.

The following lemma obtained in [] is useful in the rest of the paper.

Lemma. ([]) For a given y ∈ C([,T],R), the unique solution of the fractional boundary
value problem

⎧⎨
⎩

cDαx(t) = y(t), t ∈ [,T],  < α ≤ ,

ax() + b(cDγ x()) = c, ax(T) + b(cDγ x(T)) = c,  < γ < ,
()

is given by

x(t) =
∫ t



(t – s)α–

�(α)
y(s)ds –

t
v

{
a

∫ T



(T – s)α–

�(α)
y(s)ds

+ b
∫ T



(T – s)α–γ–

�(α – γ )
y(s)ds

}
+ vt +

c
a

, ()

where

v =
aT�( – γ ) + bT –γ

�( – γ )
, v =

ac – ac
av

.
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We notice that the solution () of the problem () does not depend on the parameter
b, that is to say, the parameter b is of arbitrary nature for this problem. And by (), we
should assume that aTγ �( – γ ) �= –b.
Let C([,T],R) be the space of all continuous functions defined on [,T]. Define the

space X = {x : x and cDβx ∈ C([,T],R)} ( < β ≤ ) endowed with the norm ‖x‖ =
maxt∈[,T] |x(t)| +maxt∈[,T] |cDβx(t)|. We know that (X ,‖ · ‖) is a Banach space.

Theorem . (Schauder fixed point theorem) Let U be a closed, convex and nonempty
subset of a Banach space X, let P : U → U be a continuous mapping such that P(U) is a
relatively compact subset of X. Then P has at least one fixed point in U .

Theorem . (Nonlinear alternative for single-valued maps) Let X be a Banach space, let
C be a closed, convex subset of X, let U be an open subset of C and  ∈ U . Suppose that
P : U → C is a continuous and compact map. Then either (a) P has a fixed point in U , or
(b) there exist an x ∈ ∂U (the boundary of U) and λ ∈ (, ) with x = λP(x).

3 Existence results
In this section, we give some existence results for the problem ().
In view of Lemma ., we define an operator F :X →X as

(Fx)(t) =
∫ t



(t – s)α–

�(α)
f
(
s,x(s), cDβx(s)

)
ds

–
t
v

{
a

∫ T



(T – s)α–

�(α)
f
(
s,x(s), cDβx(s)

)
ds

+ b
∫ T



(T – s)α–γ–

�(α – γ )
f
(
s,x(s), cDβx(s)

)
ds

}
+ vt +

c
a

. ()

It is clear that the problem () has solutions if and only if the operator equationFx = x has
fixed points. For any x ∈X , let

(N x)(t) = f
(
t,x(t), cDβx(t)

)
, t ∈ [,T].

Since the function f is continuous and

(cDβFx
)
(t) =

(
Iα–βN x

)
(t) –

kt–β

�( – β)
, ()

we know that the operator F maps X into X . Here k is a constant given by

k =

v

{
a

∫ T



(T – s)α–

�(α)
(N x)(s)ds + b

∫ T



(T – s)α–γ–

�(α – γ )
(N x)(s)ds

}
– v.

We put Fx =Fx +Fx, where

(Fx)(t) =
∫ t



(t – s)α–

�(α)
(N x)(s)ds, (Fx)(t) = –kxt +

c
a

.

Here kx means that the constant k is related to x.
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Now we are in a position to present our main results. The methods used to prove the
existence results are standard; however, their exposition in the framework of the problem
() is new.

Theorem . Suppose that the continuous function f satisfies the following assumption:

∣∣f (t,x, y) – f (t,x, y)
∣∣ ≤ m(t)

(|x – x| + |y – y|
)

for t ∈ [,T], xi, yi ∈R, i = ,  and m ∈ L 
τ ([,T],R+), τ ∈ (,α – ). If

‖m‖Tα–τ

�(α)

(
 – τ

α – τ

)–τ(
 +

|a|T
|v| +

|a|T –β

|v|�( – β)

)

+
(
 +

T–β

�( – β)

)‖m‖|b|Tα–γ–τ+

|v|�(α – γ )

(
 – τ

α – γ – τ

)–τ

+
‖m‖Tα–β–τ

�(α – β)

(
 – τ

α – β – τ

)–τ

< , ()

then the problem () has a unique solution.

Proof Denote ‖m‖ = (
∫ T
 |m(s)| τ ds)τ . For any x, y ∈ X and for each t ∈ [,T], by the

Hölder inequality, we have

∣∣(Fx)(t) – (Fy)(t)
∣∣

=
∣∣∣∣
∫ t



(t – s)α–

�(α)
(
(N x)(s) – (N y)(s)

)
ds

∣∣∣∣
≤

∣∣∣∣
∫ t



(t – s)α–

�(α)
m(s)

(∣∣x(s) – y(s)
∣∣ + ∣∣cDβx(s) – cDβy(s)

∣∣)ds
∣∣∣∣

≤ ‖m‖‖x – y‖
�(α)

(
 – τ

α – τ

)–τ

Tα–τ ,

∣∣(Fx)(t) – (Fy)(t)
∣∣

=
∣∣t(kx – ky)

∣∣
≤ T

∣∣∣∣av
∫ T



(T – s)α–

�(α)
(
(N x)(s) – (N y)(s)

)
ds

+
b
v

∫ T



(T – s)α–γ–

�(α – γ )
(
(N x)(s) – (N y)(s)

)
ds

∣∣∣∣
≤ ‖m‖

|v|
{ |a|Tα–τ+

�(α)

(
 – τ

α – τ

)–τ

+
|b|Tα–γ–τ+

�(α – γ )

(
 – τ

α – γ – τ

)–τ}
‖x – y‖.

Similarly, we have

∣∣(cDβFx
)
(t) –

(cDβFy
)
(t)

∣∣
=

∣∣∣∣(Iα–βN x
)
(t) –

kxt–β

�( – β)
–

(
Iα–βN y

)
(t) +

kyt–β

�( – β)

∣∣∣∣

http://www.advancesindifferenceequations.com/content/2013/1/78
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≤ ‖m‖Tα–β–τ

�(α – β)

(
 – τ

α – β – τ

)–τ

‖x – y‖ + ‖m‖T –β

|v|�( – β)

×
{ |a|Tα–τ

�(α)

(
 – τ

α – τ

)–τ

+
|b|Tα–γ–τ

�(α – γ )

(
 – τ

α – γ – τ

)–τ}
‖x – y‖.

From the above inequalities, we obtain

‖Fx –Fy‖ ≤
{‖m‖Tα–τ

�(α)

(
 – τ

α – τ

)–τ(
 +

|a|T
|v| +

|a|T –β

|v|�( – β)

)

+
(
 +

T–β

�( – β)

)‖m‖|b|Tα–γ–τ+

|v|�(α – γ )

(
 – τ

α – γ – τ

)–τ

+
‖m‖Tα–β–τ

�(α – β)

(
 – τ

α – β – τ

)–τ}
‖x – y‖.

It follows from () that F is a contraction mapping. Hence the Banach fixed point the-
orem implies that F has a unique fixed point which is the unique solution of the problem
(). This is the end of the proof. �

Corollary . Suppose that the continuous function f satisfies

∣∣f (t,x, y) – f (t,x, y)
∣∣ ≤ H

(|x – x| + |y – y|
)

for t ∈ [,T], xi, yi ∈R, i = , , and H >  is a constant. If

HTα

�(α + )

(
 +

|a|T
|v| +

|a|T –β

|v|�( – β)

)
+

HTα–β

�(α – β + )

+
(
 +

T–β

�( – β)

)
H|b|Tα–γ+

|v|�(α – γ + )
< ,

then the problem () has a unique solution.

Theorem . Suppose that there exist a constant τ ∈ (,α – ) and a function m ∈
L 

τ ([,T],R+) such that

∣∣f (t,x, y)∣∣ ≤ m(t) + d|x|ρ + d|y|ρ ,

where di ≥ ,  ≤ ρi <  for i = , . Then the problem () has at least one solution.

Proof Denote ‖m‖ = (
∫ T
 |m(s)| τ ds)τ . Let Br = {x ∈ X : ‖x‖ ≤ r}, and r >  is a positive

number which will be given below (see ()). It is clear that Br is a closed, bounded and
convex subset of the Banach space X .
The operator F maps Br into Br . For any x ∈ Br , we have

∣∣(Fx)(t)
∣∣ ≤ 

�(α)

∫ t


(t – s)α–m(s)ds +

drρ + drρ
�(α)

∫ t


(t – s)α– ds

≤ ‖m‖Tα–τ

�(α)

(
 – τ

α – τ

)–τ

+
(drρ + drρ )Tα

�(α + )
,

http://www.advancesindifferenceequations.com/content/2013/1/78
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∣∣(Fx)(t)
∣∣ ≤ |kx|T +

|c|
|a| ,

|kx| ≤ |v| + 
|v|

{ |a|‖m‖Tα–τ

�(α)

(
 – τ

α – τ

)–τ

+
|a|(drρ + drρ )Tα

�(α + )

+
|b|‖m‖Tα–γ–τ

�(α – γ )

(
 – τ

α – γ – τ

)–τ

+
|b|(drρ + drρ )Tα–γ

�(α – γ + )

}
.

So, we have

∣∣(Fx)(t)
∣∣ ≤ |c|

|a| + |v|T +
‖m‖Tα–τ

�(α)

(
 – τ

α – τ

)–τ(
 +

|a|T
|v|

)

+
|b|‖m‖Tα–γ–τ+

|v|�(α – γ )

(
 – τ

α – γ – τ

)–τ

+
(
drρ + drρ

)

×
(

Tα

�(α + )
+

|a|Tα+

|v|�(α + )
+

|b|Tα–γ+

|v|�(α – γ + )

)
.

Since

∣∣(Iα–βN x
)
(t)

∣∣ ≤ 
�(α – β)

∫ t


(t – s)α–β–m(s)ds

+
drρ + drρ

�(α – β)

∫ t


(t – s)α–β– ds

≤ ‖m‖Tα–β–τ

�(α – β)

(
 – τ

α – β – τ

)–τ

+
(drρ + drρ )Tα–β

�(α – β + )
,

then from () and the estimation of kx, we have

∣∣(cDβFx
)
(t)

∣∣

≤ ‖m‖Tα–β–τ

�(α – β)

(
 – τ

α – β – τ

)–τ

+
T –β |v|
�( – β)

+
‖m‖T –β

|v|�( – β)

( |a|Tα–τ

�(α)

(
 – τ

α – τ

)–τ

+
|b|Tα–γ–τ

�(α – γ )

(
 – τ

α – γ – τ

)–τ)

+
(
drρ + drρ

){ Tα–β

�(α – β + )
+

T –β

|v|�( – β)

( |a|Tα

�(α + )
+

|b|Tα–γ

�(α – γ + )

)}
.

Denote

L =
|c|
|a| + |v|T +

‖m‖Tα–τ

�(α)

(
 – τ

α – τ

)–τ(
 +

|a|T
|v|

)
+
T –β |v|
�( – β)

+
|b|‖m‖Tα–γ–τ+

|v|�(α – γ )

(
 – τ

α – γ – τ

)–τ

+
‖m‖Tα–β–τ

�(α – β)

(
 – τ

α – β – τ

)–τ

+
‖m‖T –β

|v|�( – β)

( |a|Tα–τ

�(α)

(
 – τ

α – τ

)–τ

+
|b|Tα–γ–τ

�(α – γ )

(
 – τ

α – γ – τ

)–τ)
,

M =
Tα

�(α + )
+

|a|Tα+

|v|�(α + )
+

|b|Tα–γ+

|v|�(α – γ + )

+
Tα–β

�(α – β + )
+

T –β

|v|�( – β)

( |a|Tα

�(α + )
+

|b|Tα–γ

�(α – γ + )

)
. ()
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Now let r be a positive number such that

r ≥ max
{
L, (Md)


–ρ , (Md)


–ρ

}
. ()

Then it is obvious that for any x ∈ Br ,

‖Fx‖ ≤ L +M
(
drρ + drρ

) ≤ r

+
r

+
r

= r.

It is easy to verify that the operator F is continuous since f is continuous. Next, we
show that F is equicontinuous on bounded subsets of X . Let B̄ be any bounded sub-
set of X . Since f is continuous, we can assume, without any loss of generality, that
|f (t,x(t), cDβx(t))| ≤ N for any x ∈ B̄ and t ∈ [,T].
Now let  ≤ t < t ≤ T . We have the following facts:

∣∣(Fx)(t) – (Fx)(t)
∣∣

=
∣∣∣∣
∫ t

t

(t – s)α–

�(α)
(N x)(s)ds +

∫ t



(t – s)α– – (t – s)α–

�(α)
(N x)(s)ds

∣∣∣∣
≤ N(t – t)α

�(α + )
+
N |tα – (t – t)α – tα |

�(α + )

≤ N(t – t)α

�(α + )
+
N |tα – tα |
�(α + )

,

∣∣(Fx)(t) – (Fx)(t)
∣∣ =

∣∣∣∣–kxt + c
a

+ kxt –
c
a

∣∣∣∣
≤

(
N
|v|

( |a|Tα

�(α + )
+

|b|Tα–γ

�(α – γ + )

)
+ |v|

)
(t – t),

∣∣(cDβFx
)
(t) –

(cDβFx
)
(t)

∣∣

=
∣∣∣∣(Iα–βN x

)
(t) –

kxt–β


�( – β)
–

(
Iα–βN x

)
(t) +

kxt–β


�( – β)

∣∣∣∣
≤ 

�( – β)

(
N
|v|

( |a|Tα

�(α + )
+

|b|Tα–γ

�(α – γ + )

)
+ |v|

)∣∣t–β
 – t–β


∣∣

+
N |tα–β

 – tα–β
 |

�(α – β + )
+
N(t – t)α–β

�(α – β + )
.

Hence we have (since α > , α – β >  and  – β ≥ )

∥∥(Fx)(t) – (Fx)(t)
∥∥ →  as t → t

and the limit is independent of x ∈ B̄. Therefore the operator F : Br → Br is equicontin-
uous and uniformly bounded. The Arzela-Ascoli theorem implies that F (Br) is relatively
compact in X .
From Theorem ., the problem () has at least one solution. The proof is completed.

�

Corollary . Assume that |f (t,x, y)| ≤ ν(t) for t ∈ [,T], x, y ∈ R with ν ∈ C([,T],R+).
Then the problem () has at least one solution.

http://www.advancesindifferenceequations.com/content/2013/1/78
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In this situation, since for any τ ∈ (,α – ), ν ∈ L 
τ ([,T],R+), then let d = d =  in

Theorem ., we get the result.

Corollary . Assume that there exist a constant τ ∈ (,α – ) and a function m ∈
L 

τ ([,T],R+) such that

∣∣f (t,x, y)∣∣ ≤ m(t) + d|x| + d|y|, di ≥ , i = , .

If (d + d)M <  (M is defined by ()), then the problem () has at least one solution.

The proof of this corollary is similar to Theorem ..

Theorem . Assume that: () there exist two nondecreasing functions ρ,ρ : [,∞) →
[,∞) and a function m ∈ L 

τ ([,T],R+) with τ ∈ (,α – ) such that

∣∣f (t,x, y)∣∣ ≤ m(t)
(
ρ

(|x|) + ρ
(|y|))

for t ∈ [,T] and x, y ∈ R.
() There exists a constant Z >  such that

Z
T |v| + |c|

|a| +
T–β

�(–β) |v| + (ρ(Z) + ρ(Z))‖m‖� > , ()

here ‖m‖ = (
∫ T
 |m(s)| τ ds)τ and � denotes the following number:

{
Tα–τ

�(α)

(
 – τ

α – τ

)–τ

+
Tα–β–τ

�(α – β)

(
 – τ

α – β – τ

)–τ

+
(

T
|v| +

T –β

|v|�( – β)

)

×
( |a|Tα–τ

�(α)

(
 – τ

α – τ

)–τ

+
|b|Tα–γ–τ

�(α – γ )

(
 – τ

α – γ – τ

)–τ)}
.

Then the problem () has at least one solution.

Proof Firstly, we show that the operatorF defined by ()maps bounded sets into bounded
sets in the space X . Let Br = {x : x ∈X and ‖x‖ ≤ r}, r > . For any x ∈ Br , we have

∣∣(Fx)(t)
∣∣ =

∣∣∣∣ 
�(α)

∫ t


(t – s)α–(N x)(s)ds

∣∣∣∣
≤ ρ(r) + ρ(r)

�(α)

∫ t


(t – s)α–m(s)ds

≤ (ρ(r) + ρ(r))‖m‖Tα–τ

�(α)

(
 – τ

α – τ

)–τ

,

∣∣(Fx)(t)
∣∣ ≤ T |v| + T‖m‖(ρ(r) + ρ(r))

|v|
{ |a|Tα–τ

�(α)

(
 – τ

α – τ

)–τ

+
|b|Tα–γ–τ

�(α – γ )

(
 – τ

α – γ – τ

)–τ}
+

|c|
|a| ,

http://www.advancesindifferenceequations.com/content/2013/1/78
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∣∣(cDβFx
)
(t)

∣∣ ≤ ∣∣(Iα–βN x
)
(t)

∣∣ + T –β

�( – β)
|kx|

≤ (ρ(r) + ρ(r))‖m‖Tα–β–τ

�(α – β)

(
 – τ

α – β – τ

)–τ

+
T –β

�( – β)

{
|v| + ‖m‖(ρ(r) + ρ(r))

|v|

×
( |a|Tα–τ

�(α)

(
 – τ

α – τ

)–τ

+
|b|Tα–γ–τ

�(α – γ )

(
 – τ

α – γ – τ

)–τ)}
.

Therefore we have

‖Fx‖ ≤ T |v| + |c|
|a| +

T –β

�( – β)
|v| +

(
ρ(r) + ρ(r)

)‖m‖

×
{
Tα–τ

�(α)

(
 – τ

α – τ

)–τ

+
Tα–β–τ

�(α – β)

(
 – τ

α – β – τ

)–τ

+
(

T
|v| +

T –β

|v|�( – β)

)

×
( |a|Tα–τ

�(α)

(
 – τ

α – τ

)–τ

+
|b|Tα–γ–τ

�(α – γ )

(
 – τ

α – γ – τ

)–τ)}
.

That is to say, we have

‖Fx‖ ≤ T |v| + |c|
|a| +

T –β

�( – β)
|v| +

(
ρ(r) + ρ(r)

)‖m‖�. ()

Secondly, we claim that F is equicontinuous on bounded sets ofX . To prove it, we only
need to repeat verbatim the corresponding part in the proof of Theorem ..
Finally, for λ ∈ (, ), let x = λFx. Due to (), we have

‖x‖ = ‖λFx‖ ≤ T |v| + |c|
|a| +

T –β

�( – β)
|v| +

(
ρ

(‖x‖) + ρ
(‖x‖))‖m‖�.

On the other hand, we have

‖x‖
T |v| + |c|

|a| +
T–β

�(–β) |v| + (ρ(‖x‖) + ρ(‖x‖))‖m‖� ≤ .

From (), there exists Z >  such that ‖x‖ �= Z. Define a set

U =
{
x ∈X : ‖x‖ < Z

}
.

It is obvious that the operator F : U → X is continuous and completely continuous. By
the definition of the set U , there is no x ∈ ∂U such that x = λFx for some  < λ < . Con-
sequently, by Theorem ., we obtain that F has a fixed point x ∈ U which is a solution of
the problem (). This is the end of the proof. �

4 Examples
Example  Let T = , α = 

 , β = 
 and γ = 

 . We consider the boundary value problem

⎧⎪⎨
⎪⎩

cD 
 x(t) = – ln(t+)

 sin(t)+ +


(t+) (sinx(t) +
|cD 

 x(t)|
+|cD 

 x(t)|
), t ∈ [, ],

x() + b(cD

 x()) = 

 ,

x() +


 (

cD 
 x()) = .

()
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From (), we know that

f (t,x, y) =
– ln(t + )
 sin(t) + 

+


(t + )

(
sinx +

|y|
 + |y|

)

and a = , c = 
 , a =


 , b =


 and c = . It is clear that

∣∣f (t,x, y) – f (t,x, y)
∣∣ ≤ 


(|x – x| + |y – y|

)

and

HTα

�(α + )

(
 +

|a|T
|v| +

|a|T –β

|v|�( – β)

)
+

HTα–β

�(α – β + )

+
(
 +

T–β

�( – β)

)
H|b|Tα–γ+

|v|�(α – γ + )
≈ 


(. +  + .) < .

Hence all the assumptions of Corollary . are satisfied. Therefore the problem () has a
unique solution.

Example  Consider the following fractional differential equation:

⎧⎨
⎩

cD 
 x(t) = (t – t)e–x(t) + 

π |x(t)|  + ( |cD 
 x(t)|

+sin x(t) )

 , t ∈ [, ],

x() + b(cD

 x()) = ., x() + 

 (
cD 

 x()) = π .
()

In this case, we have

f (t,x, y) =
(
t – t

)
e–x

 +

π

|x|  +
( |y|
 + sin x

) 


and α = 
 , β = 

 , γ = 
 , T = , a = , c = ., a = , b = 

 , c = π . Since

∣∣f (t,x, y)∣∣ ≤ ∣∣t – t
∣∣ + 

π
|x|  + |y|  ,

let d = 
π , d = , ρ = 

 , ρ = 
 and m(t) = |t – t| ∈ L∞(, ). Thus it follows from

Theorem . that the problem () has at least one solution on [, ].
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11. Băleanu, D, Mustafa, OG, Agarwal, RP: An existence result for a superlinear fractional differential equation. Appl. Math.

Lett. 23, 1129-1132 (2010)
12. Cernea, A: A note on the existence of solutions for some boundary value problems of fractional differential

inclusions. Fract. Calc. Appl. Anal. 15(2), 183-194 (2012)
13. Chang, Y-K, Nieto, JJ: Some new existence results for fractional differential inclusions with boundary conditions.

Math. Comput. Model. 49, 605-609 (2009)
14. Chen, A, Tian, Y: Existence of three positive solutions to three-point boundary value problem of nonlinear fractional

differential equation. Differ. Equ. Dyn. Syst. 18(3), 327-339 (2010)
15. Lakshmikantham, V: Theory of fractional functional differential equations. Nonlinear Anal. 69, 3337-3343 (2008)
16. Liu, Z, Sun, J: Nonlinear boundary value problems of fractional differential systems. Comput. Math. Appl. 64(4),

463-475 (2012)
17. Li, CF, Luo, XN, Zhou, Y: Existence of positive solutions of the boundary value problem for nonlinear fractional

differential equations. Comput. Math. Appl. 59, 1363-1375 (2010)
18. Lv, LL, Wang, JR, Wei, W: Existence and uniqueness results for fractional differential equations with boundary value

conditions. Opusc. Math. 31(4), 629-643 (2011)
19. Wang, G, Ahmad, B, Zhang, L: Impulsive anti-periodic boundary value problem for nonlinear differential equations of

fractional order. Nonlinear Anal. 74(3), 792-804 (2011)
20. Wang, JR, Zhou, Y: Existence and controllability results for fractional semilinear differential inclusions. Nonlinear Anal.,

Real World Appl. 12(6), 3642-3653 (2011)
21. Wang, JR, Lv, LL, Zhou, Y: Boundary value problems for fractional differential equations involving Caputo derivative in

Banach spaces. J. Appl. Math. Comput. 38, 209-224 (2012)
22. Zhou, Y, Jiao, F: Nonlocal Cauchy problem for fractional evolution equations. Nonlinear Anal. 11, 4465-4475 (2010)
23. Ahmad, B, Nieto, JJ: Anti-periodic fractional boundary value problems with nonlinear term depending on lower order

derivative. Fract. Calc. Appl. Anal. 15(3), 451-462 (2012)
24. Wang, F: Anti-periodic fractional boundary value problems for nonlinear differential equations of fractional order.

Adv. Differ. Equ. 2012, 116 (2012)
25. Chen, A, Chen, Y: Existence of solutions to anti-periodic boundary value problem for nonlinear fractional differential

equations. Differ. Equ. Dyn. Syst. 19(3), 237-252 (2011)
26. Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. North-Holland

Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

doi:10.1186/1687-1847-2013-78
Cite this article as: Liu and Liu: Separated boundary value problem for fractional differential equations depending
on lower-order derivative. Advances in Difference Equations 2013 2013:78.

http://www.advancesindifferenceequations.com/content/2013/1/78

	Separated boundary value problem for fractional differential equations depending on lower-order derivative
	Abstract
	Keywords

	Introduction
	Preliminaries
	Existence results
	Examples
	Competing interests
	Authors' contributions
	Acknowledgements
	References


