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1 Introduction
The existing literature of metric fixed point theory contains numerous noted generaliza-
tions of the Banach contraction mapping principle (e.g., [] and []). One variety of such
generalizations is the contractive fixed point theorems contained in Khan et al. [] wherein
the authors utilized altering functions to alter the distance between two points in a metric
space. Such altering functions are also sometimes referred to as control functions.
The following altering distance function is instrumental in our forthcoming results.

Definition A (cf. []) Amap φ : [,∞)→ [,∞) is said to be an altering distance function
if
(a) φ is continuous and nondecreasing and
(b) φ(t) =  if and only if t = .

Using the function φ, Khan et al. [] proved the following result.

Theorem A (cf. []) Let T be a self-mapping defined on a complete metric space (X ,d)
satisfying the condition

φ
(
d(T x,T y)

) ≤ c · φ(
d(x, y)

)

for x, y ∈ X and  < c < , where φ is the earlier described altering distance function. Then
T has a unique fixed point.

In the recent past, the idea of altering function has been utilized by many researchers
(e.g., [–]). Quite recently, Alber andGuerre-Delabriere [] initiated the study ofweakly
contractivemappingswhichwere initially confined toHilbert spaces. Rhoades [] utilized
this idea in the context of complete metric spaces and proved the following interesting
theorem.
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Theorem B (cf. []) Let T be a self-mapping defined on a complete metric space (X ,d)
satisfying the condition

d(T x,T y) ≤ d(x, y) – φ
(
d(x, y)

)

for x, y ∈X ,where φ is the earlier described altering distance function.Then T has a unique
fixed point.

In fact, Alber and Guerre-Delabriere assumed the additional assumption limt→∞ φ(t) =
∞ (on φ). But Rhoades [] proved his theorem without this requirement on φ.
In [], Dutta and Choudhury presented a generalization of Theorem B by proving the

following result.

Theorem C (cf. []) Let T be a self-mapping defined on a complete metric space (X ,d)
satisfying the condition

ψ
(
d(T x,T y)

) ≤ ψ
(
d(x, y)

)
– φ

(
d(x, y)

)
, for x, y ∈X ,

where ψ and φ are altering distance functions. Then T has a unique fixed point.

The purpose of this paper is to prove somefixed point theorems in orderedmetric spaces
employing a w-distance as well as altering functions. Recall that the concept of w-distance
was initiated by Kada, Suzuki, and Takahashi [] and was primarily utilized to improve
Caristi’s fixed point theorem [], Ekeland’s variational principle [], and the nonconvex
minimization theorems whose descriptions and details are available in Takahashi [].
The existence of a fixed point on partially ordered metric spaces has been a relatively new
development inmetric fixed point theory. In [], Ran and Reurings proved an analogue of
Banach’s fixed point theorem in a partially ordered metric space besides discussing some
applications to matrix equations. In fact, Ran and Reurings have weakened the usual con-
traction condition but merely up to monotone operators. Proving new fixed point theo-
rems in an ordered metric space setting to improve earlier stated theorems have been a
subject of vigorous research interest; for the literature of this kind one can be referred to
[, , , ]. Our results, in this paper, not only generalize the analogous fixed point theo-
rems but are relatively simpler andmore natural than the related ones. Our improvements
in this paper are indeed four-fold:

(i) a generalized distance is used instead of metric,
(ii) a relatively more general contraction condition is used,
(iii) the continuity of the involved mapping is weakened to orbital continuity, and
(iv) the comparability conditions used by earlier authors are also sharpened.

2 Preliminaries
Before presenting our results, we collect relevant definitions and results which will be
needed in the proof of our main results.

Definition  Let X be a nonempty set. Then (X ,d,�) is called a partially ordered metric
space if

(i) (X ,�) is a partially ordered set and
(ii) (X ,d) is a metric space.
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Definition  Let (X ,�) be a partially ordered set. Then
(a) elements x, y ∈X are called comparable with respect to ‘�’ if either x� y or y � x;
(b) a mapping T :X →X is called nondecreasing with respect to ‘�’ if x � y implies

T x� T y.

Definition  [, ] Let (X ,d) be a metric space. Then a function p :X ×X → [,∞) is
called a w-distance on X if the following conditions are satisfied:
(a) p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z ∈X ,
(b) for any x ∈X , p(x, ·) :X → [,∞) is lower semi-continuous (i.e., if x ∈X and

yn → y in X , then p(x, y) ≤ lim infn p(x, yn)),
(c) for any ε > , there exists δ >  such that p(x, z) ≤ δ and p(z, y) ≤ δ imply d(x, y) ≤ ε.

Clearly, everymetric is aw-distance but not conversely. The following example substan-
tiates this fact.

Example  Let (X ,d) be a metric space. A function p : X × X → [,∞) defined by
p(x, y) = k for every x, y ∈X is a w-distance on X , where k is a positive real number. But p
is not a metric since p(x,x) = k �=  for any x ∈X .

Definition  Let T :X →X be a function. Then
(a) FT = {x ∈X |x = T (x)} (i.e., FT is the set of fixed points of T ),
(b) the function T is called a Picard operator (briefly, PO) if there exists x* ∈X such

that FT = {x*} and {T n(x)} converges to x* for all x ∈X ,
(c) the function T is called orbitally U -continuous for any U ⊂X ×X if for any x ∈X ,

T ni (x)→ a ∈X as i → ∞ and (T ni (x),a) ∈ U for any i ∈N imply that
T ni+(x)→ T a as i → ∞.

Let (X ,�) be a partially ordered set. Let us denote by X� the subset of X ×X defined
by

X� =
{
(x, y) ∈X ×X |x� y or y� x

}
.

Definition  A map T :X → X is said to be orbitally continuous if x ∈ X and T ni (x) →
a ∈X as i → ∞ imply that T ni+(x)→ T a as i→ ∞.

The following two lemmas are crucial in the proofs of our main results.

Lemma  [, ] Let (X ,d) be a metric space equipped with a w-distance p. Let {xn} and
{yn} be sequences in X , whereas {αn} and {βn} be sequences in [,∞) converging to zero.
Then the following conditions hold (for x, y, z ∈X ):

(i) if p(xn, y) ≤ αn and p(xn, z) ≤ βn for n ∈N , then y = z. In particular, if p(x, y) =  and
p(x, z) = , then y = z,

(ii) if p(xn, yn) ≤ αn and p(xn, z) ≤ βn for n ∈N , then limn→∞ d(yn, z) = ,
(iii) if p(xn,xm) ≤ αn for n,m ∈N with m > n, then {xn} is a Cauchy sequence,
(iv) if p(y,xn) ≤ αn for n ∈ N , then {xn} is a Cauchy sequence.
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Lemma  [] Let p be a w-distance on a metric space (X ,d) and {xn} be a sequence in X
such that for each ε > , there exists Nε ∈ N such that m > n > Nε implies p(xn,xm) < ε (or
limm,n p(xn,xm) = ). Then {xn} is a Cauchy sequence.

3 Main results
Now, we present our main result as follows.

Theorem  Let (X ,d,�) be a complete partially ordered metric space equipped with a
w-distance p and T :X →X be a nondecreasing mapping. Suppose that

(a) there exists x ∈X such that (x,T x) ∈X�,
(b) there exist two altering distance functions ψ , φ such that

ψ
(
p(T x,T y)

) ≤ ψ(Mx,y) – φ(Mx,y)

for all (x, y) ∈X�, where

Mx,y =max
{
p(x, y),min

{
p(x,T x),p(y,T y),p(T x,x),p(T y, y)

}}
,

(c) either T is orbitally continuous at x or
(c′) T is orbitally X�-continuous, and there exists a subsequence {T nk x} of {T nx} con-

verging to x* such that (T nk x,x*) ∈X� for any k ∈ N .

Then FT �= ∅.

Proof If x = T x for some x ∈X , then there is nothing to prove. Otherwise, let there be
x ∈X such that x �= T x and (x,T x) ∈X�. Owing to monotonicity of T , we can write
(T x,T x) ∈X�. Continuing this process inductively, we obtain

(
T nx,T mx

) ∈X�

for any n,m ∈ N . Now, we proceed to show that

lim
n→∞p

(
T nx,T n+x

)
= . (.)

Write p = p(x,T x) and pn = p(T nx,T n+x) for any n ∈N .
By using condition (b), we have

ψ(pn) = ψ
(
p
(
T nx,T n+x

))
≤ ψ

(
max

{
p
(
T n–x,T nx

)
,min

{
p
(
T n–x,T nx

)
,

p
(
T nx,T n+x

)
,p

(
T nx,T n–x

)
,p

(
T n+x,T nx

)}})
– φ

(
max

{
p
(
T n–x,T nx

)
,min

{
p
(
T n–x,T nx

)
,

p
(
T nx,T n+x

)
,p

(
T nx,T n–x

)
,p

(
T n+x,T nx

)}})
,

so that

ψ(pn) ≤ ψ(pn–) – φ(pn–)

for any n ∈ N.
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Also,

ψ(pn) ≤ ψ(pn–) – φ(pn–) ≤ ψ(pn–). (.)

Therefore, pn ≤ pn– for every n ∈N (owing to monotonicity of ψ ), i.e., the sequence {pn}
is decreasing so that for the nonnegative decreasing sequence {pn}, there exists some r ≥ 
such that

lim
n→∞pn = lim

n→∞p
(
T nx,T n+x

)
= r. (.)

Assume that r > . On letting n→ ∞ in (.) besides using (.), we get

ψ(r)≤ ψ(r) – φ(r)≤ ψ(r),

which amounts to say that φ(r) = . As φ is an altering (distance) function, r = , which is
a contradiction to nonzeroness of r yielding thereby

lim
n→∞pn = lim

n→∞p
(
T nx,T n+x

)
= ,

which establishes (.).
Proceeding with earlier lines, we can also show that

lim
n→∞p

(
T n+x,T nx

)
= . (.)

Write p = p(T x,x) and pn = p(T n+x,T nx) for any n ∈N .
Now, using (b), we get

ψ(pn) = ψ
(
p
(
T n+x,T nx

))
≤ ψ

(
max

{
p
(
T nx,T n–x

)
,min

{
p
(
T nx,T n+x

)
,

p
(
T n–x,T nx

)
,p

(
T n+x,T nx

)
,p

(
T nx,T n–x

)}})
– φ

(
max

{
p
(
T nx,T n–x

)
,min

{
p
(
T nx,T n+x

)
,

p
(
T n–x,T nx

)
,p

(
T n+x,T nx

)
,p

(
T nx,T n–x

)}})
= ψ(pn–) – φ(pn–),

so that

ψ(pn) ≤ ψ(pn–) – φ(pn–) ≤ ψ(pn–),

which amounts to say that pn ≤ pn–, i.e., a nonnegative sequence {pn} is decreasing. As
earlier, we have

lim
n→∞p

(
T n+x,T nx

)
= ,
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Imdad and Rouzkard Fixed Point Theory and Applications 2012, 2012:222 Page 6 of 17
http://www.fixedpointtheoryandapplications.com/content/2012/1/222

which proves (.). Now, we proceed to show

lim
n,m→∞p

(
T nx,T mx

)
= . (.)

Suppose (.) is untrue. Then we can find a δ >  with sequences {mk}∞k=, {nk}∞k= such that

p
(
T nk x,T mkx

) ≥ δ, for all k ∈ {, , , . . .}, (.)

whereinmk > nk . By (.) there exists k ∈N such that nk > k implies

p
(
T nk x,T nk+x

)
< δ. (.)

Notice that in view of (.) and (.), mk �= nk+. We can assume that mk is a minimum
index such that (.) holds so that

p
(
T nk x,T rx

)
< δ, for r ∈ {nk+,nk+, . . . ,mk – },

which in view of (.) gives rise to

o < δ ≤ p
(
T nk x,T mkx

)
≤ p

(
T nk x,T mk–x

)
+ p

(
T mk–x,T mkx

)
< δ + p

(
T mk–x,T mkx

)
,

so that

lim
k→∞

p
(
T nk x,T mkx

)
= δ.

Next, we show that

lim sup
k

p
(
T nk+x,T mk+x

)
= ε < δ.

If lim supk p(T nk+x,T mk+x) = ε ≥ δ, then there exists {kr}∞r= such that

lim
r→∞p

(
T nkr+x,T mkr+x

)
= ε ≥ δ.

Since ψ is continuous and nondecreasing and also (T nkr x,T mkr x) ∈ X�, on using con-
dition (b), one gets

ψ
(
p
(
T nkr+x,T mkr+x

)) ≤ ψ(MT nkr x,T mkr x ) – φ(MT nkr x,T mkr x ) (.)

with

MT nkr x,T mkr x = max
{
p
(
T nkr x,T mkr x

)
,min

{
p
(
T nkr x,T nkr+x

)
,

p
(
T mkr x,T mkr+x

)
,p

(
T nkr+x,T nkr x

)
,p

(
T mkr+x,T mkr x

)}}
,
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implying thereby

lim
r→∞MT nkr x,T mkr x =max{, δ} = δ. (.)

Letting k → ∞ in (.) and using (.), we get

ψ(δ)≤ ψ(ε)≤ ψ(δ) – φ(δ)≤ ψ(δ),

so that φ(δ) =  implying thereby δ = , which is a contradiction. Hence,

lim sup
k

p
(
T nk+x,T mk+x

)
< δ,

and we have

o < δ ≤ p
(
T nk x,T mkx

)
≤ p

(
T nk x,T nk+x

)
+ p

(
T nk+x,T mk+x

)
+ p

(
T mk+x,T mkx

)
.

Therefore, owing to (.) and (.), we have

o < δ

≤ lim
k→∞

p
(
T nk x,T nk+x

)
+ lim sup

k→∞
p
(
T nk+x,T mk+x

)
+ lim

k→∞
p
(
T mk+x,T mkx

)

= lim sup
k→∞

p
(
T nk+x,T mk+x

)
< δ,

which is a contradiction. Hence, (.) holds. Owing to Lemma , {T nx} is a Cauchy
sequence in X . Since X is a complete metric space, there exists x* such that
limn→∞ T nx = x*.
Now, we show that x* is a fixed point of T . If (c) holds, then T n+x → T x* (as n→ ∞).

By lower semi-continuity of p(T nx, ·), we have

p
(
T nx,x*

) ≤ lim inf
m→∞ p

(
T nx,T mx

)
= αn (say),

p
(
T nx,T x*

) ≤ lim inf
m→∞ p

(
T nx,T m+x

)
= βn (say).

On using (.), we have limn→∞ αn = limn→∞ βn = . Now, in view of Lemma , we con-
clude that

T x* = x*.

Next, suppose that (c′) holds. Since {T nk x} converges to x*, (T nk x,x*) ∈X� and T isX�-
continuous, it follows that {T nk+x} converges to T x*. As earlier, by lower semi-continuity
of p(T nx, ·), we conclude that T x* = x*. This completes the proof. �

Setting ψ = I (the identity mapping) in Theorem , we deduce the following corollary.

Corollary  Let (X ,d,�) be a complete partially ordered metric space equipped with a
w-distance p and T :X →X be a nondecreasing mapping. Suppose that

http://www.fixedpointtheoryandapplications.com/content/2012/1/222
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(a) there exists x ∈X such that (x,T x) ∈X�,
(b) there exists an altering distance function φ such that

p(T x,T y) ≤Mx,y – φ(Mx,y)

for all (x, y) ∈X�, where

Mx,y =max
{
p(x, y),min

{
p(x,T x),p(y,T y),p(T x,x),p(T y, y)

}}
,

(c) either T is orbitally continuous at x or
(c′) T is orbitally X�-continuous, and there exists a subsequence {T nk x} of {T nx} which

converges to x* such that (T nk x,x*) ∈X� for any k ∈N .

Then FT �= ∅.

Choosing ψ = I (the identity mapping) and φ(t) = ( – α)t (for all t ∈ [,∞)) in Theo-
rem , we deduce the following corollary.

Corollary  Let (X ,d,�) be a complete partially ordered metric space equipped with a
w-distance p and T :X →X be a nondecreasing mapping. Suppose that

(a) there exists x ∈X such that (x,T x) ∈X�,
(b) if for all (x, y) ∈X� and α ∈ [, ),

p(T x,T y) ≤ αMx,y,

where

Mx,y =max
{
p(x, y),min

{
p(x,T x),p(y,T y),p(T x,x),p(T y, y)

}}
,

(c) either T is orbitally continuous at x or
(c′) T is orbitally X�-continuous, and there exists a subsequence {T nk x} of {T nx} which

converges to x* such that (T nk x,x*) ∈X� for any k ∈N .

Then FT �= ∅.

As an application of Corollary , we can also prove the following related result.

Theorem  Let (X ,d,�) be a complete partially ordered metric space equipped with a
w-distance p and T :X →X be a nondecreasing mapping. Suppose that

(a) there exists x ∈X such that (x,T x) ∈X�,
(b) for all (x, y) ∈X�,

p(T x,T y) ≤ αp(x, y) + β
(
min

{
p(x,T x),p(y,T y),p(T x,x),p(T y, y)

})
,

where α,β ≥  and α + β < ,
(c) either T is orbitally continuous at x or

http://www.fixedpointtheoryandapplications.com/content/2012/1/222


Imdad and Rouzkard Fixed Point Theory and Applications 2012, 2012:222 Page 9 of 17
http://www.fixedpointtheoryandapplications.com/content/2012/1/222

(c′) T is orbitally X�-continuous, and there exists a subsequence {T nk x} of {T nx} which
converges to x* such that (T nk x,x*) ∈X� for any k ∈N .

Then FT �= ∅.

Proof On using condition (b), we can write

p(T x,T y) ≤ αp(x, y) + β
(
min

{
p(x,T x),p(y,T y),p(T x,x),p(T y, y)

})
≤ (α + β)max

{
p(x, y),min

{
p(x,T x),p(y,T y),p(T x,x),p(T y, y)

}}
,

where k = α + β ∈ [, ). Therefore, all the conditions of Corollary  are satisfied, which
ensures the conclusion. �

Corollary  Let (X ,d,�) be a complete partially ordered metric space equipped with a
w-distance p and T :X →X be a nondecreasing mapping. Suppose that

(a) there exists x ∈X such that (x,T x) ∈X�,
(b) for all (x, y) ∈X�,

∫ p(T x,T y)


θ (ξ )dξ ≤ α

∫ max{p(x,y),min{p(x,T x),p(y,T y),p(T x,x),p(T y,y)}}


θ (ξ )dξ ,

where  ≤ α < , and θ :R+ →R
+ is a Lebesgue integrable mapping which is summable

and
∫ ε

 θ (ξ )dξ >  (for each ε > ),
(c) either T is orbitally continuous at x or
(c′) T is orbitally X�-continuous, and there exists a subsequence {T nk x} of {T nx} which

converges to x* such that (T nk x,x*) ∈X� for any k ∈N .

Then FT �= ∅.

Proof Choose ψ(t) =
∫ t
 θ (ξ )dξ and φ(t) = ( – α)

∫ t
 θ (ξ )dξ (for all t ∈ [,∞)). Clearly, ψ

and φ are altering distance functions. Now, in view of Theorem , result follows. �

Remark  In Theorem , let p = d, and ψ = I (identity) and φ = ( – α)t ( ≤ α < ). Then
Theorem  is the classical Banach fixed point theorem.

Lemma  Let (X ,d,�) be a complete partially ordered metric space and T :X →X be a
map wherein p is a w-distance on (X ,d). If
(a) x* ∈FT ,
(b) there exist two altering distance functions ψ , φ such that

ψ
(
p(T x,T y)

) ≤ ψ(Mx,y) – φ(Mx,y)

for all (x, y) ∈X�, with

Mx,y =max
{
p(x, y),min

{
p(x,T x),p(y,T y),p(T x,x),p(T y, y)

}}
,

then p(x*,x*) = .

http://www.fixedpointtheoryandapplications.com/content/2012/1/222
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Proof Suppose p(x*,x*) �= . As (x*,x*) ∈X� and

Mx*,x* = max
{
p
(
x*,x*

)
,min

{
p
(
x*,T x*

)
,p

(
x*,T x*

)
,p

(
T x*,x*

)
,p

(
T x*,x*

)}}
= p

(
x*,x*

)
.

Therefore,

ψ
(
p
(
T x*,T x*

))
= ψ

(
p
(
x*,x*

)) ≤ ψ
(
p
(
x*,x*

))
– φ

(
p
(
x*,x*

)) ≤ ψ
(
p
(
x*,x*

))
,

which amounts to say that φ(p(x*,x*)) = . As φ is an altering distance function, we infer
that p(x*,x*) = . This completes the proof. �

In what follows, we give a sufficient condition for the uniqueness of a fixed point in
Theorem  which runs as follows:
(A): for every x, y ∈X , there exists a lower bound or an upper bound.

In [], it is proved that condition (A) is equivalent to the following one:
(B): for every x, y ∈X , there exists z = c(x, y) ∈X for which (x, z) ∈X� and (y, z) ∈X�.

4 Results with uniqueness
Theorem  With the addition of condition (B) to the hypotheses of Theorem , the fixed
point of T turns out to be unique.Moreover,

lim
n→∞T n(x) = x*

for every x ∈X provided x* ∈FT , i.e., the map T :X →X is a Picard operator.

Proof Following the proof of Theorem , FT �= ∅. Suppose there exist two fixed points x*

and y* of T in X . We distinguish two cases.
Case : If (y*,x*) ∈X�, owing to condition (b) (of Theorem ) and Lemma , we have

ψ
(
p
(
T y*,T x*

)) ≤ ψ(My*,x* ) – φ(My*,x* ).

As

My*,x* = max
{
p
(
y*,x*

)
,min

{
p
(
y*,T y*

)
,p

(
x*,T x*

)
,p

(
T y*, y*

)
,p

(
T x*,x*

)}}
= p

(
y*,x*

)
,

therefore

ψ
(
p
(
T y*,T x*

)) ≤ ψ
(
p
(
y*,x*

))
– φ

(
p
(
y*,x*

)) ≤ ψ
(
p
(
y*,x*

))
,

which amounts to say that φ(p(y*,x*)) = . As φ is an altering distance function, therefore,
for every n ∈N,

p
(
y*,x*

)
= .
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Also, in view of Lemma , we get p(y*, y*) = , and by using Lemma , we have y* = x*, i.e.,
the fixed point of T is unique.
Case : If (x*, y*) /∈X�, then owing to condition (B), there exists z ∈X such that (x*, z) ∈

X� and (y*, z) ∈X�. As (z,x*) ∈X�, due to monotonicity of T , we get (T n–z,x*) ∈X� for
any n ∈N, and henceforth

ψ
(
p
(
T nz,x*

))
= ψ

(
p
(
T nz,T x*

)) ≤ ψ(MT n–z,x* ) – φ(MT n–z,x* ),

with

MT n–z,x*

=max
{
p
(
T n–z,x*

)
,min

{
p
(
T n–z,T nz

)
,p

(
x*,T x*

)
,p

(
T nz,T n–z

)
,p

(
x*,x*

)}}
= p

(
T n–z,x*

)
,

therefore

ψ
(
p
(
T nz,x*

))
= ψ

(
p
(
T nz,T x*

)) ≤ ψ
(
p
(
T n–z,x*

))
– φ

(
p
(
T n–z,x*

))
≤ ψ

(
p
(
T n–z,x*

))
.

Since ψ is a nondecreasing function, therefore p(T nz,x*) ≤ p(T n–z,x*), i.e., the nonneg-
ative sequence {p(T nz,x*)} is decreasing. As earlier, we have

lim
n→∞p

(
T nz,x*

)
= .

Also, since (z, y*) ∈X�, therefore proceeding as earlier, we can prove that

lim
n→∞p

(
T nz, y*

)
= .

By using this and Lemma , we infer that y* = x*, i.e., the fixed point of T is unique.
Now, we proceed to show

lim
n→∞T n(x) = x*

for every x ∈X provided x* ∈FT . We distinguish two cases.
Case : Let x ∈X and (x*,x) ∈X�. As earlier, we have

lim
n→∞p

(
T nx*,T nx

)
= .

Also, in view of Lemma , we have

lim
n→∞p

(
T nx*,x*

)
= ,

and by using Lemma , we get

lim
n→∞T n(x) = x*.
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Imdad and Rouzkard Fixed Point Theory and Applications 2012, 2012:222 Page 12 of 17
http://www.fixedpointtheoryandapplications.com/content/2012/1/222

Case : Let x ∈ X and (x*,x) /∈ X�. Owing to condition (B), there exists some z in X
such that (x*, z) ∈ X� and (x, z) ∈ X�. As earlier, we can prove limn→∞ p(T nz,x*) =  and
limn→∞ p(x*,T nz) = . By the triangular inequality,

p
(
T nz,T nz

) ≤ p
(
T nz,x*

)
+ p

(
x*,T nz

)
,

one gets

lim
n→∞p

(
T nz,T nz

)
= .

Since (x, z) ∈ X�, due to monotonicity of T , we can write (T x,T z) ∈ X�. Continuing this
process inductively, we obtain

(
T nx,T nz

) ∈X�.

Now, we proceed to show that

lim inf
n

p
(
T nz,T nx

)
= .

Suppose lim infn p(T nz,T nx) = δ > . Since limn→∞ p(T nz,T nz) = , then for arbitrary ε

( < ε < δ), there exists N ∈ N such that for every n > N, we have p(T nz,T nz) < ε. Also,
since lim infn p(T nz,T nx) = δ > ε > , then there exists N ∈ N such that for every n > N,
we have p(T nz,T nx) > ε. Therefore, for every n >N =max{N,N}, we have

max
{
p
(
T n–z,T n–x

)
,min

{
p
(
T n–z,T nz

)
,p

(
T n–x,T nx

)
,p

(
T nz,T n–z

)
,

p
(
T nx,T n–x

)}}
= p

(
T n–z,T n–x

)
.

Now, on using (b), for every n >N , we get

ψ
(
p
(
T nz,T nx

)) ≤ ψ
(
p
(
T n–z,T n–x

))
– φ

(
p
(
T n–z,T n–x

)) ≤ ψ
(
p
(
T n–z,T n–x

))
.

Therefore, as ψ is an altering distance function, we get the nonnegative sequence
{p(T nz,T nx)} is decreasing. As earlier, we can prove limn→∞ p(T nz,T nx) = , which is
indeed a contradiction to nonzeroness of δ, implying thereby

lim inf
n

p
(
T nz,T nx

)
= .

Also, since (x*, z) ∈X�, therefore using the arguments of the earlier case, we can prove

lim
n→∞p

(
T nz,T nx*

)
= ,

and by lower semi-continuity p(T nz, ·), we have

p
(
T nz, lim

m→∞T mx
)

≤ lim inf
m→∞ p

(
T nz,T mx

)
= αn (say),

p
(
T nz,x*

) ≤ lim inf
m→∞ p

(
T nz,T mx*

)
= βn (say).
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As limn→∞ αn = limn→∞ βn = , thus, in view of Lemma , we conclude that

lim
n→∞T n(x) = x*.

This completes the proof. �

Corollary  With the addition of condition (B) to the hypotheses of Corollary  (or Corol-
lary , Corollary ) the fixed point of T turns out to be unique.Moreover,

lim
n→∞T n(x) = x*

for every x ∈X provided x* ∈FT , i.e., the map T :X →X is a Picard operator.

Corollary  With the addition of condition (B) to the hypotheses of Theorem , the fixed
point of T turns out to be unique.Moreover,

lim
n→∞T n(x) = x*,

for every x ∈X provided x* ∈FT , i.e., the map T :X →X is a Picard operator.

5 Illustrative examples
In what follows, we furnish two illustrative examples wherein one demonstrates Theo-
rem  on the existence of a fixed point, while the other one exhibits the uniqueness of the
fixed point in respect of Theorem .

Example  Consider X = [, ] equipped with the usual metric d(x, y) = |x – y| for all
x, y ∈X , and p = d to be a w-distance on (X ,d). Define an order relation � on X as

x � y⇔ x = y or
[
x, y ∈ {} ∪

{

n
: n = , , . . .

}
with x≤ y

]
,

where ≤ is usual order. Then it is clear that

X� =
{
(x, y) ∈X ×X : x = y or x, y ∈ {} ∪

{

n
: n = , , . . .

}}
.

Let T :X →X be given by

T (x) =

⎧⎪⎪⎨
⎪⎪⎩
, if x = ,


n+ , if x = 
n ,√


 , otherwise.

Obviously, (X ,d,�) is a complete partially ordered metric space. It is easy to see that T is
nondecreasing. Also, there is x =  in X such that x =  �  = T x, i.e., (x,T x) ∈ X�,
and T satisfies (c′).
We now show that T satisfies (b) with ψ ,φ : [,∞) → [,∞) which are defined as

ψ(t) = t and φ(t) = t
(
t ∈ [,∞)

)
.

http://www.fixedpointtheoryandapplications.com/content/2012/1/222
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If (x, y) ∈ X� and x = y, then p(T x,T y) = p(x, y) = . Otherwise, if (x, y) ∈ X� with x �= y,
then either x = 

n , y =  or x = 
n , y =


m (m > n≥ ), which evolve into two cases as follows.

Case . If x = 
n (n≥ ) and y = , then

M 
n ,

=max

{
p
(

n
, 

)
,min

{
p
(

n
,T 

n

)
,p(, ),p

(
T 
n
,

n

)
,p(, )

}}
=

n

and

ψ(M 
n ,

) – φ(M 
n ,

) =
(

n

)

–
(

n

)

>

n

–


n(n + )
=

n
n(n + )

=


n(n + )
>


(n + )

= ψ
(
p(T x,T y)

)
.

Case . Next, if x = 
n and y = 

m (m > n ≥ ), then

M 
n ,


m
= max

{
p
(

n
,

m

)
,min

{
p
(

n
,T 

n

)
,p

(

m
,T 

m

)
,p

(
T 
n
,

n

)
,p

(
T 
m
,

m

)}}

= max

{∣∣∣∣ n –

m

∣∣∣∣,min

{∣∣∣∣ n –


n + 

∣∣∣∣,
∣∣∣∣ m –


m + 

∣∣∣∣
}}

.

Form > n ≥ , we have
∣∣∣∣ n –


n + 

∣∣∣∣ ≤
∣∣∣∣ n –


m

∣∣∣∣
which is equivalent to


n(n + )

≤ (m – n)
mn

or

m
n + 

≤ (m – n).

The preceding inequality holds as

m
n + 

≤  ≤ (m – n),

so that

M 
n ,


m
=

∣∣∣∣ n –

m

∣∣∣∣.

Also (with m > n≥ ),

ψ
(
p(T x,T y)

) ≤ ψ(Mx,y) – φ(Mx,y)

or
∣∣∣∣ 
n + 

–


m + 

∣∣∣∣


≤
∣∣∣∣ n –


m

∣∣∣∣


–
∣∣∣∣ n –


m

∣∣∣∣
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or

(m – n)

(n + )(m + )
≤ (m – n)

(mn)
–
(m – n)

(mn)

or

(m – n)

(mn)
≤ (m – n)

(mn)
–

(m – n)

(n + )(m + )

or

(m – n)

(mn)
≤ ((n + )(m + ) –mn)((n + )(m + ) +mn)

(n + )(m + )
.

Therefore,
(

m

–

n

)

≤ (n +m + )((n + )(m + ) +mn)
(n + )(m + )

. (I)

Also, we can write
(

m

–

n

)

≤ 
m ≤ 

(n + )m
=

m
(n + )m ≤ m

(n + )(m + )

≤ m
(n + )(m + )

+


m + 
=

m + n + 
(n + )(m + )

≤ (m + n + )(n + )(m + )
(n + )(m + )

+
(m + n + )(mn)
(n + )(m + )

=
(n +m + )((n + )(m + ) +mn)

(n + )(m + )
,

which amounts to say that the inequality (I) holds and so does the inequality (b) (of The-
orem ).
Thus, all the conditions of Theorem  are satisfied implying thereby the existence of a

fixed point of the map T which are indeed two in number, namely  and
√

 . Here, it is

worth pointing out that condition (B) does not hold in respect of this example.

We give another example that illustrates Theorem .

Example  Let X = {} ∪ { 
n : n ≥ }, where (X ,d,≤) is a complete partially ordered

metric space with a metric d and usual order ≤. Clearly, condition (B) holds in X .
We define p : X × X → [,∞) by p(x, y) = y. Let φ(t) = 

 t and ψ(t) = 
 t. Assume that

T :X →X by T x = x
 for any x ∈X . Obviously, φ and ψ are altering distance functions,

it is easy to see that T is nondecreasing and self-map. Also, there is x =  in X such that
(x,T x) ∈ X�, and T satisfies (c′) (of Theorem ). Now, we show that T satisfies (b) (of
Theorem ). If y = , clearly, condition (b) is satisfied. Now, suppose that y = 

m , then we
have

Mx, 
m

= max

{
p
(
x,


m

)
,min

{
p(x,T x),p

(

m

,T 
m

)
,p(T x,x),p

(
T 
m

,

m

)}}

=

m

.

http://www.fixedpointtheoryandapplications.com/content/2012/1/222


Imdad and Rouzkard Fixed Point Theory and Applications 2012, 2012:222 Page 16 of 17
http://www.fixedpointtheoryandapplications.com/content/2012/1/222

By making use of condition (b), one gets

ψp(T x,T y) = ψ

(


 · m
)

≤ ψ

(

m

)
– φ

(

m

)
,

so that




(


 · m
)

≤ 


(

m

)
–



(

m

)
,

or


m+ ≤ 

m+ –


m+ =


m+ .

The preceding inequality holds and so does the inequality (b) (of Theorem ).
Thus, all the conditions of Theorem  are satisfied. We note that x =  is a unique fixed

point for T . Moreover limn→∞ T n(x) = limn→∞ x
n = .

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally and significantly in this research work. All authors read and approved the final manuscript.

Author details
1Department of Mathematics, Aligarh Muslim University, Aligarh, 202002, India. 2Permanent address: Mazandaran
Province Education ORG, Mazandaran, Iran.

Acknowledgements
Both authors are grateful to two anonymous referees for their fruitful suggestions and observations.

Received: 9 July 2012 Accepted: 5 November 2012 Published: 7 December 2012

References
1. Khan, MS, Swaleh, M, Sessa, S: Fixed point theorems by altering distances between the points. Bull. Aust. Math. Soc.

30, 1-9 (1984)
2. Reich, S: Some fixed point problems. Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat. 57, 194-198 (1974)
3. Babu, GVR, Lalitha, B, Sandhya, ML: Common fixed point theorems involving two generalized altering distance

functions in four variables. Proc. Jangjeon Math. Soc. 10, 83-93 (2007)
4. Caristi, J: Fixed point theorems for mapping satisfying inwardness conditions. Trans. Am. Math. Soc. 215, 241-251

(1976)
5. Dutta, PN, Choudhury, BS: A generalization of contraction principle in metric spaces. Fixed Point Theory Appl. 2008,

Article ID 406368 (2008)
6. Ekeland, I: Nonconvex minimization problem. Bull. Am. Math. Soc. 1, 443-474 (1979)
7. Kada, O, Suzuki, T, Takahashi, W: Nonconvex minimization theorems and fixed point theorems in complete metric

spaces. Math. Jpn. 44, 381-391 (1996)
8. Nashine, HK, Altun, I: Fixed point theorems for generalized weakly contractive condition in ordered metric spaces.

Fixed Point Theory Appl. 2011, Art. ID 132367 (2011)
9. Nieto, JJ, Rodríguez-López, R: Contractive mapping theorems in partially ordered sets and applications to ordinary

differential equations. Order 22, 223-239 (2005)
10. Ran, ACM, Reurings, MCB: A fixed point theorem in partially ordered sets and some applications to matrix equations.

Proc. Am. Math. Soc. 132, 1435-1443 (2004)
11. Rhoades, BE: Some theorems on weakly contractive maps. Nonlinear Anal. 47, 2683-2693 (2001)
12. Sastry, KPR, Babu, GVR: Some fixed point theorems by altering distances between the points. Indian J. Pure Appl.

Math. 30, 641-647 (1999)
13. Alber, YI, Guerre-Delabriere, S: Principles of weakly contractive maps in Hilbert spaces. In: Gohberg, Y, Lyubich, Y (eds.)

New Results in Operator Theory and Its Applications. Operator Theory, Advances and Applications, vol. 98, pp. 7-22.
Birkhäuser, Basel (1997)

14. Takahashi, W: Existence theorems generalizing fixed point theorems for multivalued mappings. In: Thera, MA, Baillon,
JB (eds.) Fixed Point Theory Appl. Pitman Research Notes in Mathematics Series, vol. 252, pp. 397-406. Wiley, New
York (1991)

15. Altun, I, Simsek, H: Some fixed point theorems on ordered metric spaces and application. Fixed Point Theory Appl.
2010, Art. ID 621469 (2010)

http://www.fixedpointtheoryandapplications.com/content/2012/1/222


Imdad and Rouzkard Fixed Point Theory and Applications 2012, 2012:222 Page 17 of 17
http://www.fixedpointtheoryandapplications.com/content/2012/1/222

16. Suzuki, T: Generalized distance and existence theorems in complete metric spaces. J. Math. Anal. Appl. 253, 440-458
(2001)

17. Suzuki, T: Several fixed point theorems in complete metric space. Yokohama Math. J. 44, 61-72 (1997)

doi:10.1186/1687-1812-2012-222
Cite this article as: Imdad and Rouzkard: Fixed point theorems in ordered metric spaces via w-distances. Fixed Point
Theory and Applications 2012 2012:222.

http://www.fixedpointtheoryandapplications.com/content/2012/1/222

	Fixed point theorems in ordered metric spaces via w-distances
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Main results
	Results with uniqueness
	Illustrative examples
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


