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Abstract
The multiple-sets split feasibility problem (MSSFP) has a variety of applications in the
real world such as medical care, image reconstruction and signal processing. Censor
et al. proposed solving the MSSFP by a proximity function, and then developed a class
of simultaneous methods for solving split feasibility. In our paper, we improve a
simultaneous method for solving the MSSFP and prove its convergence.
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1 Introduction
Throughout this paper, let H be a Hilbert space, 〈·, ·〉 denote the inner product and ‖ ·‖ de-
note the corresponding norm.Themultiple-sets split feasibility problem (MSSFP) is a gen-
eralization of the split feasibility problem (SFP) and the convex feasibility problem (CFP);
see []. Let Ci and Qj be closed convex sets in the N-dimensional and M-dimensional
Euclidean spaces, respectively. The MSSFP is to find a vector x* satisfying

x* ∈ C :=
t⋂
i=

Ci such that Ax* ∈Q :=
r⋂
j=

Qj, ()

whereA is amatrix ofM×N , and t, r >  are integers.When t = r = , the problembecomes
to find a vector x* ∈ C, such thatAx* ∈ Q, which is just the two-sets split feasibility problem
(SFP) introduced in []. The MSSFP has many applications in our real life such as image
restoration, signal processing and medical care (e.g., [–]). In order to solve the MSSFP,
Censor et al. considered the MSSFP in the following form:

x* ∈ C := X ∩
( t⋂

i=

Ci

)
and Ax* ∈Q :=

r⋂
j=

Qj, ()

X ⊆ Rn is a nonempty closed convex set. In fact, () is equivalent to (). Many methods
have been developed to solve the SFP or MSSFP. The basic CQ algorithm was proposed
by Byrne [], then it was generalized to MSSFP by Censor []. The relaxed CQ algorithm
was proposed by Yang [], the half-space relaxation projection method was proposed by
Qu and Xiu [], and the variable Krasnosel’skii-Mann algorithm was proposed by Xu [].
These algorithms first converted the problem to an equivalent optimization problem and
then solved it via some technique from numerical optimization. It is easy to see that the
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MSSFP () is equivalent to the minimization problem

min

{


‖x – PCx‖ + 


‖x – PQAx‖

}
,

where PC and PQ denote the orthogonal projections onto C and Q, respectively. The pro-
jections of a point ontoC andQare difficult to compute. In practical applications, however,
the projections onto individual sets Ci are more easily calculated than the projection onto
the intersection C. For this purpose, Censor et al. [] defined a proximity function p(x) to
measure the distance of a point to all sets

p(x) :=



t∑
i=

ai‖PCix – x‖ + 


r∑
j=

bj‖PQjAx –Ax‖, ()

where ai > , bj >  for all i and j, respectively, and

t∑
i=

ai +
r∑
j=

bj = .

With the proximity function (), they proposed an optimization model

min
{
p(x)|x ∈ X

}
()

to approach the () and exerted the projection gradient method to solve it with

xk+ = PC
{
xk – s∇p

(
xk

)}
,

where ∇p denotes the gradient of p(x) and can be shown as follows (see []):

∇p(x) =
t∑
i=

ai
(
x – PCi (x)

)
+

r∑
j=

bj
(
Ax – PQj (Ax)

)
.

In this paper, we continue the algorithmic improvement on the constrained MSSFP.
More specifically, the constrained MSSFP [] is to find x* such that

x* ∈ X ∩
( t⋂

i=

)
Ci and Ax* ∈ Y ∩

( r⋂
j=

Qj

)
. ()

By the same idea of approaching () via the model (), we define p : Rn → R and p :
Rm → R as follows:

p(x) =



t∑
i=

ai‖x – PCix‖, ()

p(y) =



r∑
j=

bj‖y – PQjy‖. ()
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Then we get the following optimization model which can solve ():

min
{
p(x) + p(Ax)|x ∈ X, y ∈ Y

}
. ()

It is easy to see that model () is nonnegative and with the minimal value zero. So, we can
further reformulate () into the following separable form:

min
{
p(x) + p(y)|Ax – y = ,x ∈ X, y ∈ Y

}
. ()

2 Preliminaries
In this section, we present some concepts and properties of the MSSFP.
Let M be a positive definite matrix. We denote the M-norm by ‖v‖M =

√〈v,Mv〉. In
particular, ‖v‖ = √〈v, v〉 is the Euclidean norm of the vector v ∈ Rn.

Lemma  Let S be a nonempty closed convex subset of Rn.We denote PS(·) as the projection
onto S, i.e.,

PS(z) = argmin
{‖z – x‖|x ∈ S

}
.

Then the following properties hold:
() x ∈ S ⇔ PS(x) = x;
() 〈x – PS(x), z – PS(x)〉 ≤ , ∀x ∈ Rn and ∀z ∈ S;
() 〈x – y,PS(x) – PS(y)〉 ≥ ‖PS(x) – PS(y)‖, ∀x, y ∈ Rn;
() ‖PS(x) – z‖ ≤ ‖x – z‖ – ‖PS(x) – x‖, ∀x ∈ Rn and ∀z ∈ S;
() ‖PS(x) – PS(y)‖ ≤ ‖x – y‖, ∀x, y ∈ Rn.

Proof See Facchinei and Pang [, ]. �

Definition  Let F be a mapping from S ⊆ Rn into Rn, then
(a) F is called monotone on S if

〈
F(x) – F(y),x – y

〉 ≥ , ∀x, y ∈ S.

(b) F is called strongly monotone on S if there is a μ >  such that

〈
F(x) – F(y),x – y

〉 ≥ μ‖x – y‖, ∀x, y ∈ S.

(c) F is called co-coercive (or ν-inverse strongly monotone) on S if there is a ν >  such
that

〈
F(x) – F(y),x – y

〉 ≥ ν
∥∥F(x) – F(y)

∥∥, ∀x, y ∈ S.

(d) F is called pseudo-monotone on S if

〈
F(y),x – y

〉 ≥  ⇒ 〈
F(x),x – y

〉 ≥ , ∀x, y ∈ S.
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(e) F is called Lipschitz continuous on S if there exists a constant L >  such that

∥∥F(x) – F(y)
∥∥ ≤ L‖x – y‖, ∀x, y ∈ S

and F is called nonexpansive iff L = .

Remark  From Lemma  and the above definition, we can infer that a monotone map-
ping is a pseudo-monotone mapping. An inverse strongly monotone mapping is mono-
tone and Lipschitz continuous. A Lipschitz continuous and strongly monotone mapping
is a strongly monotone mapping. The projection operator is -ism and nonexpansive.

Lemma  A mapping F is -ism if and only if the mapping I – F is -ism, where I is the
identity operator.

Proof See [, Lemma .]. �

Remark  If F is an inverse strongly monotone mapping, then F is a nonexpansive map-
ping.

Definition  Let S be a nonempty closed convex subset of H and xn be a sequence in H ,
then the sequence xn is called Fejér monotone with respect to S if

‖xn+ – z‖ ≤ ‖xn – z‖, ∀n≥ ,∀z ∈ S.

Lemma  Let p(x) and p(x) be defined in ()-(), then ∇p(x) and ∇p(y) are both Lips-
chitz continuous and inverse strongly monotone on X and Y , respectively.

Proof From the definition (), p(x) is differentiable on X and

∇p(x) =
t∑
i=

ai
(
x – PCi (x)

)
.

Since the projection operator PCi is -ism (from Remark ), then from Lemma , the op-
erator I – PCi is -ism and is also nonexpansive. So, we have

∥∥∇p(x) –∇p(x)
∥∥ =

∥∥∥∥
t∑
i=

ai(I – PCi )(x – x)
∥∥∥∥

≤
t∑
i=

ai
∥∥(I – PCi )(x – x)

∥∥

≤
( t∑

i=

ai

)
‖x – x‖,

therefore, ∇pi(x) is Lipschitz continuous on X, and the Lipschitz constant is L =
∑t

i= ai.
It also follows from [, Corollary ] that ∇p(x) is 

L
-ism. Similarly, we can prove that

∇p(y) is Lipschitz continuous on Y , and the Lipschitz constant is L =
∑r

j= bj, further-
more, it is 

L
-ism. �
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For notational convenience, let

M =

⎛
⎜⎝

τ In
σ Im


β
Im

⎞
⎟⎠ ,

where τ , σ and β are given positive scalars.

F(ω) =

⎛
⎜⎝

∇p(x)
∇p(y)
Ax – y

⎞
⎟⎠ ,

ξ (ω, ω̂) =

⎛
⎜⎝

ξx(ω, ω̂)
ξy(ω, ω̂)



⎞
⎟⎠ =

⎛
⎜⎝

∇p(x) –∇p(x̂)
∇p(y) –∇p(ŷ)



⎞
⎟⎠ , ()

η(ω) =

⎛
⎜⎝

ηx(ω)
ηy(ω)


⎞
⎟⎠ =

⎛
⎜⎝

βAT (Ax – y)
–β(Ax – y)



⎞
⎟⎠ , ()

d(ω, ω̂) =M(ω – ω̂) – ξ (ω, ω̂),

q(ω, ω̂) = F(ω̂) + η(ω),

ϕ(ω, ω̂) =
〈
ω – ω̂,d(ω, ω̂)

〉
+ 〈z – ẑ,Ax – y〉.

Furthermore, we let ω = (x, y, z). Suppose that (x*, y*) is an optimal solution of the prob-
lem (). Then the constrained MSSFP () is equivalent to finding ω* = (x*, y*, z*) ∈ W =
X × Y × Rn such that for any ώ = (x́, ý, ź) ∈W , we have

⎧⎪⎪⎨
⎪⎪⎩

〈x́ – x*,∇p(x*)〉 ≥ ;

〈ý – y*,∇p(y*)〉 ≥ ;

〈ź – z*,Ax* – y*〉 ≥ .

()

3 Main results
In this section, we will present our method for solving the MSSFP and prove its conver-
gence. Our algorithm is defined as follows:

Algorithm . Step . Give arbitrary ν ∈ (, ), β > , γ ∈ (, ), μ > , τ > , σ >  and
x, y, z. Let ε >  be the error tolerance for an approximate solution and set k = .
Step .
() Find the smallest nonnegative integer lk such that τk = μlkτk– and

x̂k = PX

{
xk –


τk

[∇p
(
xk

)
+ βAT(

Axk – yk
)]}

, ()

which satisfies

〈
xk – x̂k ,∇p

(
xk

)
–∇p

(
x̂k

)〉
+ β

∥∥Axk –Ax̂k
∥∥ ≤ τkν

∥∥xk – x̂k
∥∥; (′)

http://www.fixedpointtheoryandapplications.com/content/2012/1/168
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() Find the smallest nonnegative integer mk such that σk = μmkσk– and

ŷk = PY

{
yk –


σk

[∇p
(
yk

)
– β

(
Axk – yk

)]}
, ()

which satisfies

〈
yk – ŷk ,∇p

(
yk

)
–∇p

(
ŷk

)〉
+ β

∥∥yk – ŷk
∥∥ ≤ σkν

∥∥yk – ŷk
∥∥; (′)

() Then we define ẑk by

ẑk = zk – β
(
Ax̂k – ŷk

)
. ()

Step .
Let ωk = (xk , yk , zk), then we get the new iterate ωk+ via

ωk+ = ωk – γα*
kd

(
ωk , ω̂k), ()

where

α*
k =

ϕ(ωk , ω̂k)
‖d(ωk , ω̂k))‖ . ()

Step .
If p(xk+)

p(x) ≤ ε, stop. Otherwise, set k = k +  and go to Step .

Remark  In fact, from Lemma , we know that ∇p(x) is Lipschitz continuous with a
constant L, then the left-hand side of (′) satisfies

〈
xk – x̂k ,∇p

(
xk

)
–∇p

(
x̂k

)〉
+ β

∥∥Axk –Ax̂k
∥∥ ≤ (

L + β
∥∥ATA

∥∥)∥∥xk – x̂k
∥∥.

So, (′) holds as long as τk ≥ (L+β‖ATA‖)
υ

. Since (L+β‖ATA‖)
υ

> , it has inf{τk} >  denoted
by τ = inf{τk}. On the other hand, by a similar analysis as in [, Lemma .], it indicates
that τk ≤ (L+β‖ATA‖)

υ , so we have

τ ≤ τk ≤ τmax =
(L + β‖ATA‖)

υ , ∀k > . ()

Similarly, we can also have

σ ≤ σk ≤ σmax =
(L + β)

υ , ∀k > . ()

Next, we analyze the convergence of Algorithm .:

Lemma  Suppose ωk and ω̂k are generated by Algorithm ., and ω* = (x*, y*, z*) is a so-
lution of (). Then there exits m >  for any k ≥  such that

〈
ωk –ω*,d

(
ωk , ω̂k)〉 ≥ ϕ

(
ωk , ω̂k) ≥ m

∥∥(
ωk – ω̂)∥∥.

http://www.fixedpointtheoryandapplications.com/content/2012/1/168
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Proof First, we prove 〈ωk –ω*,d(ωk , ω̂k)〉 ≥ ϕ(ωk , ω̂k).
From the property of the projection operator in Lemma ,

〈
x – PS(x), z – PS(x)

〉 ≤ , ∀x ∈ Rn and ∀z ∈ S.

Combining it with (), we have

〈
x′ – x̂k , x̂k – xk +


τk

[∇p
(
xk

)
+ βAT(

Axk – yk
)]〉 ≥ , ∀x′ ∈ X.

Multiplying by τk , we get

〈
x′ – x̂k , τk

(
x̂k – xk

)
+

(∇p
(
xk

)
–∇p

(
x̂k

))
+∇p

(
x̂k

)
+βAT(

Axk – yk
)〉 ≥ , ∀x′ ∈ X.

And from the definitions of ξx(ωk , ω̂k), ηx(ωk) in () and (), it is equivalent to

〈
x′ – x̂k , τk

(
x̂k – xk

)
+ ξx

(
ωk , ω̂k) +∇p

(
x̂k

)
+ ηx

(
ωk)〉 ≥ , ∀x′ ∈ X. ()

Similarly, from () and (), we can also get

〈
y′ – ŷk ,σk

(
ŷk – yk

)
+ ξy

(
ωk , ω̂k) +∇p

(
ŷk

)
+ ηy

(
ωk)〉 ≥ , ∀y′ ∈ Y ()

and
〈
z′ – ẑk ,Ax̂k – ŷk +


β

(
ẑk – zk

)〉 ≥ , ∀z′ ∈ Rn. ()

Using the notation defined above, from ()-(), we have

〈
ω′ – ω̂k ,F

(
ω̂k) + η

(
ωk) + ξ

(
ωk , ω̂k) –Mk

(
ωk – ω̂k)〉 ≥ , ∀ω′ ∈W ,

namely

〈
ω′ – ω̂k ,q

(
ωk , ω̂k) – d

(
ωk , ω̂k)〉 ≥ , ∀ω′ ∈ W . ()

Note that F(ω) is monotone on W because of the monotonicity of ∇p(x) and ∇p(y).
From (), we have

〈
ω̂k –ω*,F

(
ω̂k)〉 ≥ 〈

ω̂k –ω*,F
(
ω̂*)〉 ≥ . ()

Consequently,

〈
ω̂k –ω*,q

(
ωk , ω̂k)〉 = 〈

ω̂k –ω*,F
(
ω̂k)〉 + 〈

ω̂k –ω*,η
(
ωk)〉

≥ 〈
ω̂k –ω*,η

(
ωk)〉

=
〈
x̂k – x*,βAT(

Axk – yk
)〉
+

〈
ŷk – yk , –β

(
Axk – yk

)〉
=

〈
Ax̂k –Ax*,β

(
Axk – yk

)〉
+

〈
ŷk – yk , –β

(
Axk – yk

)〉

http://www.fixedpointtheoryandapplications.com/content/2012/1/168
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=
〈
β
(
Ax̂k –Ax* – ŷk + y*

)
,Axk – yk

〉
=

〈
β
(
Ax̂k – ŷk

)
,Axk – yk

〉
=

〈
zk – ẑk ,Axk – yk

〉
= ϕ

(
ωk , ω̂k) – 〈

ωk – ω̂k ,d
(
ωk , ω̂k)〉, ()

where the first inequality follows from (), the second equality follows from the definition
of ω̂k , ω* and η(ωk).
Setting ω′ = ω* in (), since ω* ∈W is a solution, we get

〈
ω̂k –ω*,d

(
ωk , ω̂k)〉 ≥ 〈

ω̂k –ω*,q
(
ωk , ω̂k)〉.

Then

〈
ωk –ω*,d

(
ωk , ω̂k)〉 = 〈

ωk – ω̂k ,d
(
ωk , ω̂k)〉 + 〈

ω̂k –ω*,d
(
ωk , ω̂k)〉

≥ 〈
ωk – ω̂k ,d

(
ωk , ω̂k)〉 + 〈

ω̂k –ω*,q
(
ωk , ω̂k)〉

≥ ϕ
(
ωk , ω̂k),

where the last inequality follows from ().
Next, we prove

ϕ
(
ωk , ω̂k) ≥ m

∥∥ωk – ω̂k∥∥.

From the definition of ϕ(ωk , ω̂k) and d(ωk , ω̂k), we obtain

ϕ
(
ωk , ω̂k) =

〈
ωk – ω̂k ,d

(
ωk , ω̂k)〉 + 〈

zk – ẑk ,Axk – yk
〉

=
〈
ωk – ω̂k ,M

(
ωk – ω̂k)〉 – 〈

ωk – ω̂k , ξ
(
ωk – ω̂k)〉 + 〈

zk – ẑk ,Axk – yk
〉

=
∥∥ωk – ω̂k∥∥

Mk
–

〈
xk – x̂k , ξx

(
ωk , ω̂k)〉 – 〈

yk – ŷk , ξy
(
ωk , ω̂k)〉

+
〈
zk – ẑk ,Axk – yk

〉
=

∥∥ωk – ω̂k∥∥
Mk

–
〈
xk – x̂k ,∇p

(
xk

)
–∇p

(
x̂k

)〉
–

〈
yk – ŷk ,∇p

(
yk

)
– p

(
ŷk

)〉
+

〈
zk – ẑk ,Axk – yk

〉
≥ ∥∥ωk – ω̂k∥∥

Mk
– τkν

∥∥xk – x̂k
∥∥ + β

∥∥Axk –Ax̂k
∥∥ – σkν

∥∥yk – ŷk
∥∥

+ β
∥∥yk – ŷk

∥∥ +
〈
zk – ẑk ,Ax̂k – ŷk

〉
+

〈
zk – ẑk ,Axk –Ax̂k – yk + ŷk

〉
≥ τk( – ν)

∥∥xk – x̂k
∥∥ + σk( – ν)

∥∥yk – ŷk
∥∥ +


β

∥∥zk – ẑk
∥∥

+ β
∥∥Axk –Ax̂k

∥∥ +
〈
zk – ẑk ,Axk –Ax̂k

〉
+ β

∥∥yk – ŷk
∥∥

–
〈
zk – ẑk , yk – ŷk

〉
, ()

where the first inequality follows from (′) and (′).
Note that

β
∥∥Axk –Ax̂k

∥∥ +
〈
zk – ẑk ,Axk –Ax̂k

〉
= β

∥∥∥∥Axk –Ax̂k +

β

(
zk – ẑk

)∥∥∥∥


–

β

∥∥zk – ẑk
∥∥

http://www.fixedpointtheoryandapplications.com/content/2012/1/168
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and

β
∥∥yk – ŷk

∥∥ –
〈
zk – ẑk , yk – ŷk

〉
= β

∥∥∥∥yk – ŷk –

β

(
zk – ẑk

)∥∥∥∥


–

β

∥∥zk – ẑk
∥∥.

Substituting them into (), we have

ϕ
(
ωk , ω̂k) ≥ τk( – ν)

∥∥xk – x̂k
∥∥ + σk( – ν)

∥∥yk – ŷk
∥∥

+

β

∥∥zk – ẑk
∥∥ + β

∥∥∥∥Axk –Ax̂k +

β

(
zk – ẑk

)∥∥∥∥


+ β

∥∥∥∥yk – ŷk –

β

(
zk – ẑk

)∥∥∥∥


≥ τk( – ν)
∥∥xk – x̂k

∥∥ + σk( – ν)
∥∥yk – ŷk

∥∥ +

β

∥∥zk – ẑk
∥∥.

For the sequences {τk} and {σk} are bounded from () and (), let

m =min

{
( – ν)τ, ( – ν)σ,


β

}
,

therefore,

ϕ
(
ωk , ω̂k) ≥ m

∥∥ωk – ω̂k∥∥.
This completes the proof. �

Next, we prove the sequence ωk is Fejér monotone.

Theorem  Suppose ωk and ω̂k are generated by Algorithm ., and ω* = (x*, y*, z*) is a
solution of (). Then there exits C >  for any k ≥  such that

∥∥ωk+ –ω*∥∥ ≤ ∥∥ωk –ω*∥∥ –
mr( – r)

C

∥∥ωk – ω̂k∥∥.

Proof From (), we have

∥∥ωk+ –ω*∥∥ =
∥∥ωk – γα*

kd
(
ωk , ω̂k) –ω*∥∥

=
∥∥ωk –ω*∥∥ – γα*

k
〈
ωk –ω*,d

(
ωk , ω̂k)〉 + (

γα*
k
)∥∥d(

ωk , ω̂k)∥∥

≤ ∥∥ωk –ω*∥∥ – γα*
kϕ

(
ωk , ω̂k) + γ α*

kϕ
(
ωk , ω̂k)

=
∥∥ωk –ω*∥∥ – γα*

k( – γ )α*
kϕ

(
ωk , ω̂k)

≤ ∥∥ωk –ω*∥∥ – γα*
k( – γ )m

∥∥ωk – ω̂k∥∥,

where the inequalities follow from Lemma  and ().
Because ‖ξx(ωk , ω̂k)‖ ≤ L‖xk – x̂k‖ and ‖ξy(ωk , ω̂k)‖ ≤ L‖yk – ŷk‖, and

∥∥Mk
(
ωk – ω̂k)∥∥ = τk

∥∥xk – x̂k
∥∥ + σk

∥∥yk – ŷk
∥∥ +


β

∥∥zk – ẑk
∥∥

≤ τmax
∥∥xk – x̂k

∥∥ + σmax
∥∥yk – ŷk

∥∥ +

β

∥∥zk – ẑk
∥∥,
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we have

∥∥d(
ωk , ω̂k)∥∥ =

∥∥Mk
(
ωk – ω̂k) – ξ

(
ωk , ω̂k)∥∥

≤ ∥∥Mk
(
ωk – ω̂k)∥∥+∥∥ξ

(
ωk , ω̂k)∥∥

≤ (L + τmax)
∥∥xk – x̂k

∥∥ + (L + σmax)
∥∥yk – ŷk

∥∥ +

β

∥∥zk – ẑk
∥∥.

Let C =max{(L + τmax), (L + σmax), β }, then we can get ‖d(ωk , ω̂k)‖ ≤ C‖ωk – ω̂k‖.
So, from Lemma , we can yield

α*
k =

ϕ(ωk , ω̂k)
‖d(ωk , ω̂k)‖ ≥ m

C .

Therefore,

∥∥ωk+ –ω*∥∥ ≤ ∥∥ωk –ω*∥∥ –
mr( – r)

C

∥∥ωk – ω̂k∥∥. �

Theorem  The sequence ωk generated by Algorithm . converges to a solution of ().

Proof Suppose ω* is a solution of (). It follows from Theorem  that

∥∥ωk+ –ω*∥∥ ≤ · · · ≤ ∥∥ωk –ω*∥∥ ≤ ∥∥ω –ω*∥∥, ()

which means that the sequence ωk is bounded. Thus, it has at least a cluster point.
Furthermore, Theorem  also shows that

mr( – r)
C

∥∥ωk – ω̂k∥∥ ≤ ∥∥ωk –ω*∥∥ –
∥∥ωk+ –ω*∥∥.

Summing both sides for all k, we obtain

mr( – r)
C

∞∑
k=

∥∥ωk – ω̂k∥∥ ≤
∞∑
k=

{∥∥ωk –ω*∥∥ –
∥∥ωk+ –ω*∥∥} ≤ ∥∥ω – ω̂*∥∥,

which means that

lim
x→∞

∥∥ωk – ω̂k∥∥ = .

So, {ωk} and {ω̂k} have the same cluster points. Without loss of generality, let ω̄ be a
cluster point of {ωk} and {ω̂k}, τ̄ and σ̄ be the cluster points of {τk} and {σk}, respectively.
Let {ωkj}, {ω̂kj}, {τkj}, {σkj} be the subsequences converging to them. Then, by taking limits
over the subsequences in (), (), (), we have

x̄ = PX

{
x̄ –


τ

[∇p(x̄) + βAT (Ax̄ – ȳ)
]}

,

ȳ = PY

{
ȳ –


σ

[∇p(ȳ) – β(Ax̄ – ȳ))
]}

,
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z̄ = z̄ – β(Ax̄ – ȳ).

It then follows from [] that ω̄ is a solution of ().
Because of the arbitrary ω*, we can take ω* = ω̄ in () and obtain

∥∥ωk+ – ω̄
∥∥ ≤ ∥∥ωk – ω̄

∥∥, ∀k ≥ .

Therefore, the whole sequence {ωk} converges to ω̄. This completes the proof. �

Remark  Our iteration method is simpler in the form and is an improvement of the
corresponding result of [].

4 Applications
The multiple-sets split feasibility problem (MSSFP) requires to find a point closest to a
family of closed convex sets in one space such that its image under a linear transformation
will be closest to another family of closed convex sets in the image space. It serves as a
model for real-word inverse problems where constraints are imposed on the solution in
the domain of a linear operator as well as in the operator’s range.
In this paper, our algorithm converges to a solution of the multiple-sets split feasibility

problem (MSSFP), for any starting vector ω = (x, y, z), whenever the MSSFP has a so-
lution. In the inconsistent case, it finds a point which is least violating the feasibility by
being ‘closest’ to all sets as ‘measured’ by a proximity function.
In the general case, computing the projection in the MSSFP is difficult to implement.

So, Yang [] solves this problem by the relaxed CQ-algorithm. Without loss of generality,
take the two-sets split feasibility problem for instance. He assumes the sets C and Q are
nonempty and given by

C =
{
x ∈ RN |c(x) ≤ 

}
, and Q =

{
y ∈ RN |q(y) ≤ 

}
,

where c : RN → R and q : RM → R are convex functions, respectively. Here he uses the
subgradient projections instead of the orthogonal projections. This is a huge achievement
and it enables the split feasibility problem to achieve computer operation.
Lastly, we want to say that our work is related to significant real-world applications.

Themultiple-sets split feasibility problemwas applied to the inverse problem of intensity-
modulated radiation therapy (IMRT). In this field, beams of penetrating radiation are di-
rected at the lesion (tumor) from external sources in order to eradicate the tumor without
causing irreparable damage to surrounding healthy tissues; see, e.g., [].
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