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Abstract

This article presents a spectrum sensing algorithm for wideband cognitive radio exploiting sensed spectrum
discontinuity properties. Some work has already been investigated by wavelet approach by Giannakis et al., but in
this article we investigate an algebraic framework in order to model spectrum discontinuities. The information
derived at the level of these irregularities will be exploited in order to derive a spectrum sensing algorithm. The
numerical simulation show satisfying results in terms of detection performance and receiver operating
characteristics curves as the detector takes into account noise annihilation in its inner structure.
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1. Introduction
During the last decades, we have witnessed a great pro-
gress and an increasing need for wireless communica-
tions systems due to costumers demand of more
flexible, wireless, smaller, more intelligent, and practical
devices explaining markets invaded by smart-phones,
personal digital assistant (PDAs), tablets and netbooks.
All this need for flexibility and more “mobile” devices
lead to more and more needs to afford the spectral
resources that shall be able to satisfy costumers need for
mobility. But, as wide as spectrum seems to be, all those
needs and demands made it a scarce resource and
highly misused.
Trying to face this shortage of radio resources, tele-

communication regulators, and standardization organ-
isms recommended sharing this valuable resource
between the different actors in the wireless environ-
ment. The federal communications commission (FCC),
for instance, defined a new policy of priorities in the
wireless systems, giving some privileges to some users,
called primary users (PU) and less to others, called sec-
ondary users (SU), who will use the spectrum in an
opportunistic way with minimum interference to PU
systems.
Cognitive radio (CR) as introduced by Mitola [1], is

one of those possible devices that could be deployed as

SU equipments and systems in wireless networks. As
originally defined, a CR is a self aware and “intelligent”
device that can adapt itself to the Wireless environment
changes. Such a device is able to detect the changes in
wireless network to which it is connected and adapt its
radio parameters to the new opportunities that are
detected. This constant track of the environment change
is called the “spectrum sensing” function of a CR device.
Thus, spectrum sensing in CR aims in finding the

holes in the PU transmission which are the best oppor-
tunities to be used by the SU. Many statistical
approaches already exist. The easiest to implement and
the reference detector in terms of complexity is still the
energy detector (ED). Nevertheless, the ED is highly sen-
sitive to noise and does not perform well in low signal
to noise ratio (SNR). Other advanced techniques based
on signals modulations and exploiting some of the
transmitted signals inner properties were also developed.
For instance, the detector that exploits the built-in cyclic
properties on a given signal is the cyclostationary fea-
tures detector (CFD). The CFD do have a great robust-
ness to noise compared to ED but its high complexity is
still a consequent draw back. Some other techniques,
exploiting a wavelet approach to efficient spectrum sen-
sing of wideband channels were also developed [2].
The rest of the article is organized as following. In

Section 2, we introduce the state of the art and the
motivations behind our proposed approach. In Section
3, we state the problem as a detection problem with the
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formalism related to both sensing and detection the-
ories. The derivation of the proposed technique and
some key points on its implementation are introduced
in Section 4. In Section 5, we give the results and the
simulation framework in which the developed technique
was simulated. Finally, Section 6 summarizes about the
presented work and concludes about its contributions.

2. State of the art
As previously stated, CR is presented [3] as a promising
technology in order to handle this shortage and misuse
of spectral resources. The main functions of CRs are:

• Spectrum sensing: which is an important require-
ment towards CR implementation and feasibility.
Three main strategies do exist in order to perform
spectrum sensing: transmitter detection (involving
PU detection techniques), cooperative detection
(involving centralized and distributed schemes) and
interference based detection.
• Spectrum management: which captures the most
satisfying spectrum opportunities in order to meet
both PU and SU quality of service (QoS).
• Spectrum mobility: which involves the mechanisms
and protocols allowing frequency hopes and dynamic
spectrum use.
• Spectrum sharing: which aims at providing a fair
spectrum sharing strategy in order to serve the max-
imum number of SUs.

The presented work fits in the context of spectrum
sensing framework for CR networks (CRN) and more
precisely single node detection or transmitter detection.
In this context, many statistical approaches for spectrum
sensing have been developed. The most performing one
is the cyclostationary features detection technique [4,5].
The main advantage of the cyclostationarity detection is
that it can distinguish between noise signal and PU
transmitted data. Indeed, noise has no spectral correla-
tion whereas the modulated signals are usually cyclosta-
tionary with non null spectral correlation due to the
embedded redundancy in the transmitted signal. The
CFD is thus able to distinguish between noise and PU.
The reference sensing method is the ED [4], as it is the

easiest to implement. Although the ED can be implemen-
ted without any need of apriori knowledge of the PU sig-
nal, some difficulties still remain for implementation.
First of all, the only PU signal that can be detected is the
one having an energy above the threshold. So, the thresh-
old selection in itself can be problematic as the threshold
highly depends on the changing noise level and the inter-
ference level. Another challenging issue is that the energy
detection approach cannot distinguish the PU from the

other SU sharing the same channel. CFD is more robust
to noise uncertainty than an ED. Furthermore, it can
work with lower SNR than ED.
More recently, a detector based on the signal space

dimension based on the estimation of the number of the
covariance matrix independent eigenvalues has been
developed [6-8]. It was presented that one can conclude
on the nature of this signal based on the number of the
independent eigenvectors of the observed signal covar-
iance matrix. The Akaike information criterion (AIC)
was chosen in order to sense the signal presence over the
spectrum bandwidth. By analyzing the number of signifi-
cant eigenvalues minimizing the AIC, one is able to con-
clude on the nature of the sensed sub-band. Specifically,
it is shown that the number of significant eigenvalues is
related to the presence or not of data in the signal.
Some other techniques, exploiting a wavelet approach

to efficient spectrum sensing of wideband channels were
also developed [2]. The signal spectrum over a wide fre-
quency band is decomposed into elementary building
blocks of subbands that are well characterized by local
irregularities in frequency. As a powerful mathematical
tool for analyzing singularities and edges, the wavelet
transform is employed to detect and estimate the local
spectral irregular structure, which carries important
information on the frequency locations and power spec-
tral densities of the subbands. Along this line, a couple
of wideband spectrum sensing techniques are developed
based on the local maxima of the wavelet transform
modulus and the multi-scale wavelet products.
The proposed method was inspired from algebraic

spike detection in electroencephalograms (EEGs) [9] and
the recent work developed by Giannakis based on wave-
let sensing [2]. Originally, the algebraic detection techni-
que was introduced [9,10] to detect spike locations in
EEGs. And thus it can be used to detect signals transi-
ents. Given Gi-annakis work on wavelet approach, and
its limitations in complexity and implementation, we
suggest in this context of wideband channels sensing, a
detector using an algebraic approach to detect and esti-
mate the local spectral irregular structure, which carries
important information on the frequency locations and
power spectral densities of the subbands.
This article summarizes the work we’ve been conduct-

ing in spectrum sensing for CRN. A complete descrip-
tion of the reported work can be found in [11-15].

3. System model
In this section we investigate the system model consid-
ered through this article. In this system, the received
signal at time n, denoted by yn, can be modeled as:

yn = Ansn + en (3:1)

Guibene et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:4
http://jwcn.eurasipjournals.com/content/2012/1/4

Page 2 of 9



where An being the transmission channel gain, sn is
the transmit signal sent from primary user and en is an
additive corrupting noise.
In order to avoid interferences with the primary

(licensed) system, the CR needs to sense its radio envir-
onment whenever it wants to access available spectrum
resources. The goal of spectrum sensing is to decide
between two conventional hypotheses modeling the
spectrum occupancy:

yn =
{
en H0

Ansn + en H1
(3:2)

The sensed sub-band is assumed to be a white area if
it contains only a noise component, as defined in H0;
while, once there exist primary user signals drowned in
noise in a specific band, as defined in H1, we infer that
the band is occupied. The key parameters of all spec-
trum sensing algorithms are the false alarm probability
PF and the detection probability PD. PF is the probability
that the sensed sub-band is classified as a PU data while
actually it contains noise, thus PF should be kept as
small as possible. PD is the probability of classifying the
sensed sub-band as a PU data when it is truly present,
thus sensing algorithm tend to maximize PD. To design
the optimal detector on Neyman-Pearson criterion, we
aim on maximizing the overall PD under a given overall
PF. According to those definitions, the probability of
false alarm is given by:

PF = P(H1|H0) = P(PU is detected|H0) (3:3)

that is the probability of the spectrum detector having
detected a signal given the hypothesis H0, and PD the
probability of detection is expressed as:

PD = 1 − PM = 1 − P(H0|H1)

= 1 − P(PU is not detected|H1)
(3:4)

which represents the probability of the detector having
detected a signal under hypothesis H1, where PM indi-
cates the probability of missed detection.
In order to infer on the nature of the received signal,

we use a decision threshold which is determined using
the required probability of false alarm PF given by (3.3).
The threshold Th for a given false alarm probability is
determined by solving the equation:

PF = P(yn is present|H0) = 1 − FH0(Th) (3:5)

where FH0 denote the cumulative distribution function
(CDF) under H0. In this article, the threshold is deter-
mined for each of the detectors via a Monte Carlo
simulation.

4. Mathematical background
In this section some noncommutative ring theory
notions are used [16]. We start by giving an overview of
the mathematical background leading to the algebraic
detection technique. First let’s suppose that the fre-
quency range available in the wireless network is B Hz;
so B could be expressed as B = [f0, fN]. Saying that this
wireless network is cognitive, means that it supports
heterogeneous wireless devices that may adopt different
wireless technologies for transmissions over different
bands in the frequency range. A CR at a particular place
and time needs to sense the wireless environment in
order to identify spectrum holes for opportunistic use.
Suppose that the radio signal received by the CR occu-
pies N spectrum bands, whose frequency locations and
PSD levels are to be detected and identified. These spec-
trum bands lie within [f1, fK] consecutively, with their
frequency boundaries located at f1 <f2 < ··· <fK. The n-th
band is thus defined by: Bn : {f Î Bn : fn-1 <f <fn, n =
2,3,..., K}. The PSD structure of a wideband signal is illu-
strated in Figure 1. The following basic assumptions are
adopted:

(1) The frequency boundaries f1 and fK = f1 + B are
known to the CR. Even though the actual received
signal may occupy a larger band, this CR regards [f1,
fK] as the wide band of interest and seeks white
spaces only within this spectrum range.
(2) The number of bands N and the locations f2,...,
fK-1 are unknown to the CR. They remain unchanged
within a time burst, but may vary from burst to
burst in the presence of slow fading.
(3) The PSD within each band Bn is smooth and
almost flat, but exhibits discontinuities from its
neighboring bands Bn-1 and Bn+1. As such, irregulari-
ties in PSD appear at and only at the edges of the K
bands.
(4) The corrupting noise is additive white and zero
mean.

�

�

f

PSD

f1 · · · fK

Figure 1 K frequency bands with piecewise smooth PSD.
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The input signal is the amplitude spectrum of the
received noisy signal. We assume that its mathematical
representation is a piecewise regular signal:

Y(f ) =
K∑
i=1

χi[fi−1, fi](f )pi(f − fi−1) + n(f ) (4:1)

where: ci[fi-1, fi]: the characteristic function of the
interval [fi-1, fi], (pi)iÎ[1,K]: an Nth order polynomials ser-
ies, (fi)iÎ[1,K] : the discontinuity points resulting from
multiplying each pi by a ci and n(f): the additive cor-
rupting noise.
Now, let X(f) the clean version of the received signal

given by:

X(f ) =
∑K

i=1
χi[fi−1, fi](f )pi(f − fi−1) (4:2)

And let b, the frequency band, given such as in each
interval Ib = [fi-1,fi] = [ν,ν + b], ν ≥ 0 maximally one
change point occurs in the interval Ib.
Now denoting Xν(f) = X(f + ν), f Î [0,b] for the restric-

tion of the signal in the interval Ib and redefine the
change point which characterizes the distribution dis-
continuity relatively to Ib say fν given by:

yn =
{
fv = 0 if Xv is continuous
0 < fv ≤ b otherwise

Now, in order to emphasis the spectrum discontinuity
behavior, we decide to use the Nth derivative of Xν(f),
which in the sense of distributions theory is given by:

dN

dfN
Xv(f ) = [Xv(f )](N) +

N∑
k=1

μN−kδ(f − fv)
(k−1) (4:3)

where: μk is the jump of the kth order derivative at the
unique assumed change point:fν

μk = X(k)
ν (f +ν ) − X(k)

ν (f−
ν )

with μk = 0⌋k = 1...N if there is no change point and μk
≠ 0⌋ k = 1...N if the change point is in Ib.
[Xν (f)]

(N) is the regular derivative part of the Nth deri-
vative of the signal.
The spectrum sensing problem is now casted as a

change point fν detection problem. Several estimators
can be derived from the previous equations equation.
For example any derivative order N can be taken and
depending on this order the equation is solved in the
operational domain and back to frequency domain the
estimator is deduced. In a matter of reducing the com-
plexity of the frequency direct resolution, those equa-
tions are transposed to the operational domain, using
the Laplace transform:

L
(
Xν(f )

(N)
)
= sNX̂ν(s) −

N−1∑
m=0

sN−m−1 dm

dfm
Xν(f )�f = 0

= e−sfν
(
μN−1 + sμN−2 + ... + sN−1μ0

) (4:4)

Given the fact that the initial conditions, expressed in
the previous equation, and the jumps of the derivatives
of Xν(f) are unknown parameters to the problem, in a
first time we are going to annihilate the jump values
μ0,μ1,..., μN-1 (Appendix 1) then the initial conditions
(Appendix 2). After some calculations steps detailed, we
finally obtain:

N−1∑
k=0

(N
k

)
.f N−k

ν .

∣∣∣∣∣ (sNX̂ν(s)
)(N+k)

= 0 (4:5)

In the actual context, the noisy observation of the
amplitude spectrum Y(f) is taken instead of Xν(f). As
taking derivative in the operational domain is equivalent
to high-pass filtering in frequency domain, which may
help amplifying the noise effect. It is suggested to divide
the whole previous equation by sl which in the fre-
quency domain will be equivalent to an integration if l >
2N, we thus obtain:

N−1∑
k=0

(N
k

)
.f N−k

ν .

(
sNX̂ν(s)

)(N+k)

sl
= 0 (4:6)

Since here is no unknown variables anymore, the pre-
vious equation is now transformed back to the fre-
quency domain, we obtain the polynomial to be solved
on each sensed sub-band:

N−1∑
k=0

(N
k

)
.f N−k

ν .L−1

[(
sNX̂ν(s)

)(N+k)

sl

]
= 0 (4:7)

And denoting:

ϕk+1 = L−1

[(
sNX̂ν(s)

)(N+k)

sl

]
=
∫ +∞

0
hk+1(f ).X(ν − f ).df (4:8)

where: hk+1(f ) =

⎧⎪⎨⎪⎩
(
f l(b − f )N+k

)(k)
(l − 1)!

0 < f < b

0 otherwise
To summarize, we have shown that on each interval

[0, b], for the noise-free observation the change points
are located at frequencies solving:

N∑
k=0

(N
k

)
.f N−k

ν .ϕk+1 = 0 (4:9)

To summarize, we have shown that on each interval
[0, b], for the noise-free observation the change points
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are located at frequencies solving:

N∑
k=0

(N
k

)
.f N−k

ν .ϕk+1 = 0 (4:10)

In [17], it was shown that edge detection and estima-
tion is analyzed based on forming multiscale point-wise
products of smoothed gradient estimators. This
approach is intended to enhance multiscale peaks due
to edges, while suppressing noise. Adopting this techni-
que to our spectrum sensing problem and restricting to
dyadic scales, we construct the multiscale product of N
+ 1 filters (corresponding to continuous wavelet trans-
form in [17]), given by:

Df =

∥∥∥∥∥
N∏
k=0

ϕk+1(fν)

∥∥∥∥∥ (4:11)

4.1. Implementation issues
The proposed algorithm is implemented as a filter bank
which is composed of N filters mounted in a parallel
way. The impulse response of each filter is:

hk+1(f ) =

⎧⎪⎨⎪⎩
(
f l(b − f )N+k

)(k)
(l − 1)!

0 < f < b

0 otherwise

(4:12)

where k Î [0 ... N - 1] and l is chosen such as l > 2 ×
N. The proposed expression of hk+1⌋kÎ[0...N-1] was deter-
mined by modeling the spectrum by a piecewise regular
signal in frequency domain and casting the problem of
spectrum sensing as a change point detection in the pri-
mary user transmission. Finally, in each stage of the fil-
ter bank, we compute the following equation:

ϕk+1(f ) =

+∞∫
0

hk+1(ν).X(f − ν).dν (4:13)

Then, we process by detecting spectrum discontinu-
ities and to find the intervals of interest.

4.2. Algorithm discrete implementation
The proposed algorithm in its discrete implementation
is a filter bank composed of N filters mounted in a par-
allel way. The impulse response of each filter is:

hk+1,n =

⎧⎪⎨⎪⎩
(
nl(b − n)N+k

)(k)
(l − 1)!

0 < n < b

0 otherwise

(4:14)

where k Î [0 ... N - 1] and l is chosen such as l > 2 ×
N. The proposed expression of hk+1,n⌋kÎ[0...N-1] was

determined by modeling the spectrum by a piecewise
regular signal in frequency domain and casting the pro-
blem of spectrum sensing as a change point detection in
the primary user transmission. Finally, in each detected
interval

[
nνi ,nνi+1

]
, we compute the following equation:

ϕk+1 =

nνi+1∑
m=nνi

Wmhk+1,mXm (4:15)

where Wm are the weights for numeric integration
defined by:

W0 = WM = 0.5

Wm = 1 otherwise

In order to infer whether the primary user is present
in the detected intervals, a decision function is com-
puted as following:

Df =

∥∥∥∥∥
N∏
k=0

ϕk+1(nν)

∥∥∥∥∥ (4:16)

5. Performance evaluation
5.1. Performance metrics
Receiver operating characteristic (ROC) is a curve that
shows comparison of the probability of correct detection
(PD) versus the probability of false alarm (PFA). Such
curve is standard way for verification of a detection
algorithms. AD technique has been compared to the ED
considered as a reference technique. Each point is con-
structed by averaging results from 1,000 simulations and
the change of detection probability has been achieved by
changing the algorithms threshold level. An estimate of
PD, P̂D can be expressed as:

P̂D =

∑1000
i=1 N(i)

cd∑1000
i=1 N(i)

a

(5:1)

where Ncd is the number of correct detections per
iteration and Na is number of generated change points
per iteration (it’s the same in every iteration).
Estimation of PFA, P̂FA is more complex since Nd, total

number of detected change points per iteration, is not a
constant. Therefore P̂FA is calculated as a sum of fake
detection probabilities for each different number of total
detections, multiplied with the probability that such
number of total detection occurs (weight factor in con-
ditional probability):

P̂FA =
n∑

k=0

P̂FA|kP (Nd = k) (5:2)
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where: P̂FA|k is defines as:

P̂FA|k =

{
NFA|k
k k ∈ N∗
0 if k = 0

(5:3)

where NFA|k is the average number of falsely detected

change points given that the number of detected ones is
k with n different realizations.

5.2. Simulations results
In this section, we use the ED as a reference technique,
since it is the most common method for spectrum sen-
sing because of its non-coherency and low complexity.
The ED measures the received energy during a finite
time interval and compares it to a predetermined
threshold. That is, the test statistic of the ED is:

M∑
n=1

∥∥yn∥∥2 (5:4)

where M is the number of samples of the received sig-
nal xn. Traditional ED can be simply implemented as a
spectrum analyzer. A threshold used for PU detection is
highly susceptible to unknown or changing noise levels.
Even if the threshold would be set adaptively, presence
of any in-band interference would confuse the ED.
Since the complexity of sensing algorithms is a major

concern in implementation. As ED is well known for its
simplicity, the comparison is made with reference to it.
Denoting M the number of samples of the received sig-
nal yn and N is the model order of the AD, we show
that the AD complexity is NM and the ED complexity is
M. From these results, we clearly see that the proposed
sensing algorithm has a comparable complexity level as
the ED. Table 1 summarizes the complexity of the two
techniques.
For simulation results, the choice of the DVB-T PU

system is justified by the fact that most of the PU sys-
tems utilize the OFDM modulation format [18]. The
considered model is an additive white Gaussian noise
(AWGN) channel. The simulation scenarios are gener-
ated by using different combinations of parameters
given in Table 2.
Figure 2 shows the detected change points by the

algebraic technique where: the blue signal is the simu-
lated OFDM signal and the green stars are the detected
change points.
Figure 3 reports the comparison in terms of Probabil-

ity of Detection versus SNR between the ED (ED) and
the three first algebraic detectors:(AD1) (AD2) and
(AD3), for PF = 0.05 and SNR ranging in -40 to 0 dBs.
The threshold level for each detector is computed with
function of the probability of false alarm PF with respect

to (3.5). This figure clearly shows that the proposed sen-
sing algorithm is quite robust to noise. These curves
show also that the detection rate goes higher as the
polynomial order gets higher. This result is to be
expected as the higher the polynomial order is, the
more accurate the approximation a polynomial is.
Nevertheless, it is to be noticed that this gain in preci-
sion is implies a higher complexity in the algorithms
implementation.
In Figure 4, we plot the ROC curve at an SNR = -15

dB. We clearly see that for the proposed technique, the
higher the order, the more performing the detector gets.

6. Conclusion
In this article, we presented a new standpoint for spec-
trum sensing emerging in detection theory, deriving
from differential algebra, noncommutative ring theory,
and operational calculus. The proposed algebraic based
algorithm for spectrum sensing by change point detec-
tions in order to emphasizes “spike-like” parts of the
given noisy amplitude spectrum. Simulations results
showed that the proposed approach is very efficient to
detect the occupied sub-bands in the the primary user
transmissions. We have shown how very simple sensing
algorithm with good robustness to noise can be devised
within the framework of such unusual mathematical
chapters in signal processing. A probabilistic interpreta-
tion, in the sense of ROC curve, probability of detection
and probability of false alarm, is shown to be attached
to the presented approach. It has allowed us to give a
first step towards a more complete analysis of the pro-
posed sensing algorithms.

Appendix 1. Annihilating jumps in the derivatives
In a matter of reducing the complexity of the frequency
direct resolution, the involved equations are transposed
to the operational domain, using the Laplace transform.

Table 1 Complexity comparison of the different sensing
techniques

Sensing technique Complexity

Energy detector M

Algebraic detector NM

Table 2 The transmitted DVB-T primary user signal
parameters

Bandwidth 8MHz

Mode 2K

Guard interval 1/4

Frequency-flat Single path

Sensing time 1.25 ms

Location variability 10dB
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The equation in the operational domain is given by:

L
(
Xν(f )

(N)
)
= sNX̂ν(s) −

N−1∑
m=0

sN−m−1 dm

dfm
Xν(f )�f=0 (1:1)

= e−sfν
(
μN−1 + sμN−2 + sμN−3 + ... + sN−1μ0

)
(1:2)

Given the fact the initial conditions and the jump of
the derivatives of Xν(f) are unknown parameters to the
problem, in a first time we are going to annihilate the
jump values μ0,μ1,..., μN-1 then the initial conditions. In
order to make further calculations easier and shorter to
write, let:

u(s) = sNX̂v(s) −
∑N−1

m=0
sN−m−1 dm

dfm Xν(f )�f=0 , then the

Equation (1.1) in Appendix 1 becomes:

esfνu(s) = μN−1 + sμN−2 + s2μN−3 + ... + sN−1μ0 (1:3)

Now, a simple N times derivation of the previous
equation with respect to s cancels the jumps μ0,μ1, ...,
μN-1 of the derivatives and we thus obtain:

dN

dsN

(
esfν (s)

)
= 0 (1:4)

Now, given the fact that both functions:[
s �→ esfν

]
[
s �→ u(s) = sNXν(s) −

∑N−1

m=0
sN−m−1 dm

dfm Xν(f )�f=0
]

are N-times differentiable functions, using the Leibniz
Theorem for generalized Nth derivative, we obtain:

(
esfνu(s)

)(N)
=

N∑
k=0

(N
k

)
.
(
esfν
)(N−k)

.
(
u(s)

)(k)
(1:5)

where,
(N
k

)
= N!

k!(N−k)! : : denotes the binomial

coefficient.
That’s to say:

N∑
k=0

(N
k

)
.esfν .f N−k

ν .
(
u(s)

)(k) = 0 (1:6)

Now, given the fact that the initial conditions in:
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Figure 2 Change point detection with SNR = -8 dB.
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Figure 3 Probability of detection vs. SNR for the simulated
detectors with PF = 0.05.
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Figure 4 ROC curves at SNR = -15 dB
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u(s) = sNX̂v(s) −
∑N−1

m=0
sN−m−1 dm

dfm Xν(f )�f=0 are

unknown parameters, we make N-times derivatives of
the previous equation equation to annihilate them, we
thus obtain:

N∑
k=0

(N
k

)
.esfν .f N−k

ν .
(
u(s)

)(N+k) = 0 (1:7)

Now, given that:

u(s) = sNX̂v(s) −
∑N−1

m=0
sN−m−1 dm

dfm Xν(f )�f=0 , after N-

times derivatives only
(
sNX̂ν(s)

)(N) remains, so :

N∑
k=0

(N
k

)
.esfν .f N−k

ν .
(
sNX̂v(s)

)(N+k)
= 0 (1:8)

Appendix 2. Annihilating initial conditions
Since there is no unknown variables anymore, the equa-
tions are now transformed back to the frequency
domain using the inverse Laplace transform, we obtain
the polynomial to be solved on each sensed sub-band:

N∑
k=0

(N
k

)
.esfν .f N−k

ν .L−1

⎡⎢⎣
(
sNX̂ν(s)

)(N+k)

sl

⎤⎥⎦ = 0 (2:1)

In a matter of clarity, the equation 18 is taken back to
frequency domain for the three arguments separately:

L−1

[(
sNX̂ν(s)

)(N+k)

sl

]
=

1
(1 − 1)!

b∫
0

(b − f )(l−1)f N+kX(N)
ν (f )df (2:2)

Denoting the substitution l, so that lb = f, leads to

integration borders:
{
f = b ⇒ λ = 1
f = 0 ⇒ λ = 0

and the integration

becomes:

L−1

[(
sNX̂ν(s)

)(N+k)

sl

]
=

1
(l − 1)!

b∫
0

(b − λb)l−1
λN+kX(N)

ν (λ).b.dλ

L−1

[(
sNX̂ν(s)

)(N+k)

sl

]
=

bl+N+k

(l − 1)!

1∫
0

(1 − λ)l−1
λN+kX(N)

ν (λ).dλ

In order to avoid X(N)
ν (λ) which corresponds to a

high-pass filtering, integration by parts is applied (N -
1)-times with the formula:∫ b

a
u′υ = [uυ]ba −

∫ b

a
uυ′

where each time:

u′(λ) = X(N)
ν (λ),X(N)

ν (λ), ...,X(2)
ν (λ),X1

ν (λ) , which

gives:

L−1

[(
sNX̂ν(s)

)(N+k)

sl

]
=

bl+N+k

(l − 1)!

1∫
0

((1 − λ)l−1
λN+k)

(N)
Xv(λ).dλ (2:3)

Now back to the original notations, we obtain:

L−1

[(
sNX̂ν(s)

)(N+k)

sl

]
=

1
(1 − 1)!

b∫
0

(
(b − f )l−1f N+k

)(N)
Xν(f ).df (2:4)

And as stated previously, Xν(f) = X(f + ν), fε[0, b], we
thus obtain:

L−1

[(
sNX̂ν(s)

)(N+k)

sl

]
=

1
(1 − 1)!

b∫
0

(
(b − f )l−1f N+k

)(N)
X(f + ν).df (2:5)

Now, in order to emphasize the convolution form,
let’s denote: f ¬ b - f:

L−1

[(
sNX̂ν(s)

)(N+k)

sl

]
=

1
(1 − 1)!

b∫
0

(
f l−1(b − f )N+k

)(N)
X(ν + b − f ).df (2:6)

And in order to simplify the expression let ν ¬ ν + b,
we get the following expression:

L−1

[(
sNX̂ν(s)

)(N+k)

sl

]
=

b∫
0

(
f l−1(b − f )N+k

)(N)

(l − 1)!
X(ν − f ).df (2:7)

Now, denoting:

ϕk+1 = L−1

[(
sNX̂ν(s)

)(N+k)

sl

]
=

+∞∫
0

hk+1(f ).X(ν − f ).df(2:8)

where: hk+1(f ) =

⎧⎪⎨⎪⎩
(
f l−1(b − f )N+k

)(N)

(l − 1)!
, 0 < f < b

0, otherwise
To summarize, we have shown that on each interval

[0, b], for the noise-free observation the change points
are located at frequencies solving:

N∑
k=0

(N
k

)
.esfν .f N−k

ν .ϕk+1 = 0 (2:9)

And the estimator is deduced by assuming as input
the real amplitude spectrum Y(f) instead of X(f).
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