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Abstract
In this paper, we propose a simple and useful approach to design an observer for
multiple time-delays nonlinear systems in a triangular form. By constructing a new
Lyapunov-Krasovskii functional and using the differential mean-value theorem, the
sufficient conditions for the existence of such an observer are derived, which
guarantee that the estimation error converges asymptotically towards zero. The
observer gain is independent of the time-delay. A numerical example is provided to
illustrate the result.

Keywords: time-delay; nonlinear systems; nonlinear observers; asymptotic stability

1 Introduction
Time-delay, as well as nonlinearities, is often encountered in various systemswhich render
the control design more difficult []. During the past decades, a lot of significant advances
have been proposed in stability analysis and feedback control for time-delay systems, e.g.,
[–] and reference therein. Among these schemes, the system states are assumed to be
precisely known for the control design, which is not true in some practical cases as some
commercial control systems are not equippedwith enough sensors. This inspires the issue
of observer design for control systems, which is an active research topic in the control
community.
Different types of observers have been proposed, e.g., Luenberger observer [], adaptive

observer [], high-gain observer []. The observer design problem for time-delay sys-
tems has been widely investigated in the recent years. For time-delay systems, most of the
state observation methods developed in the literature concern the linear case; we refer
the reader to some recent advances and their extensions [–]. However, the problem of
state estimation of time-delay systems in the nonlinear case has been rarely studied. For
an overview of recent works, see, e.g., [–]. In [], a new approach to the nonlinear
observer design problem in the presence of delayed output measurements was presented.
The proposed nonlinear observer possesses a state-dependent gain which is computed
from the solution of a system of first-order singular partial differential equations. In [],
the authors established a new method for the observer design problem for a class of Lip-
schitz time-delay systems. The obtained synthesis conditions are expressed in terms of
linear matrix inequalities (LMIs) easily tractable and are less restrictive than those ob-
tained in []. In [], the problem of observer design for a class of multi-output nonlinear
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system was considered. A new state observer design methodology for linear time-varying
multi-output systems was presented. Furthermore, the same methodology was extended
to a class of multi-output nonlinear systems and some sufficient conditions for the exis-
tence of the proposed observer were obtained, which guaranteed that the error of state
estimation converged asymptotically to zero. For further results on observation of time-
delay systems, we refer the reader to [–] and the references therein.
In this paper, we investigate observer design for nonlinear systems written in a trian-

gular form. Our main task is to design the observer for a class of nonlinear systems with
multiple time-delays. The observer is convergent, whatever the size of the delay. The de-
sign method of observer for the class of nonlinear systems with multiple time-delays is
proposed, and the gain matrix is obtained. The observer gain is independent of the time-
delay. The sufficient conditions are presented, which guarantee that the estimation error
converges asymptotically towards zero.
This paper is arranged as follows. In Section , the system description and some lemmas

are given. In Section , we present the observer synthesis method for a class of nonlinear
systems with multiple time-delays. In Section , we propose an illustrative example in
order to show the validity of our method. Finally, some conclusions are given in Section .
The notation used in this paper is fairly standard. Throughout this paper, R stands for

the set of real numbers. The notation A >  (< ) means that the matrix A is symmetric
and positive definite (negative definite). AT stands for the matrix transpose of matrix A.
‖ · ‖ denotes the Euclidean norm for a vector or a matrix. ‖ · ‖∞ denotes the infinity norm
for a matrix.

2 System description
Consider the time-delays nonlinear system given in a lower-triangular form:

ẋ(t) = Ax(t) + f
(
x(t),u(t)

)
+

k∑
j=

gj
(
x(t – hj),u(t)

)
,

y = Cx(t),

()

where x(t) ∈ Rn is the state vector, u(t) ∈ X ⊂ Rm is the bounded control input and y(t) ∈ R
is the system output. The delay hj, j = , , . . . ,k, are constants, and x(t) = φ(t) for –h ≤
t ≤ , h = max≤j≤k{hj}. The functions f (x(t),u(t)) and gj(x(t – h),u(t)), j = , , . . . ,k, are
nonlinear and are assumed to be smooth, and

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

   · · · 
   · · · 
...

...
...

. . .
...

   · · · 
   · · · 

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rn×n, C =
[
   · · · 

]
∈ Rn,

f
(
x(t),u(t)

)
=

⎡
⎢⎢⎢⎢⎣

f(x(t),u(t))
f(x(t),x(t),u(t))

...
fn(x(t),u(t))

⎤
⎥⎥⎥⎥⎦ ∈ Rn, ()
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gj
(
x(t – hj),u(t)

)
=

⎡
⎢⎢⎢⎢⎣

gj(x(t – hj),u(t))
gj(x(t – hj),x(t – hj),u(t))

...
gjn(x(t – hj),u(t))

⎤
⎥⎥⎥⎥⎦ ∈ Rn, j = , , . . . ,k.

To complete the system description, the following assumptions are considered.

Assumption  For all t ≥ , α ∈ Rn, the entries of ∂f (α,u(t))
∂α

are bounded.

Assumption  For all t ≥ , βj ∈ Rn, the entries of ∂gj(βj ,u(t))
∂βj

, j = , , . . . ,k, are bounded.

We set D(r) = diag(, r, . . . , rn–) and Q̃(r) = r–D–(r)Q̄D–(r).
The following lemmas are necessary for the proof of the main statement.

Lemma  Let P(r) and P̄ be the solutions of the algebraic Riccati equations (AREs):

P(r)AT +AP(r) – P(r)CTCP(r) + Q̃(r) = ,

P̄AT +AP̄ – P̄CTCP̄ + Q̄ = ,
()

respectively, where A and C are given in an observable canonical form as in (), Q̄ is any
symmetric positive-definite matrix. Then P(r) is positive-definite for r >  and is given by

P(r) = r–D–(r)P̄D–(r).

Proof Let Q̃(r) = BT (r)B(r), where B(r) ∈ Rn×n. Since Q̃(r) is symmetric and positive-
definite for all r > , one gets that B(r) is invertible. It is easy to verify that (AT ,CT ) is
stabilizable and (B,AT ) is observable. According to ref. [], we obtain that the matrix
P(r) is the unique solution of ARE () which is always symmetric and positive-definite for
r > .
Using the following properties:

AD(r) = rD(r)A, D(r)AT = rATD(r), CD(r) = C, D(r)CT = CT ,

we get

D–(r)A = rAD–(r), ATD–(r) = rD–(r)AT ,

C = CD–(r), CT =D–(r)CT .
()

Pre- and post-multiplying the second ARE in () by r–D–(r), we have

r–D–(r)P̄ATD–(r) + r–D–(r)AP̄D–(r)

– r–D–(r)P̄CTCP̄D–(r) + r–D–(r)Q̄D–(r) = . ()

Using (), () can be rewritten as

[
r–D–(r)P̄D–(r)

]
AT +A

[
r–D–(r)P̄D–(r)

]
–

[
r–D–(r)P̄D–(r)

]
CTC

[
r–D–(r)P̄D–(r)

]
+ r–D–(r)Q̄D–(r) = .
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By comparing the last ARE with the first ARE of (), we conclude that

P(r) = r–D–(r)P̄D–(r). ()
�

Lemma If L = (lij) ∈ Rn×n is a lower-triangularmatrix andD(r) = diag(, r, . . . , rn–), then
the following inequality holds for all  < r ≤ :

∥∥D(r)LD–(r)
∥∥ ≤ δ + rδ, ()

where

δ =
√
nmax

{|l|, |l|, . . . , |lnn|},
δ =

√
nmax

{|l|, |l| + |l|, . . . , |ln| + |ln| + · · · + |ln,n–|
}
.

()

Proof Computing the product, we have

D(r)LD–(r) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣


r

r
. . .

rn–

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

l   · · · 
l l  · · · 
l l l · · · 
...

...
...

. . .
...

ln ln ln · · · lnn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣


r–

r–
. . .

r–n+

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

l   · · · 
rl l  · · · 
rl rl l · · · 
...

...
...

. . .
...

rn–ln rn–ln rn–ln · · · lnn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

So, it follows that

∥∥D(r)LD–(r)
∥∥ ≤ √

n
∥∥D(r)LD–(r)

∥∥∞

=
√
nmax

{|l|, |l| + |rl|, |l| + |rl| +
∣∣rl∣∣, . . . ,

|lnn| +
∣∣rn–ln∣∣ + ∣∣rn–ln∣∣ + · · · + |rln,n–|

}
=

√
nmax

{|l|, |l| + r|l|, |l| + r
(|l| + |rl|

)
, . . . ,

|lnn| + r
(∣∣rn–ln∣∣ + ∣∣rn–ln∣∣ + · · · + |ln,n–|

)}
.
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When  < r ≤ , we have

∥∥D(r)LD–(r)
∥∥ ≤√

nmax
{|l|, |l| + r|l|, |l| + r

(|l| + |l|
)
, . . . ,

|lnn| + r
(|ln| + |ln| + · · · + |ln,n–|

)}
≤δ + rδ. �

Remark  If Assumptions  and  hold and  < r ≤ , then there are ci > , i = , , cj > ,
cj > , j = , , . . . ,k, such that

∥∥∥∥D(r)∂f (α,u(t))∂α
D–(r)

∥∥∥∥ ≤ c + rc,
∥∥∥∥D(r)∂gj(βj,u(t))

∂βj
D–(r)

∥∥∥∥ ≤ cj + rcj, j = , , . . . ,k.

Lemma [] For any real vectors a, b andanymatrixQ > with appropriate dimensions,
it follows that

aTb ≤ aTQa + bTQ–b.

Consider the following functional differential equation of retarded type:

ẋ(t) = f (t,xt), ()

where x(t) ∈ Rn, f : R×C→ Rn.

Lemma  (Lyapunov-Krasovskii stability theorem []) Suppose that f : R×C → Rn given
in ()maps every R×(bounded set in C) into a bounded set in Rn, and that u, v,w : R̄+ → R̄+

are continuous nondecreasing functions,where additionally u(s) and v(s) are positive for s >
 and u() = v() = . If there exists a continuous differentiable functional V : R×C → R
such that

u
(∥∥φ()

∥∥) ≤ V (t,φ) ≤ v
(‖φ‖c

)
and

V̇ (t,φ)≤ –w
(∥∥φ()

∥∥)
,

then the trivial solution of () is uniformly stable. If w(s) >  for s > , then it is uniformly
asymptotically stable. In addition, if lims→∞ u(s) = ∞, then it is globally uniformly asymp-
totically stable.

3 Observer design
Now, for the time-delay system described by (), we propose the following state observer:

˙̂x(t) = Ax̂(t) + f
(
x̂(t),u(t)

)
+

k∑
j=

gj
(
x̂(t – hj),u(t)

)
– L

(
Cx̂(t) –Cx(t)

)
. ()
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Our aim is to find the gain L such that the estimation error e(t) = x̂(t) – x(t) asymptoti-
cally converges towards zero. The estimation error dynamics is governed by

ė(t) = Ae(t) – LCe(t) +�f +
k∑
j=

�gj, ()

where

�f = f
(
x̂(t),u(t)

)
– f

(
x(t),u(t)

)
,

�gj = gj
(
x̂(t – h),u(t)

)
– gj

(
x(t – h),u(t)

)
, j = , , . . . ,k.

In the sequel, we introduce our main contribution which consists of a new feasibility
condition for the observer synthesis problem of a class of nonlinear time-delays systems.
The convergence analysis is performed by the use of a Lyapunov-Krasovskii functional.
For any symmetric positive-definite matrix Q̄ > , let P̄ >  be the solutions of the alge-

braic Riccati equations (AREs):

P̄AT +AP̄ – P̄CTCP̄ + Q̄ = . ()

Theorem  Assume that Assumptions  and  hold and L = P(r)CT , where P(r) =
r–D–(r)P̄D–(r). Then for any

 < r <min

{
,

λmin(P̄–Q̄P̄–)
λmax(P̄–)[k +  + (c + c)]

, min
≤j≤k

λmin(P̄–Q̄P̄–)
kλmax(P̄–)(cj + cj)

}
, ()

the observer error e(t) = x̂(t) – x(t) that results from () and () converges asymptotically
towards zero.

Proof From Lemma , we known that the ARE

P(r)AT +AP(r) – P(r)CTCP(r) + kQ(r) = ,

has the solution

P(r) = r–D–(r)P̄D–(r),

where Q(r) = (/k)r–D–(r)Q̄D–(r).
So, we have

ATP–(r) + P–(r)A –CTC + kP–(r)Q(r)P–(r) = .

For positive definite matrices P–(r), let us consider the Lyapunov-Krasovskii functional
candidate:

V
(
t, e(t)

)
= eT (t)P–(r)e(t) +




k∑
j=

∫ t

t–hj
eT (s)P–(r)Q(r)P–(r)e(s)ds. ()
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Then we have

V̇
(
t, e(t)

)
= ėT (t)P–(r)e(t) + eT (t)P–(r)ė(t)

+



k∑
j=

[
eT (t)P–(r)Q(r)P–(r)e(t) – eT (t – hj)P–(r)Q(r)P–(r)e(t – hj)

]

= eT (t)
(
ATP–(r) + P–(r)A – CTC +

k

P–(r)Q(r)P–(r)

)
e(t)

+ eT (t)P–(r)

(
�f +

k∑
j=

�gj

)
–



k∑
j=

eT (t – hj)P–(r)Q(r)P–(r)e(t – hj)

= eT (t)
(
–CTC –

k

P–(r)Q(r)P–(r)

)
e(t) + eT (t)P–(r)

(
�f +

k∑
j=

�gj

)

–



k∑
j=

eT (t – hj)P–(r)Q(r)P–(r)e(t – hj).

Using the differential mean-value theorem, we can write that

�f = f
(
x̂(t),u(t)

)
– f

(
x(t),u(t)

)
=

∫ 



∂f (α,u(t))
∂α

∣∣∣∣
α=α(λ)

(
x̂(t) – x(t)

)
dλ,

�gj = gj
(
x̂(t – hj),u(t)

)
– gj

(
x(t – hj),u(t)

)
=

∫ 



∂gj(βj,u(t))
∂βj

∣∣∣∣
βj=βj(λ)

(
x̂(t – hj) – x(t – hj)

)
dλ, j = , , . . . ,k,

()

where

α(λ) = x(t) + λ
(
x̂(t) – x(t)

)
,

βj(λ) = x(t – hj) + λ
(
x̂(t – hj) – x(t – hj)

)
.

Let us denote

	α(λ) =
∂f (α,u(t))

∂α

∣∣∣∣
α=α(λ)

, 	βj (λ) =
∂gj(βj,u(t))

∂βj

∣∣∣∣
βj=βj(λ)

.

This immediately gives

V̇
(
t, e(t)

) ≤
∫ 


eT (t)

(
–
k

P–(r)Q(r)P–(r)

)
e(t)dλ + 

∫ 


eT (t)P–(r)	α(λ)e(t)dλ

+ 
k∑
j=

∫ 


eT (t)P–(r)	βj (λ)e(t – hj)dλ

–



k∑
j=

eT (t – hj)P–(r)Q(r)P–(r)e(t – hj).
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Using Lemma , we have


∫ 


eT (t)P–(r)	α(λ)e(t)dλ

≤
∫ 


eT (t)P–(r)e(t)dλ +

∫ 


eT (t)	T

α (λ)P
–(r)	α(λ)e(t)dλ,


∫ 


eT (t)P–(r)	βj (λ)e(t – hj)dλ

≤
∫ 


eT (t)P–(r)e(t)dλ +

∫ 


eT (t – hj)	T

βj
(λ)P–(r)	βj (λ)e(t – hj)dλ.

This implies that

V̇
(
t, e(t)

) ≤
∫ 


eT (t)

(
–
k

P–(r)Q(r)P–(r)

)
e(t)dλ + (k + )

∫ 


eT (t)P–(r)e(t)dλ

+
∫ 


eT (t)	T

α (λ)P
–(r)	α(λ)e(t)dλ

+
k∑
j=

∫ 


eT (t – hj)	T

βj
(λ)P–(r)	βj (λ)e(t – hj)dλ

–



k∑
j=

eT (t – hj)P–(r)Q(r)P–(r)e(t – hj)

≤ –



∫ 


eT (t)D(r)P̄–Q̄P̄–D(r)e(t)dλ + (k + )

∫ 


eT (t)rD(r)P̄–D(r)e(t)dλ

+
∫ 


eT (t)	T

α (λ)rD(r)P̄
–D(r)	α(λ)e(t)dλ

+
k∑
j=

[∫ 


eT (t – hj)	T

βj
(λ)rD(r)P̄–D(r)	βj (λ)e(t – hj)dλ

]

–

k

k∑
j=

[∫ 


eT (t – hj)D(r)P̄–Q̄P̄–D(r)e(t – hj)dλ

]
.

Let η(t) =D(r)e(t), we have

V̇
(
t, e(t)

) ≤ –



∫ 


ηT (t)P̄–Q̄P̄–η(t)dλ + (k + )r

∫ 


ηT (t)P̄–η(t)dλ

+
∫ 


ηT (t)D–(r)	T

α (λ)rD(r)P̄
–D(r)	α(λ)D–(r)η(t)dλ

+
k∑
j=

∫ 


ηT (t – hj)D–(r)	T

βj
(λ)rD(r)P̄–D(r)	βj (λ)D

–(r)η(t – hj)dλ

–

k

k∑
j=

∫ 


ηT (t – hj)P̄–Q̄P̄–ηT (t – hj)dλ

≤
∫ 



[
–


λmin

(
P̄–Q̄P̄–)

http://www.advancesindifferenceequations.com/content/2013/1/147
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+ rλmax
(
P̄–)(k +  +

∥∥D(r)	α(λ)D–(r)
∥∥)]∥∥η(t)

∥∥ dλ

+
k∑
j=

∫ 



[
–


k

λmin
(
P̄–Q̄P̄–)

+ rλmax
(
P̄–)∥∥D(r)	βj (λ)D

–(r)
∥∥

]∥∥η(t – hj)
∥∥ dλ

≤
∫ 



[
–


λmin

(
P̄–Q̄P̄–) + rλmax

(
P̄–)(k +  + (c + rc)

)]∥∥η(t)
∥∥ dλ

+
k∑
j=

∫ 



[
–


k

λmin
(
P̄–Q̄P̄–) + rλmax

(
P̄–)(cj + rcj)

]∥∥η(t – hj)
∥∥ dλ

≤
∫ 



[
–


λmin

(
P̄–Q̄P̄–) + rλmax

(
P̄–)(k +  + (c + c)

)]∥∥η(t)
∥∥ dλ

+
k∑
j=

∫ 



[
–


k

λmin
(
P̄–Q̄P̄–) + rλmax

(
P̄–)(cj + cj)

]∥∥η(t – hj)
∥∥ dλ.

From (), we have V̇ < . According to Lemma , we deduce that the observer error con-
verges asymptotically towards zero. This ends the proof of Theorem . �

Consider the following nonlinear systems:

ẋ(t) = Ax(t) +
k∑
j=

Mjgj
(
x(t – hj),u(t)

)
,

y = Cx(t),

()

where A, C and gj(x(t – hj),u(t)) are given by (), andMj is a lower-triangular matrix.

Remark If Assumption  holds and  < r ≤ , then there areμj > ,μj > , j = , , . . . ,k,
such that

∥∥∥∥D(r)Mj
∂gj(βj,u(t))

∂βj
D–(r)

∥∥∥∥ ≤ μj + rμj, j = , , . . . ,k.

Consider the following observer:

˙̂x(t) = Ax̂(t) +
k∑
j=

Mjgj
(
x̂(t – hj),u(t)

)
– L

(
Cx̂(t) –Cx(t)

)
. ()

Our aim is to find the gain L such that the estimation error e(t) = x̂(t) – x(t) asymptoti-
cally converges towards zero. The estimation error dynamics is governed by

ė(t) = Ae(t) – LCe(t) +
k∑
j=

Mj�gj, ()

http://www.advancesindifferenceequations.com/content/2013/1/147
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where

�gj = gj
(
x̂(t – h),u(t)

)
– gj

(
x(t – h),u(t)

)
, j = , , . . . ,k.

Theorem  Assume that Assumption  holds and L = P(r)CT , where P(r) = r–D–(r)P̄×
D–(r). Then for any

 < r <min

{
,

λmin(P̄–Q̄P̄–)
kλmax(P̄–)

, min
≤j≤k

λmin(P̄–Q̄P̄–)
kλmax(P̄–)(μj +μj)

}
, ()

the observer error e(t) = x̂(t) – x(t) that results from () and () converges asymptotically
towards zero.

Proof From Lemma , we known that the ARE

P(r)AT +AP(r) – P(r)CTCP(r) + kQ(r) = 

has the solution

P(r) = r–D–(r)P̄D–(r),

where Q(r) = (/k)r–D–(r)Q̄D–(r).
So, we have

ATP–(r) + P–(r)A –CTC + kP–(r)Q(r)P–(r) = .

For positive definite matrices P–(r), let us consider the Lyapunov-Krasovskii functional
candidate

V
(
t, e(t)

)
= eT (t)P–(r)e(t) +




k∑
j=

∫ t

t–hj
eT (s)P–(r)Q(r)P–(r)e(s)ds. ()

Then we have

V̇
(
t, e(t)

)
= ėT (t)P–(r)e(t) + eT (t)P–(r)ė(t) +




k∑
j=

[
eT (t)P–(r)Q(r)P–(r)e(t)

– eT (t – hj)P–(r)Q(r)P–(r)e(t – hj)
]

= eT (t)
(
ATP–(r) + P–(r)A – CTC +

k

P–(r)Q(r)P–(r)

)
e(t)

+ eT (t)P–(r)

( k∑
j=

Mj�gj

)
–



k∑
j=

eT (t – hj)P–(r)Q(r)P–(r)e(t – hj)

= eT (t)
(
–CTC –

k

P–(r)Q(r)P–(r)

)
e(t) + eT (t)P–(r)

( k∑
j=

Mj�gj

)

–



k∑
j=

eT (t – hj)P–(r)Q(r)P–(r)e(t – hj).

http://www.advancesindifferenceequations.com/content/2013/1/147
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Using the differential mean-value theorem, we can write that

�gj = gj
(
x̂(t – hj),u(t)

)
– gj

(
x(t – hj),u(t)

)
=

∫ 



∂gj(βj,u(t))
∂βj

∣∣∣∣
βj=βj(λ)

(
x̂(t – hj) – x(t – hj)

)
dλ, j = , , . . . ,k, ()

where

βj(λ) = x(t – hj) + λ
(
x̂(t – hj) – x(t – hj)

)
.

Let us denote

	βj (λ) =
∂gj(βj,u(t))

∂βj

∣∣∣∣
βj=βj(λ)

.

This immediately gives

V̇
(
t, e(t)

) ≤
∫ 


eT (t)

(
–
k

P–(r)Q(r)P–(r)

)
e(t)dλ

+ 
k∑
j=

∫ 


eT (t)P–(r)Mj	βj (λ)e(t – hj)dλ

–



k∑
j=

eT (t – hj)P–(r)Q(r)P–(r)e(t – hj).

Using Lemma , we have


∫ 


eT (t)P–(r)Mj	βj (λ)e(t – hj)dλ

≤
∫ 


eT (t)P–(r)e(t)dλ

+
∫ 


eT (t – hj)	T

βj
(λ)MT

j P
–(r)Mj	βj (λ)e(t – hj)dλ.

This implies that

V̇
(
t, e(t)

) ≤
∫ 


eT (t)

(
–
k

P–(r)Q(r)P–(r)

)
e(t)dλ + k

∫ 


eT (t)P–(r)e(t)dλ

+
k∑
j=

∫ 


eT (t – hj)	T

βj
(λ)MT

j P
–(r)Mj	βj (λ)e(t – hj)dλ

–



k∑
j=

eT (t – hj)P–(r)Q(r)P–(r)e(t – hj)

≤ –



∫ 


eT (t)D(r)P̄–Q̄P̄–D(r)e(t)dλ + k

∫ 


eT (t)rD(r)P̄–D(r)e(t)dλ

http://www.advancesindifferenceequations.com/content/2013/1/147
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+
k∑
j=

[∫ 


eT (t – hj)	T

βj
(λ)MT

j rD(r)P̄
–D(r)Mj	βj (λ)e(t – hj)dλ

–
∫ 




k

eT (t – hj)D(r)P̄–Q̄P̄–D(r)e(t – hj)dλ

]
.

Let η(t) =D(r)e(t), we have

V̇
(
t, e(t)

) ≤ –



∫ 


ηT (t)P̄–Q̄P̄–η(t)dλ + kr

∫ 


ηT (t)P̄–η(t)dλ

+
k∑
j=

∫ 


ηT (t – hj)D–(r)	T

βj
(λ)MT

j r

×D(r)P̄–D(r)Mj	βj (λ)D
–(r)η(t – hj)dλ

–

k

k∑
j=

∫ 


ηT (t – hj)P̄–Q̄P̄–ηT (t – hj)dλ

≤
∫ 



[
–


λmin

(
P̄–Q̄P̄–) + krλmax

(
P̄–)]∥∥η(t)

∥∥ dλ

+
k∑
j=

∫ 



[
–


k

λmin
(
P̄–Q̄P̄–)

+ rλmax
(
P̄–)∥∥D(r)Mj	βj (λ)D

–(r)
∥∥

]∥∥η(t – hj)
∥∥ dλ

≤
∫ 



[
–


λmin

(
P̄–Q̄P̄–) + krλmax

(
P̄–)]∥∥η(t)

∥∥ dλ

+
k∑
j=

∫ 



[
–


k

λmin
(
P̄–Q̄P̄–) + rλmax

(
P̄–)(μj + rμj)

]∥∥η(t – hj)
∥∥ dλ

≤
∫ 



[
–


λmin

(
P̄–Q̄P̄–) + krλmax

(
P̄–)]∥∥η(t)

∥∥ dλ

+
k∑
j=

∫ 



[
–


k

λmin
(
P̄–Q̄P̄–) + rλmax

(
P̄–)(μj +μj)

]∥∥η(t – hj)
∥∥ dλ.

From (), we have V̇ < . This ends the proof of Theorem . �

Remark  In (), the nonlinear term is the function of u(t) and x(t – hj), j = , , . . . ,k.
But it does not contain x(t). If f (x(t),u(t)) = , then () can be written as

ẋ(t) = Ax(t) +
k∑
j=

gj
(
x(t – hj),u(t)

)
,

y = Cx(t).

()

WhenMj = I , j = , , . . . ,k, () becomes (). So, () is the special case of ().

http://www.advancesindifferenceequations.com/content/2013/1/147
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Consider the following time-delay system:

ẋ(t) = Ax(t) +Ax(t) +
k∑
j=

Bjx(t – hj) +ω
(
u(t)

)
,

y = Cx(t),

()

where A and C are defined as in (). A = (aij) and Bj = (bjik), j = , , . . . ,k, are real and
lower-triangular matrices and ω(u(t)) is an input-injection vector of dimension n.
From Lemma , we have

∥∥D(r)AD–(r)
∥∥ ≤ υ + rυ,∥∥D(r)BjD–(r)
∥∥ ≤ υj + rυj, j = , , . . . ,k,

()

where

υ =
√
nmax

{|a|, |a|, . . . , |ann|},
υ =

√
nmax

{|a|, |a| + |a|, . . . , |an| + |an| + · · · + |an,n–|
}
,

υj =
√
nmax

{∣∣bj∣∣, ∣∣bj∣∣, . . . , ∣∣bjnn∣∣},
υj =

√
nmax

{∣∣bj∣∣, ∣∣bj∣∣ + ∣∣bj∣∣, . . . , ∣∣bjn∣∣ + ∣∣bjn∣∣ + · · · + ∣∣bjn,n–∣∣}.
()

Consider the following observer:

˙̂x(t) = Ax̂(t) +Ax̂(t) +
k∑
j=

Bjx̂(t – hj) – L
(
Cx̂(t) –Cx(t)

)
+ω

(
u(t)

)
. ()

The estimation error is e(t) = x̂(t) – x(t). The estimation error dynamics is governed by

ė(t) = (A +A – LC)e(t) +
k∑
j=

Bje(t – hj). ()

Corollary  Consider the nonlinear system (). Assume that L = P(r)CT , where P(r) =
r–D–(r)P̄D–(r). Then for any

 < r <min

{
,

λmin(P̄–Q̄P̄–)
λmax(P̄–)[k +  + (υ + υ)]

, min
≤j≤k

λmin(P̄–Q̄P̄–)
kλmax(P̄–)[(υj + υj)]

}
,

the estimation error e(t) = x̂(t) – x(t) that results from () and () converges asymptoti-
cally towards zero.

Proof The matrices A and Bj can be seen as the matrix Jacobian. Therefore, the proof
becomes straightforward as it was developed before. �

Remark  Those results obtained can be extended to multiple time-delays nonlinear sys-
tems in upper-triangular form.

http://www.advancesindifferenceequations.com/content/2013/1/147
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Remark  In [], the sufficient conditions which guarantee that the estimation error
converges asymptotically towards zero are given in terms of a linear matrix inequality.
Comparing with [], our results are less conservative and more convenient to use.

4 Numerical example
Let us consider the time delay system

ẋ(t) = x(t) + sin
(
x(t – ) + u(t)

)
,

ẋ(t) = –. sin
(
x(t – .)

)
,

y(t) = x(t),

where

A =

[
 
 

]
, C =

[
 

]
, h = , h = .,

x(t) =

(
x(t)
x(t)

)
, M =M = I,

g
(
x(t – h),u(t)

)
=

(
sin(x(t – ) + u(t))



)
,

g
(
x(t – h),u(t)

)
=

(


–. sin(x(t – .))

)
.

Take

Q̄ =

[
 
 

]
.

Solving the following equation:

P̄AT +AP̄ – P̄CTCP̄ + Q̄ = ,

we get

P̄ =

[
 
 

]
, P̄– =




[
 –
– 

]
.

It is easy to obtain that μ = μ = , μ = μ = .. Let r = ., D(r) =
[  
 r

]
. It is easy

to verify that () holds.
We get

L = r–D–(r)P̄D–(r)CT |r=. =
[


,

]
.
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The observer is given by

˙̂x(t) = x̂(t) + sin
(
x̂(t – ) + u(t)

)
– 

(
x̂(t) – x(t)

)
,

˙̂x(t) = –. sin
(
x̂(t – .)

)
– ,

(
x̂(t) – x(t)

)
.

According to Theorem , the estimation error e(t) = x̂(t) – x(t) converges asymptotically
towards zero.

5 Conclusion
The main purpose of this paper is to offer a systematic algorithm for designing an ob-
server for a class of nonlinear systems with multiple time-delays. By using an improved
Lyapunov-Krasovskii functional and the differential mean-value theorem, we present the
sufficient conditions for the existence of the observer, which guarantee that the estimation
error converges asymptotically towards zero. The new design plays an important role in
obtaining a nonrestrictive synthesis condition and rendering our approach application to
a broader class of systems, namely the class of nonlinear time-delay systems in a lower-
triangular form. The proposed design is valid whatever the size of the delay. Finally, the
efficiency of the proposed method is shown by a numerical example.
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