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Abstract
We show some stability and convergence theorems of the modified Ishikawa iterative
sequence with errors for a strongly successively pseudocontractive and strictly
asymptotically pseudocontractive mapping in a real Banach space. Additionally, we
prove that if T is a uniformly Lipschitzian strongly accretive mapping, the modified
Ishikawa iteration sequence with errors converges strongly to the unique solution of
the equation Tx = f . The main results of this paper improve and extend the known
results in the current literature.
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1 Introduction
Developments in fixed point theory reflect that the iterative construction of fixed points
is proposed and vigorously analyzed for various classes of maps in different spaces. The
class of pseudocontractive mappings in their relation with iteration procedures has been
studied by several researchers under suitable conditions; for more details, see [–] and
the references therein. Also, the class of nonexpansive mappings via iteration methods
has extensively been studied in this regard; see Tan and Xu []. The class of strongly pseu-
docontractive mappings has been studied by many researchers (see [–]) under certain
conditions. Stability results established in metric space, normed linear space, and Banach
space settings are available in the literature. There are several authors whose contributions
are of colossal value in the study of stability of the fixed point iterative procedures: Imoru
and Olatinwo [], Olatinwo [], Haghi et al. [], Olatinwo and Postolache []. Reich and
Zaslavski [] in Chapter  established the existence and uniqueness of a fixed point for
a generic mapping, convergence of the iterates of a nonexpansive mapping, stability of
the fixed point under small perturbations of a mapping, convergence of Krasnosel’skii-
Mann iterations of nonexpansive mappings, generic power convergence of order preserv-
ing mappings, and existence and uniqueness of positive eigenvalues and eigenvectors of
order-preserving linear operators. They also studied the convergence of iterates of non-
expansive mappings in the presence of computational errors in this chapter. Harker and
Hicks in [] showed how a stability sequence could arise in practice and demonstrated
the importance of investigating the stability of various iterative sequences for some kinds
of nonlinear mappings.
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The purpose in this paper is to study the modified Ishikawa iteration sequence with
errors converging strongly to a fixed point of the uniformly Lipschitzian strongly succes-
sively pseudocontractive mapping under the lack of some conditions. On the other hand,
the authors show that the modified Ishikawa iteration sequence with errors converges
strongly to the unique solution of the equation Tx = f if T is a Lipschitzian strongly accre-
tive mapping. The results of this paper improve and extend some recent results.

2 Preliminaries
Throughout this paper, we assume that E is a real Banach space with dual E∗. Suppose that
〈·, ·〉 is the dual pair between E and E∗, and J : E → E∗ is the normalized duality mapping
defined by

J(x) =
{
f ∈ E∗ : 〈x, f 〉 = ‖x‖,‖f ‖ = ‖x‖}, ∀x ∈ E.

First, we recall some concepts. A mapping T : E → E is said to be:
(i) uniformly Lipschizian if there exists a constant L >  such that

∥∥Tnx – Tny
∥∥ ≤ L‖x – y‖ for all x, y ∈ E,n≥ ;

(ii) strongly successively pseudocontractive if for every x, y ∈ E there exist t >  and
j(x – y) ∈ J(x – y) such that

〈
Tnx – Tny, j(x – y)

〉 ≤ 
t
‖x – y‖ for all n≥ ; (.)

(iii) strongly pseudocontractive if for every x, y ∈ E there exist t >  and
j(x – y) ∈ J(x – y) such that

〈
Tx – Ty, j(x – y)

〉 ≤ 
t
‖x – y‖. (.)

Example . Let E = R = (–∞,∞) with the usual norm. Take K = [, ] and define T :
K → K by

Tx =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

 if x = ,

 if x = ,

x – 
n+ if 

n+ ≤ x < 
 (


n+ +


n ),


n – x if 

 (


n+ +

n ) ≤ x < 

n

for all n ≥ . Then F(T) = {} and T is not continuous at x = . We can verify that

Tx ≤ 

x, x ∈ K .

Thus T is continuous in K and TK ⊂ [, –n] for all n ≥ . Then for any x ∈ K , there
exists j(x – ) ∈ J(x – ) satisfying

〈
Tnx – Tn, j(x – )

〉
= Tnx · x ≤ 


‖x‖

for all n ≥ . That is, T is a strongly successively pseudocontractive mapping.
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Lemma . (see [, Lemma .]) Let E be a Banach space and x, y ∈ E. Then ‖x‖ ≤ ‖x +
γ y‖ for all γ >  if and only if there exists j(x) ∈ J(x) such that Re〈y, j(x)〉 ≥ .

In the sequel, let k = t–
t , where t is the constant appearing in (.). It follows from (.)

that

〈(
( – k)I – Tn)x – (

( – k)I – Tn)y, j(x – y)
〉 ≥ . (.)

Therefore, it follows fromLemma. and (.) that the definition of a strongly successively
pseudocontractive mapping is equivalent to the following definition.

Definition . T is strongly successively pseudocontractive if there exists t >  such that

‖x – y‖ ≤ ∥∥x – y + s
[(
( – k)I – Tn)x – (

( – k)I – Tn)y]∥∥ (.)

for all x, y ∈ E, s >  and n ≥ .

Definition . Let T : E → E be a mapping. For a given x ∈ E. {an}, {bn} are sequences
in [, ], and {un}, {vn} are sequences in E. The sequence {xn} ⊂ E defined by

{
xn+ = ( – an)xn + anTnzn + un,
zn = ( – bn)xn + bnTnxn + vn, n = , , . . . ,

(.)

is said to be a modified Ishikawa iteration sequence with errors.

The following lemmas will be needed in proving our main results.

Lemma . (see []) Let {λn}, {μn}, {cn} be nonnegative real sequences satisfying the in-
equality

λn+ ≤ ( +μn)λn + cn, ∀n≥ .

If
∑∞

n= μn < ∞ and
∑∞

n= cn < ∞, then (i) limn→∞ λn exists, and (ii) in particular, if {λn}
has a subsequence {λnk } converging to , then limn→∞ λn = .

From Lemma . we have the following.

Lemma . Let {λn}, {μn}, {dn} be nonnegative real sequences satisfying

λn+ ≤ ( – tn)λn +μnλn + cn + dn, ∀n≥ , (.)

where {tn} is a sequence in [, ] such that
∑∞

n= tn = ∞,
∑∞

n= μn < ∞,
∑∞

n= cn < ∞ and
dn = o(tn). Then λn →  as n→ ∞.

Proof Since dn = o(tn), there exists a natural number n such that dn ≤ tnλn
 for n ≥ n. It

follows from (.) that

λn+ ≤
(
 –

tn


)
λn +μnλn + cn ≤ ( +μn)λn + cn, ∀n≥ n.

By Lemma., we see that limn→∞ λn exists. Therefore, there existsD >  such that λn ≤D.
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Let limn→∞ λn = δ, then δ = . Indeed, if δ > , there exists a natural number N such
that λn ≥ (δ/), dn ≤ (tnλn)/ for n≥N. It follows from (.) that

λn+ ≤ λn – tnλn +μnλn + cn + dn ≤ λn –
tnλn


+Dμn + cn.

This implies δtn
 ≤ λntn

 ≤ λn – λn+ +Dμn + cn, ∀n≥N. Therefore,

δ



n∑
i=N

tn ≤ λN +D
n∑

i=N

μj +
n∑

i=N

cn.

Note that
∑∞

n= μn < ∞ and
∑∞

n= cn < ∞, and we have
∑∞

n= tn < ∞, a contradiction with∑∞
n= tn =∞. Then limn→∞ λn = . This completes the proof of Lemma .. �

Let E be a Banach space andT a self-map of E. Suppose x ∈ E and xn+ = f (xn,T) defines
an iteration procedure which yields a sequence of points {xn} ⊂ E. Let F(T) = {p ∈ E : Tp =
p} = ∅ denote the fixed point of T and let {xn} converge to a fixed point p of T . Let {yn} ⊂ E
and let εn = ‖yn+ – f (yn,T)‖ be a sequence in [,∞).

Definition . (see [, , ]) If limn→∞ εn =  implies that limn→∞ yn = p, then the
iteration procedure defined by xn+ = f (xn,T) is said to be T-stable. If

∑∞
n= εn <∞ implies

limn→∞ yn = p, then the iteration procedure defined by xn+ = f (xn,T) is said to be almost
T-stable.

3 Main results
Theorem . Let T : E → E be a uniformly Lipschitzian and strongly successively pseudo-
contractive mapping with F(T) = ∅. Let {xn} be defined by (.) and {an}, {bn} ⊂ [, ] and
{un}, {vn} ⊂ E satisfying the conditions:

(i) ‖un‖ = o(an), ‖vn‖ →  as n→ ∞;
∑∞

n= an =∞;
(ii) limn→∞ supan < k/((L + ) + ) and

∑∞
n= anbn < ∞.

Suppose {yn} ⊂ E and define {εn} by

sn = ( – bn)yn + bnTnyn + vn,

εn =
∥∥yn+ – ( – an)yn – anTnsn – un

∥∥, n ≥ .

Then the following assertions hold:
() {xn} converges strongly to a unique fixed point of T in E;
() {xn} is almost T-stable;
() if limn→∞ εn/an =  implies limn→∞ yn = p, then the iteration procedure defined by

xn+ = f (xn,T) is said to be a weakly T-stable. Thus {xn} is also weakly T-stable.

Proof We will show that F(T) is a singleton. Indeed, if p,p ∈ F(T), by the definition of
strongly successively pseudocontractive of T , there exists a j(p –p) ∈ J(p –p) such that

‖p – p‖ =
〈
Tp – Tp, j(p – p)

〉
=

〈
Tnp – Tnp, j(p – p)

〉 ≤ 
t
‖p – p‖,

and, since t > , this implies that p = p.

http://www.fixedpointtheoryandapplications.com/content/2014/1/224
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It follows from (.) that

‖zn – p‖ = ∥∥( – bn)(xn – p) + bn
(
Tnxn – p

)
+ vn

∥∥
≤ ( – bn)‖xn – p‖ + bn

∥∥Tnxn – p
∥∥ + ‖vn‖

≤ ‖xn – p‖ + ∥∥Tnxn – p
∥∥ + ‖vn‖

≤ (L + )‖xn – p‖ + ‖vn‖, (.)∥∥xn – Tnzn
∥∥ ≤ ‖xn – p‖ + L‖zn – p‖ ≤ (

 + L(L + )
)‖xn – p‖ + L‖vn‖. (.)

It follows from (.), (.), and (.) that

∥∥Tnxn+ – Tnzn
∥∥ ≤ L‖xn+ – zn‖ = L

∥∥(xn – zn) + an
(
Tnzn – xn

)
+ un

∥∥
≤ L‖xn – zn‖ + Lan

∥∥Tnzn – xn
∥∥ + L‖un‖

= L
∥∥bn(xn – Tnxn

)
– vn

∥∥ + Lan
∥∥Tnzn – xn

∥∥ + L‖un‖
≤ Lbn

∥∥xn – Tnxn
∥∥ + L‖vn‖ + Lan

∥∥Tnzn – xn
∥∥ + un

≤ Lbn
∥∥xn – Tnxn

∥∥ + L‖vn‖ + Lan
∥∥Tnzn – zn

∥∥ + L‖un‖
≤ [

L(L + )bn + L
(
L + L + 

)
an

]‖xn – p‖
+ L( + L)‖vn‖ + L‖un‖. (.)

It follows from (.) that

xn = xn+ + anxn – anTnzn – un

= xn+ + ( – k)anxn – anTnzn – ( – k)anxn – un

= xn+ + ( – k)an
(
xn+ + an

(
xn – Tnzn

)
– un

)
– anTnzn – ( – k)anxn – un

= ( + an)xn+ + ( – k)anxn+ – anTnxn+ + anTnxn+ – anTnzn

+ ( – k)an
(
xn – Tnzn

)
– ( – k)anxn – ( – k)anun – un

= ( + an)xn+ + an
(
I – Tn – kI

)
xn+ – ( – k)anxn

+ ( – k)an
(
xn – Tnzn

)
+ an

(
Tnxn+ – Tnzn

)
–

[
( – k)an + 

]
un.

For p ∈ F(T), we have p = ( + an)p + an(I – Tn – kI)p – ( – k)anp. Therefore, we get

xn – p = ( + an)(xn+ – p) + an
[(
I – Tn – kI

)
xn+ –

(
I – Tn – kI

)
p
]

– ( – k)an(xn – p) + ( – k)an
(
xn – Tnzn

)
+ an

(
Tnxn+ – Tnzn

)
–

[
( – k)an + 

]
un. (.)

It follows from (.) and (.) that

‖xn – p‖ =
∥∥( + an)(xn+ – p) + an

[(
I – Tn – kI

)
xn+ –

(
I – Tn – kI

)
p
]

– ( – k)an(xn – p) + ( – k)an
(
xn – Tnzn

)

http://www.fixedpointtheoryandapplications.com/content/2014/1/224
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+ an
(
Tnxn+ – Tnzn

)
–

[
( – k)an + 

]
un

∥∥
≥ ( + an)‖xn+ – p‖ – ( – k)an‖xn – p‖

– ( – k)an
∥∥xn – Tnzn

∥∥
– an

∥∥Tnxn+ – Tnzn
∥∥ –

[
( – k)an + 

]‖un‖
≥ ( + an)‖xn+ – p‖ – ( – k)an‖xn – p‖

– ( – k)an
[(
 + L + L

)‖xn – p‖ + L‖vn‖
]

– an
[
L(L + )bn + L

(
L + L + 

)
an

]‖xn – p‖
– Lan‖un‖ – L(L + )an‖vn‖ –

[
( – k)an + 

]‖un‖.
Since ( + an)– ≤ , ( + an)– ≤  – an + an, and ( + ( – k)an)( – an + an) =  – kan +

kan + ( – k)an ≤  – kan + kan + ( – k)an =  – kan + an, we have

‖xn+ – p‖ ≤  + ( – k)an
 + an

‖xn – p‖

+
[
L(L + )anbn +

(
L + L + L + 

)
an

]‖xn – p‖
+ (L + )‖un‖ + L(L + )an‖vn‖

≤ (
 + ( – k)an

)(
 – an + an

)‖xn – p‖
+

[
L(L + )anbn +

(
L + L + L + 

)
an

]‖xn – p‖
+ (L + )‖un‖ + L(L + )an‖vn‖

≤ ( – kan)‖xn – p‖
+

[
L(L + )anbn +

(
L + L + L + 

)
an

]‖xn – p‖
+ (L + )‖un‖ + L(L + )an‖vn‖. (.)

Note that limn→∞ supan < k/((L+ ) + ), then there exists a natural number N such that
γ = supn≥N an < k/((L + ) + ). It follows from (.) that

‖xn+ – p‖ ≤ [
 –

(
k – γ

(
(L + ) + 

))
an

]‖xn – p‖
+ L(L + )anbn‖xn – p‖ + (L + )‖un‖ + L(L + )an‖vn‖ (.)

holds for n ≥ N. Let λn := ‖xn – p‖, μn := L(L + )anbn, cn = , dn := (L + )‖un‖ + L(L +
)an‖vn‖, tn := (k – γ ((L + ) + ))an. Thus, (.) becomes

λn+ ≤ ( – tn)λn +μnλn + dn, ∀n≥N.

Since
∑∞

n= μn < ∞, dn = o(tn), it follows from Lemma . that we have limn→∞ λn = .
That is, {xn} converges strongly to p.
Next, we prove the conclusion (). Let

pn = ( – an)yn + anTnsn + un. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/224
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For p ∈ F(T), we have

‖yn+ – p‖ =
∥∥yn+ – ( – an)yn – anTnsn – un + ( – an)yn + anTnsn + un – p

∥∥
≤ εn + ‖pn – p‖. (.)

It follows from (.) that

yn = pn + anyn – anTnsn – un

= ( + an)pn + an
(
I – Tn – kI

)
pn – ( – k)anyn

+ ( – k)an
(
yn – Tnsn

)
+ an

(
Tnpn – Tnsn

)
–

[
( – k)an + 

]
un.

By using a similar method to proving (.), we can prove that

‖pn – p‖ ≤ [
 –

(
k – γ

(
(L + ) + 

))
an

]‖yn – p‖
+ L(L + )anbn‖yn – p‖ + (L + )‖un‖ + L(L + )an‖vn‖. (.)

Substituting (.) into (.) for n≥N we get

‖yn+ – p‖ ≤ [
 –

(
k – γ

(
(L + ) + 

))
an

]‖yn – p‖
+ L(L + )anbn‖yn – p‖ + (L + )‖un‖
+ L(L + )an‖vn‖ + εn. (.)

If
∑∞

n= εn < ∞, setting λn := ‖yn–p‖,μn := L(L+)anbn, cn = εn, dn := (L+)‖un‖+L(L+
)an‖vn‖, tn := (k – γ ((L+ ) + ))an in Lemma ., we have yn → p as n→ ∞, i.e., {xn} is
almost T-stable.
If limn→∞ εn

an = , setting λn := ‖yn – p‖, μn := L(L + )anbn, cn = , dn := (L + )‖un‖ +
L(L + )an‖vn‖ + εn, tn := (k – γ ((L + ) + ))an in Lemma ., we have yn → p as n → ∞,
i.e., {xn} is weakly T-stable. This completes the proof. �

Similar to the proof of Theorem ., we have the following.

Theorem . Let T : E → E be a uniformly Lipschitzian and strictly asymptotically pseu-
docontractive mapping with F(T) = ∅. Let {xn} be defined by (.).Assume that {an}, {bn} ⊂
[, ] and {un}, {vn} ⊂ E satisfy the conditions:

(i) ‖un‖ = o(an), ‖vn‖ →  as n→ ∞;
(ii) there exists δ ∈ (,  – k) such that limn→∞ supan < δ/((L + ) + );
(iii)

∑∞
n= anbn < ∞ and

∑∞
n= an =∞.

Suppose {yn} ⊂ E and define {εn} by

sn = ( – bn)yn + bnTnyn + vn,

εn =
∥∥yn+ – ( – an)yn – anTnsn – un

∥∥, n ≥ .

Then the following assertions hold:

http://www.fixedpointtheoryandapplications.com/content/2014/1/224
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() {xn} converges strongly to a unique fixed point of T in E;
() {xn} is both almost T-stable and weakly T-stable.

Theorem . Let T : E → E be a Lipschitzian and strongly accretive mapping. Let
{an}, {bn} ⊂ [, ], and {un}, {vn} ⊂ E satisfy the conditions:

(i) ‖un‖ = o(an), ‖vn‖ →  as n→ ∞;
(ii) limn→∞ supan < k/((L + ) + ), where k is the constant of strongly accretive

mapping T , and L is the Lipschitzian constant of mapping I – T ;
(iii)

∑∞
n= anbn < ∞ and

∑∞
n= an =∞.

For arbitrary x ∈ E, the sequence {xn} defined by

{
xn+ = ( – an)xn + an(f + (I – T)zn) + un,
zn = ( – bn)xn + bn(f + (I – T)xn) + vn, ∀n≥ ,

(.)

converges strongly to a solution p of Tx = f .

Proof From the result of [], we obtain the existence of a solution for Tx = f . Since T is
strongly accretive with a constant k ∈ (, ), we can prove that the solution of Tx = f is
unique. Define Sx = f + (I –T)x, then S is a strongly pseudocontractive mapping and has a
fixed point p, and it is also a Lipschitzian mapping with a constant L. For all x, y ∈ E, there
exists s >  such that

‖x – y‖ ≤ ∥∥x – y + s
[(
( – k)I – S

)
x –

(
( – k)I – S

)
y
]∥∥.

The rest of the proof is similar to the proof of Theorem .. This completes the proof. �

Remark . () Theorem . extends the main result of [] from a uniformly smooth
Banach space to a real Banach space and without the boundedness assumption of D(T) =
R(T) and limn→∞ an = limn→∞ bn = ; () Theorem . extends and improves the corre-
sponding results of [] by removing the assumptions bn ≤ an and

∑∞
n= an < ∞.
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