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1 Introduction
Let H be a real Hilbert space with inner product <., -) and norm || - ||, respectively.
Let C a nonempty closed convex subset of H and let Pc be the metric project from H
onto C. F(S) = {x € C: Sx = x} denotes the set of fixed points of a self-mapping S on a
set C.

A mapping A of C into H is called monotone if

(Ax —Ay,x—y) >0, Vx,yeC.

A mapping A of C into H is said to be L-Lipschitz continuous if there exists a posi-

tive constant L such that

|[Ax—Ay|| <L|x—y|, VxyeC.

Let the mapping A from C to H be monotone and Lipschitz continuous. The varia-
tional inequality problem (for short, VI(C, A)) is to find a u € C such that

(Au,v—u) >0, VYveC.

The set of solutions of the VI(C, A) is denoted Q. A mapping A of C into H is said
to be o-inverse strongly monotone if there exists a positive constant o such that
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(Ax — Ay, x —y) = a||Ax — Ay

Vx,y € C.

It is obvious that if A is o-inverse-strongly monotone, then A is monotone and
Lipschitz continuous. Recall that a mapping S : C — C is called to be nonexpansive if

[sx =Syl =[x —v

, V¥x,yeC.

A mapping S: C — C is called to be asymptotically nonexpansive [1], if there exists
a sequence {k,} € [1, o) with k, - 1 as n — o such that

8% = 8"y [| < b 2 =y

, forallx,y e C, and allintegers n > 1.

S: C — Cis called to be asymptotically nonexpansive in the intermediate sense [2],
if it is continuous and the following inequality holds:

limsup sup (||S"x — S"y| — |x—y[) < 0. (1.1)
n— o0 x,yec

In fact, we see that (1.1) is equivalent to
IS —S"y|? < |x—=y|*+cn Vn=1xyeC, (1.2)

where ¢, € [0, o) with ¢, = 0 as n — . S is called to be an asymptotically x-strict
pseudocontractive mapping with sequence {y,} [3], if there exist a constant x € [0, 1)
and a sequence {y,} € [0, ) with 9, = 0 as n — < such that

IS"x = $"y|* < (1 + ya)|x —y|” + 5| (1= $")x = (1 = S™)y|)? (1.3)

for all x, y € C and all integers n > 1. It is very clear that, in a real Hilbert space H,
(1.3) is equivalent to

n 1- n n
(S"x — S"y,x—y) < (1+ ); )||x—y||2 -, KH(I—S Y — (-8 )sz.

Recall that S is called to be an asymptotically x-strict pseudocontraction in the inter-
mediate sense with sequence {y,,} [4], if
lim sup sup {[|S"x — S"y”2 = (1 +yn)|x— )’”2 — k(1 =8"x— (I - Sn)}’||2} =0 (1.4)
n—00 x,ng

where k € [0, 1) and v,, € [0, ) such that 7, —> 0 as n — . In fact, (1.4) is reduced
to the following:

|52 = S"y|? < (L+ya)|x —y|)* + x| (1= 8Mx — (1= S")y|* +cn Vx,y e C, (1.5)

where ¢, € [0, ) with ¢, — 0 as n —> .

Recently, by combining Korpelevich’s extragradient method [5] with Takahashi-
Toyoda’s iterative algorithm [6], Nadezhkina and Takahashi [7] introduced the follow-
ing iterative scheme for finding a common element of F(S) n €, the intersection of the
set of fixed points of a nonexpansive mapping and the set of solutions of the varia-
tional inequality problem for a monotone, Lipschitz-continuous mapping and proved
its weak convergence.

Theorem A (See [[7], Theorem 3.1]). Let C be a nonempty closed convex subset of a
Hilbert space H. Let A : C — H be a monotone, L-Lipschitz continuous mapping and
let S : C — C be a nonexpansive mapping such that F(S) N Q # Q. Let {x,} and {y,} be
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the sequences generated by

Xo = x € C chosen arbitrary,
Yn = Pc(xn — AnAxy),
Xns1 = onXp + (1 — on)SPc(Xn — ApAyn),  Vn =0,

where A,, € |a, b] for some a, b € (0, 1/L) and a,, < [c, d] for some ¢, d € (0, 1). Then
the sequences {x,}, {y,} converge weakly to the same point z € F(S) n Q, where z =
lim,, e Pr(s)nn-

Inspired by Nadezhkina and Takahashi [[7], Theorem 3.1], and Zeng and Yao [8]
introduced the following iterative process for finding an element of F(S)NQ and estab-
lished the following strong convergence theorem.

Theorem B (See [[8], Theorem 3.1]). Let C be a nonempty closed convex subset of a
Hilbert space H. Let A : C — H be a monotone, L-Lipschitz continuous mapping and
let S : C — C be a nonexpansive such that F(S)NQ # 0. Let {x,} and {y,} be the
sequences generated by any given xo € C and

yn = Pc(xn — ApAxy),
Xn+1 = OpXp + (1 - an)SPC(xn - )“nAyn)'

for every n = 0, where {A,)} and {a,,} satisfy the conditions:
(a) AL} € (0, 1 - 0) for some § € (0, 1)

00
(b) fan} C (0,1), Y ap=o00, lima,=0,
n=0

n—oo

Then the sequences {x,}, {y,,} converge strongly to the same point Prsyna(¥o), provided
lim,, . %, - %01l = 0.

Further, utilizing the combination of hybrid-type method and extragradient-type
method, Nadezhkina and Takahashi [9] introduced the following iterative scheme for
finding a common element of F(S) n Q, and proved the following strong convergence
theorem.

Theorem C (See [[9], Theorem 3.1] or [[10], Theorem NT2]). Let C be a nonempty
closed convex subset of a Hilbert space H. Let A : C — H be a monotone, L-Lipschitz
continuous mapping and let S : C — C be a nonexpansive mapping such that
F(S)NQ #@. Let {x,}, (..}, and {z,} be the sequences generated by

Xo =x € C chosen arbitrary,

Vn = PC(xn - )VnAxn)r

Zy = oy + (1 — ) SPc(xn — AnAyn),
Ch={z€C:llzy —zll < llxn —2zll},
Qu=1{z€C:{xn—2z x—x,) >0},
Xni1 = Pc,ng,x,  Yn >0,

where A,, € [a, b] for some a, b € (0, 1/L) and o, < [0, c] for some c € [0, 1). Then
the sequences {x,}, {y,}, and {z,} converge strongly to the same point q = Prgna*.

Very recently, considering a nonexpansive nonself mapping, Buong [11] introduced a
new iteration method based on the hybrid-type method and extragradient-type method
and proved its strong convergence. Considering a finite family of x-strict pseudocon-
tractive mappings, Ceng et al. [12] proposed parallel extragradient and cyclic-extragra-
dient algorithms, and derived the weak convergence of these algorithms.
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Most recently, considering a uniformly continuous asymptotically x-strict pseudo-
con-tractive mapping in the intermediate sense, Ceng and Yao [10] proposed a modi-
fied hybrid Mann iterative scheme with perturbed mapping based on the hybrid-type
method and extragradient-type method, and established the following interesting result
with the help of some boundedness assumptions

Theorem D (See [[10], Theorem 3.1]). Let C be a nonempty closed convex subset of a
real Hilbert space H. Let A : C — H be a monotone, L-Lipschitz continuous mapping
with (I - A)(C) € Cand let S : C — C be a uniformly continuous asymptotically k-strict
pseudocontractive mapping in the intermediate sense with sequence {Y,} such that F
(S)NQY is nonempty and bounded. Let {x,}, {y,}, and {z,} be the sequences generated by

x1 =x € C chosen arbitrary,

Vn = (1 - Mn)xn + Mn(snxn - }\nA(Snxn))/

by = PC()’n - )\nAYn)/

Zn = (1 —Qp — ,Bn)xn + Uty + BuS"tn,

Co={z€C: llzn—2zll*> < llxy — 2l + 64},
n={zeC:(x,—z, x—x,;) >0},

Xne1 = Pc,nQx, Vn>1,

where 0, = pni || Xy — S"%n 1> + 2y An + 2¢5 + )Lﬁ(”A(S"xn)”2 + ||Ayn||2)6md

Ap=max{ sup [x,—p

2 2
, Sup ||t,1 — p|| < Q.
PeF(S)N (SN

Assume that {1,} is a sequence in (0, 1) with nlg& An =0, and {o,}, {B,}, and {u,} are

three sequences in [0, 1] satisfying the conditions:

() a, + B, <1 foralln=>1;
(i) % < o, and im pn =0
n—oo

(iii) liminf 8, > 0,
n— o0

Then the sequences {x,}, (¥}, and {z,} converge strongly to the same point q = Prs)na
x if and only ifligioglf(Axn, Y—%u) = 0forallye C.

The following problems arise naturally then: (1) Can we relax the convergence con-
dition lig(ijglﬂAxn,y —%n) 20 for all y € C in Theorem D by proposing some new
algorithm. (2) Can we relax the boundedness assumptions that the intersection F(S)NQ
and the sequence {A,} in Theorem D are both bounded. Actually, in many cases, these
assumptions and conditions are not easy to examine in advance. Hence, they are inter-
esting and important problems.

In order to solve these problems, motivated and inspired by Ceng and Yao [10],
Nadezhkina and Takahashi [9], and Ge et al. [13], we introduce some new algorithms
with variable coefficients based on the hybrid-type method and extragradient-type
method for finding a common element of the set of fixed points of a uniformly contin-
uous asymptotically k-strict pseudocontractive mapping in the intermediate sense and
the set of solutions of the variational inequality problem for a monotone, Lipschitz-
continuous mapping in real Hilbert spaces. Our results improve and extend the
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corresponding results of Ceng and Yao [10], Nadezhkina and Takahashi [9], and sev-
eral others.

2 Preliminaries
Throughout this article,

« x, = x means that {x,} converges strongly to x.

¢ F(S) = {x € C: Sx = x} denotes the set of fixed points of a self-mapping S on a
set C.

e Bix1):=x € H:||x - x| < r}.

« N is the set of positive integers.

For every point x € H, there exists a unique nearest point in C, denoted by P, such
that

lx — Pex|l < |x—y

, VyeC.

Pc is called the metric projection of H onto C. We know that Pc is a nonexpansive
mapping from H onto C. Recall that the inequality holds

(x —Pcx,Pcx —y) >0, VxeH,yeC. (2.1)
Moreover, it is easy to see that it is equivalent to

||ch — P(;y”2 < (Pcx —Pcy,x—v), Vx,ye€H,
It is also equivalent to

lx=y|? = llx = Pexl® + |y — Pex|®, ¥xeH,yeC. (2.2)

Lemma 2.1. [14]. Let C be a nonempty closed convex subsets of a real Hilbert space
H. Given x € Hand y e C. Then y = Pcx if and only if there holds the inequality

(x—y,y—2)>0, VzeC.

Lemma 2.2. [10]. Let A : C — H be a monotone mapping. In the context of the varia-
tional inequality problem the characterization of projection (2.1) implies
u€ Qs u="Pc(u—2rAu), Vi>o0.

Lemma 2.3. [15]. Let C be a nonempty closed convex subsets of a real Hilbert space
H. Given x, y, z€ H and given also a real number a, the set

freC: ||y—v||2 <lx—vl?+(zv) +a)

is convex and closed.
Lemma 2.4. [16]. Let H be a real Hilbert space. Then for all x,y, z€ H and all o, B,
ye [0, 1] with o + B + y = 1, we have

[[oex + By + yz||2 =a|x|? + /.‘3||y||2 +yllzl® —ap|x — y”2 —ayllx—zl> = By|y — z||2.

Lemma 2.5. [4]. Let C be a nonempty closed convex subsets of a real Hilbert space H.
and S : C — C be an asymptotically k-strict pseudocontraction in the intermediate
sense with sequence {y,}. Then
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1
syl < b (K le—y + /1 + (=) —y)7 + (21— K)cn>

forallx,ye Candn > 1.

By Ibaraki et al. [[17], Theorem 4.1], we have the following lemma.

Lemma 2.6. Let {K,,} be a sequence of nonempty closed convex subsets of a real Hil-
bert space H such that K,,, € K,, for each n € N. If K* = N2 Kyis nonempty, then for
each x € H, {Px,x}converges strongly to Px.

A set-valued mapping T : H — 2 is called monotone if for all x, y € H, fe Tx and
ge Tyimply {x -y f-g =0.A monotone mapping T : H — 2" is maximal if its
graph G(7) is not properly contained in the graph of any other monotone mapping. It
is known that a monotone mapping 7T is maximal if and only if for (x, f) € H x H,

(x-y, f-g> >0 for all (y, g) € G(T) implies fe Tx. Let A : C — H be a monotone
and Lipschitz continuous mapping and let Ncv be the normal cone to Cat ve C, ie,
Ne={we H: (v -u,w) >0, VYue C}. Define

Ty Av+ Ngv, if v e C,
19, ifvégcC,

It is known that in this case T is maximal monotone, and 0 € Tv if and only if v €
Q, see [18].

3 Results and proofs

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let
A : C > H be a monotone, L-Lipschitz continuous mapping and let S : C — C be a
uniformly continuous asymptotically k-strict pseudocontractive mapping in the inter-
mediate sense with sequence {y,} such that F(S) n Q is nonempty. Let {x,}, {y,}, and
{z.} be the sequences generated by the following algorithm with variable coefficients

x1 € C chosen arbitrary,

Vn = PC(xn - )VnAxn)/

Iy = PC(xn - )"né}/n)/ R

zn = (1 — an — Bn)xn + ctnln + BnS"tn, (3.1)
Co=C,

Cn={2€Cui: 20 — 2l < llxn — 2% — (an — ) Bulltn — S™tall* + 6},

Xne1 = Pc,x1,

for every n € N, where
A _ :311
P L =
(b/L, (1 - a)/L) for some a € (k, 1) and some b € (0, 1 - a), and ¢, is as in (1.5), the
positive real number ry is chosen so that By (x1) NF(S) N Q # @. Then the sequences

On = /3"(2%;(1 +T(2)) + Cn)r {on} C (a/ l)r {Bu} C (br 1- a)ﬂ”d {An} c

{2}, W), and {z,} converge strongly to a point of F(S) n Q.

Proof. We divide the proof into seven steps.

Step 1. We claim C,, is nonempty, convex, and closed for each n € N.

Indeed, by the assumption, Cy, i.e., C is nonempty, convex, and closed. From the
definition of C, and Lemma 2.3, it is easy to see that C, is convex and closed for each
n € N. We, therefore, only need to prove that C, is nonempty for each n € N.

Indeed, let p € By, (x1) N F(S) N Q be a arbitrary element. Putting x = x,, - 1,,Ay, and
y = p in (2.2), we have
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len = o1 < Jow = 2y = p[|* = w = 2nhyn — 1
= ”xn - P||2 — 1% — tall* + 2hn(AYn, p — tu)

= ”xn - sz — llxn — tnllz + 20 ((Ayn — AP, p — V) + (AP, P — Vn))
+ 200 (A Yn — ta)

(3.2)

Since A : C — H is a monotone mapping and p € Q = VI(C, A), further, we have

Jtw =1 < [0 =P = In = tall® + 200 (A, v — ta)
= ”xn - p||2 - Hxn —Vn ”2 = 2{Xn — Yn,Vn — tn) — ”Yn —n ”2 + 20 (AYn, Yn — tn) (3.3)
= [t =217 = Jn = pal* = v = tal)® + 2060 = Ay =y, s — )
Since y,, = Pc(x,, - 2,Ax,) and A is L-Lipschitz continuous, we have

<xn - )\nAyn — Vs tn - yn>
= (Xn — AnAXy — Vs by — V) + An{Axy — AVn, th — Vn)

3.4
< An(Axy — Ay, ty — Vn) (34
< ML [xw = | ([t = v -
So, it follows from (3.2), (3.3) and {A,,} < (b/L, (1 - a)/L), we obtain
Jta =1 = v = 21 = 0 = pa]* = v = tall” + 20L 5w =yl 1w = ]
< [ =217 = Jxn =yl ™ = v = tall + 2322w =y "+ 0 = 3| (3.5)

= n = p[* + G2L2 = 1) 20 — 1]
< Jx —p|*.

Since S : C — C be an asymptotically k-strict pseudocontractive mapping in the
intermediate sense with sequences {},}, by the definition, we have

1570 — p[2 < (1 + y)|tw — p|> + ic]tn — S"ta]]? + G ¥,y € C, (3.6)

where ¢, € [0, o) with ¢, —> 0 as #un — . So, from
Zn = (1 — oty — Bp)xn + nty + BnS"ty (3.5), (3.6) and Lemma 2.4, we deduce that

Jen—p17 = | (1w = ) — ) + = ) + A5t — )|
< (1= — Bu)Jxn — p* + o) tw — p|* + Bu| "t — p||”
e r—
< (1= — Bo)xw — p* + cal]tw — ]
B+ va)[tn = p* + i |ltn = S"ta]|* + 1) — ctnBu|tn — S"ta?
= (1= o — Bt — 9| + (@ + )|t — 9]
+ ﬁn(yn ||tn — p”2 +¢n) — (otn — K)én ||tn - S"t, ||2
< (1 —an—Ba)|xa — |7 + (e + Ba) |50 — 1
— (otn = 1) B tn — S"ta])* + BalyaJxa — 0| +cn)
= [xn = p||* = (et — €)Balltn — S ta|” + Bu(yn |20 — p||* + )

(3.7)

Page 7 of 13
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Further, it follows fron the definition of 8, that

Jen =17 = I = ol = (o= Bl ts = "5
+ B (2Vn”xn —xil + ||P —n “2 +Cn>

L+ 120 — x1]| (3.8)
< xn =27 = (@ — €)Bulltn — 8"t + Bu(23(1 +12) + 1)
< [lxn = )% = (@ — €)Bul|ta — S"ta]* + 6,
where 6, = By(2yn(1 +12) + ). Therefore, we have
By, (x1) NF(S)NQ C Cp, Vn e N. (3.9)

Step 2. We claim that the sequence {x,} converges strongly to an element in C, say
x*.

Since {C,} is a decreasing sequence of closed convex subset of H such that
C* = N2, Cy is a nonempty and closed convex subset of H, it follows from Lemma 2.6
that {xn.1} = {Pc,x1} converges strongly to Pc«x;, say x*.

Step 3. We claim that lim,,_,.. z, = x* and lim,,_,.. ||t,, - S"¢,|| = 0.

Indeed, the definition of x,,,; shows that x,,; € C,, i.e,

5 2
lzn — Xni1 ||2 < %0 — Xni1 ”2 — (an —«)Bn ”tn - Sntn” +6n. (3.10)

Note that %, - 0, ¢, > 0, x,, > x* as n — o and &, >a >k, Vn € N, we have 6, —
0, 1z, - %psill®> = 0, Iz, - x> = 0 and z,, — x* as n —> oo
Further, it follows from (3.10) that

(a —«)

1+, — 212 ”tn —S"ty ”2 < llxn — xn+1”2 +6n.
n — Al

Thus lim,,_,.. ||t, - S"t,| = 0.
Step 4. We claim that x* € F(S).

Since z, = (1 — ay — B)xn + Gnly + BaS"tyy We have

2y — %0 = (otn + Bu) (tn — %0) + Bu(S"tn — 1)
Considering 0 < a < a,, + Bn, by Step 3 we have

bh— %X, — 0, = x*, asn— oo. (3.11)
From (3.11), Lemma 2.5 and Step 3, we have

||S"x* —x* || < ||S"x* - S"t, || + ||S”t,, —ty || + ||tn —x* || — 0, asn— o0o. (3.12)
Since S : C — C is uniformly continuous, by (3.12) we have

S lx* = §(S"x*) — Sx*, asn — oo.

Hence, Sx* = x*, i.e, x* € F(S).
Step 5. We claim that ¢, - y, > 0, y,, = x*, as 1 — oo,
By (3.5), for p € By, (x1) N F(S) N 2, we have

”t” - pHZ = ”xn - p”Z + ()‘iLZ - 1)||xn _)/n”2
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Therefore, we have

(1= 22L) 5w = yu|* < Ju = = [ta —p |
< (Jan = ol + [t = D20 = 2] = £ — 2]}
< (JJxa = pl + |t = P Ulxn — tal).

This together with (3.11) and 0 < 1 — (1 —a)? < 1 — A2L? implies that ||x, - y,[| -
0, It - ¥l > 0 and y,, —> x*, as n —> oo.

Step 6. We claim that x* € Q.

Indeed, let

Ty Av + Ngv, if v e C,
19, ifvegcC,

where Ncv be the normal cone to C at ve C. We have already mentioned in Section
2 that in this case T is maximal monotone, and 0 € 7v if and only if v € Q, see [18].

Let (v, w) € G(T), the graph of T. Then, we have w e Tv = Av + N.v and hence w -
Av € Ncv. So, we have

(v—t,w—Av) >0, YVt € C. (3.13)

Noticing ¢, = Pc(x,, - 1,Ay,) and v € C, by (2.1) we have
(Xn — ApAyn — by, tn — V) = 0,

and hence

Ip —

Xn
(v—ty, +Ayn) = 0. (3.14)

n
From (3.13), (3.14) and ¢, € C, we have

(U - tnr w) 2 <U - tnIAv>

t —
> (v —t,, Av) — <v —ly, 2 n +A)’n> (3.15)
. )

> (0=t AV = AL+ (0=t Aty — A = (0= 1, ")

Letting n — < in (3.15), considering A : C — H be a monotone, L-Lipschitz continu-
ous mapping and {1,} € (b/L, (1-a)/L), we have {v-x*, w) > 0. Since T is maxmal
monotone, we have 0 € Tx* and hence x* € Q = VI(C, A).

Step 7. We claim that the sequences {x,}, {,}, and {z,} converge strongly to x* € F
(S)NQ

From Step 4 and Step 6, we have x* € F(S) n Q. Therefore, it follows from Step 2,
Step 3, and Step 5 that the sequences {x,}, {y,.}, and {z,} converge strongly to x* € F(S)
N Q. This completes the proof.

Remark 3.2. Theorem 3.1 improves and extends Theorems C and D since

(1) the nonexpansive mapping S in Theorem C is extended to be an asymptotically
k-strict pseudocontractive mapping in the intermediate sense.

(2) the convergence condition that lirfl_l)glf(Ame —Xn) 2 0 for all y e C in Theo-

rem D is removed.
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(3) the boundedness assumptions that the intersection F(S) N Q and the sequence
{A,} are both bounded in Theorem D are dispensed with.
(4) the requirement (I - A)(C) € C in Theorem D is dropped off.

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let S : C — C be a uniformly continuous asymptotically k-strict pseudocontractive
mapping in the intermediate sense with sequence {y,} such that F(S) is nonempty. Let
{x,} and {z,} be the sequences generated by the following algorithm with variable coeffi-

cients
x1 € C  chosen arbitrary,
zp = (1 —an — Bu)xn + anXy + BuS"xy,
Co =C,
Cu= {2 € Gt t llzn —2l1% < llxn — 2117 — (s — 1) Bullxn — S"ull” + 64},
Xne1 = Pc,x1,
for every n € N, where
4, = Bn On = Bu(yn(1 +13) + ¢n), {an} C (a, 1), {Bu} C (b1 —a), and {A,}

1+ [l — x|
C (b, 1 - a) for some a € (k, 1) and some b e (0, 1 - a), and c, is as in (1.5), the posi-
tive real number 1y is chosen so that By,(x1) NF(S) # 0. Then the sequences {x,} and
{z,} converge strongly to a point of F(S).

Remark 3.4. Corollary 3.3 improves and extends [[4], Theorem 4.1] and Theorem D
since the boundedness assumptions that the F(S) and the sequence {A,} are both
bounded in [[4], Theorem 4.1] and Theorem D are dispensed with.

Recall that a mapping 7': C — C is called pseudocontractive [19,20] if

? Vx,yeC. (3.16)

(Tx — Ty, x —y) < |x—y|

In fact, we see that (3.16) is equivalent to

[ Tx — Ty”2 < ||x—y||2 +|(I=T)x— (I—T)y 2, Vx,y € C.

Corollary 3.5. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let T : C — C be a pseudocontractive, m-Lipschitz continuous mapping and let S : C
— C be a uniformly continuous asymptotically k-strict pseudocontractive mapping in
the intermediate sense with sequence {y,} such that F(S) n F(T) is nonempty. Let {x,},
.}, and {z,} be the sequences generated by the following algorithm with variable coeffi-

cients
x1 € C  chosen arbitrary,
Yn = (1 — An)xn + AnTxn,
by = PC(xn - )Mn)in + )\nT)/n)r R
zn = (1 — oy — Bu)Xn + anly + PrS"ty, (3.17)
Co=C,
Cn ={z € Cuo1 : llzn — 2l < llxn — 217 — (ot — &) Bulltn — S"tall* + 60},
Xns1 = Pc,x1,
for every n € N, where
A ﬂn

= Lt — 0 [2 On = Bn(2ya(1 +r(2)) +¢cn) {an} C(a1),{Bu} C (b1 —a) and {A,}
n — Al
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< (b/L, (1 - a)/L) for some a € (k, 1) and some b e (0,1 - a), and c, is as in (1.5), the
positive real number ry is chosen so that By, (x1) NF(S) NF(T) # 9. Then the sequences
{2}, W.p and {z,} converge strongly to a point of F(S) n F(T).
Proof. The following proof of this corollary is similar to that of [[10], Theorem 4.5].
Let A = I - T. It is easy to see that y, = Pc(x, - 1,4x,) = (1 - A,.)x,+4,Tx,. Now let
us show that the mapping A is monotone and (m + 1)-Lipschitz continuous. Indeed,
observe that

(Ax — Ay, x —p) = [x—y|* = (Tx = T, x —y) > 0.
and
JAx = Ay = Jx—y— (T =) < (m+ 1) [x =] .
Next, let us show that F(T) = Q = VI(C, A). Indeed, we have, for fixed Ao € (0, 1),

Tu=u <& Au=0 <& u=u—»XioAu=DPc(u—roAu) < (Au,y—u)>0,VyeC.

By Theorem 3.1, we obtain the desired conclusion. This completes the proof. ©
Remark 3.6. Theorem 3.5 improves and extends [[10], Theorem 4.5] since

(1) the convergence condition that ligiogf(Axn,y —Xn) = 0 for all y e C in [[10],
Theorem 4.5] is removed.

(2) the boundedness assumptions that the intersection F(S) n F(T) and the
sequence {A,} are both bounded in [[10], Theorem 4.5] are dispensed with.

By the careful analysis of the proof of Theorem 3.1, we can obtain the following
result.

Theorem 3.7. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let A : C — H be a monotone, L-Lipschitz continuous mapping and let S : C — C be a
uniformly continuous asymptotically k-strict pseudocontractive mapping in the inter-
mediate sense with sequence {y,} such that F(S) N Q is nonempty and bounded. Let
{x.}, ), and {z,;} be the sequences generated by the following algorithm

x1 € C chosen arbitrary,

Vn = PC(xn - )VnAxn)/

by = PC(xn - )"nA)/n)/

zp = (1 —ay — Bu)xn + anty + BnS"ty,

Co=C

Cy = {Z € Cuot : llzn — 2l1* < llxw — 2l — (otn — &) Bnlltn — Sntn”z + en} ’
Xn+1 = PCnxll

for every n € N, where

On = Bu(ynAn +¢n), Ap= sup “xn —p 2 {on} C (a,1),{Bn} C (b, 1 —a)ypg =
peF(S)NQ
(bIL, (1 - a)/L) for some a € (k, 1) and some b e (0,1 - a), and c, is as in (1.5). Then

the sequences {x,}, {y,} and {z,} converge strongly to a point of F(S) N Q.

Proof. Following the reasoning in the proof of Theorem 3.1, from (3.7), we take 0, =
B.(y.A, + ¢,) and use F(S) n Q instead of By, (x1) N F(S) N Q in Step 1. From Step 2,
we have the sequence {A,} is bounded, and hence 0, = B,(y,A, + ¢,) = 0 as n —> oo,
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The remainder of the proof of Theorem 3.7 is similar to Theorem 3.1. The conclusion
therefore follows. This completes the proof.

Theorem 3.8. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let A : C — H be a monotone, L-Lipschitz continuous mapping and let S : C — C be a
uniformly continuous asymptotically nonexpansive mapping in the intermediate sense
such that F(S) n Q is nonempty. Let {x,}, {y,}, and {z,} be the sequences generated by
the following algorithm

x1 € C  chosen arbitrary,

Yn = PC(xn - }\nAxn)/

by = PC(xn - )\nAYn)/

Zn = (1 — Q0 — ,Bn)xn + oty + BrS"ty,

Co=C,

Cu=1{z € Cor : llzn — 217 < llxn — 21 — ctnBulltn — S"tall* + 64},
Xne1 = Pc,x1,

for every n e N, where 0, = B,c,, {o,} € (a, 1), {B,} € (b, 1 - a), and {A,} < (b/L, (1 -
a)lL) for some a € (0, 1) and some b € (0, 1 - a), and ¢, is as in (1.2). Then the
sequences {x,}, {y,), and {z,} converge strongly to a point of F(S) n Q.

Proof. In Theorem 3.1, whenever S : C — C is an asymptotically nonexpansive map-
ping in the intermediate sense, we have ¥, = 0, k = 0 for all # € N. From (3.7), we
have

Iz = | < %0 = p|I* = (2 — ©)Bul|tn — S"ta])* + 62,

where 0,, = 3,,c,. Thus, we have

F(S)NQ c Cy, VneN,

and hence, the result of Step 1 holds.

Next, following the reasoning in the proof of Theorem 3.1 and using F(S) n Q
instead of By, (x1) N F(S) N 2, we deduce the conclusion of Theorem 3.8. ©

Remark 3.9. Theorem 3.8 improves and extends Theorem C since the nonexpansive
mapping S in Theorem C is extended to be an asymptotically nonexpansive mapping
in the intermediate sense.
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