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Abstract
Sokhuma and Kaewkhao (2011) introduced an iteration scheme to compute a
common fixed point of a single-valued nonexpansive mapping and a multivalued
nonexpansive mapping on a uniformly convex Banach space. In this paper, we extend
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1 Introduction
Let X be a complete metric space, and E a nonempty subset of X. We will denote by E

the family of nonempty subsets of E and by FB(E) the family of nonempty bounded closed
subsets of E. Let H(·, ·) be theHausdorff distance on FB(X), that is,

H(A,B) =max
{
sup
a∈A

dist(a,B), sup
b∈B

dist(b,A)
}
, A,B ∈ FB(X),

where dist(a,B) = inf{d(a,b) : b ∈ B} is the distance from the point a to the subset B.
A mapping t : E → E and a multivalued mapping T : E → FB(X) are said to be nonex-

pansive if for each x, y ∈ E,

d(tx, ty)≤ d(x, y), and

H(Tx,Ty)≤ d(x, y),

respectively. If tx = x, we call x a fixed point of a single-valued mapping t. Moreover, if
x ∈ Tx, we call x a fixed point of a multivalued mapping T . We use the notation Fix(S) to
stand for the set of fixed points of a mapping S. Thus Fix(t)∩ Fix(T) is the set of common
fixed points of t and T , i.e., x ∈ Fix(t)∩ Fix(T) if and only if x = tx ∈ Tx.
Following [], a bounded closed and convex subset E of a Banach space X has the fixed

point property for nonexpansive mappings (FPP) (respectively, for multivalued nonex-
pansive mappings (MFPP)) if every nonexpansive mapping of E into E has a fixed point
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(respectively, every nonexpansive mapping of E into E with compact convex values has a
fixed point). For a bounded closed and convex subset E of a Banach space X, a mapping
t : E → X is said to satisfy the conditional fixed point property (CFP) if either t has no fixed
points, or t has a fixed point in each nonempty bounded closed convex set that leaves t
invariant. A set E is said to have the conditional fixed point property for nonexpansive
mappings (CFPP) if every nonexpansive t : E → E satisfies (CFP). For commuting family
of nonexpansive mappings, the following is a remarkable common fixed point property
due to Bruck [].

Theorem . ([]) Let X be a Banach space and E a nonempty closed convex subset of X. If
E has both the (FPP) and the (CFPP) for nonexpansive mappings, then for any commuting
family S of nonexpansive mappings of E into E, there is a common fixed point for S .

Theorem . was proved by Belluce and Kirk [] when S is finite and E is weakly compact
and has a normal structure; by Belluce and Kirk [] when E is weakly compact and has a
complete normal structure; by Browder [] when X is uniformly convex and E is bounded;
by Lau and Holmes [] when S is left reversible and E is compact; and finally, by Lim []
when S is left reversible and E is weakly compact and has a normal structure.
Open Problem (Bruck []). Can commutativity of S be replaced by left reversibility?
The answer to this Problem is not known even when the semigroup is left amenable (see

[] for more details).
In , Sokhuma and Kaewkhao [] introduced a new iteration method for approxi-

mating a common fixed point of a pair of a single-valued and a multivalued nonexpansive
mappings and proved the following strong convergence theorem:

Theorem . ([, Theorem .]) Let E be a nonempty compact convex subset of a uni-
formly convex Banach space X, and let t : E → E and T : E → FB(E) be a single-valued
and a multivalued nonexpansive mappings respectively, and Fix(t) ∩ Fix(T) �= ∅ satisfy-
ing Tw = {w} for all w ∈ Fix(t) ∩ Fix(T). Let {xn} be the sequence of the modified Ishikawa
iteration defined by

yn = ( – βn)xn + βnzn,

xn+ = ( – αn)xn + αntyn,

where x ∈ E, zn ∈ Txn and  < a ≤ αn, βn ≤ b < . Then {xn} converges strongly to a common
fixed point of t and T.

For a single-valued nonexpansive mapping t : E → E with Fix(t) �= ∅, where E is a convex
nonexpansive retract of a real uniformly smooth Banach space, Reich and Shemen [,
Theorem .] obtained a strong convergence to a fixed point of t of a sequence {xn} of the
form

yn = RE
[
( – βn)xn

]
,

xn+ = ( – αn)xn + αntyn,

where RE is a retraction on the subset E and the sequences {αn}, {βn} satisfy conditions: (i)
 < lim infn→∞ αn ≤ lim supn→∞ αn < , (ii) limn→∞ βn =  and

∑∞
n= βn = ∞. Clearly, con-

ditions (i) and (ii) on the sequences {αn}, {βn} are different from the ones in Theorem ..

http://www.fixedpointtheoryandapplications.com/content/2012/1/112
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In , Suzuki [] proved the following result.

Theorem . ([, Theorem ]) Let E be a compact convex subset of a strictly convex
Banach space X. Let {tn : n ∈ N} be a sequence of nonexpansive mappings on E with⋂∞

n= Fix(tn) �= ∅. Let {γn} be a sequence of positive numbers such that
∑∞

n= γn < , and
let {In} be a sequence of subsets of N satisfying In ⊂ In+ for n ∈ N and

⋃∞
n= In =N. Define a

sequence {xn} in E by x ∈ C and

xn+ =
(
 –

∑
i∈In

γi

)
xn +

∑
i∈In

γitixn

for n ∈N. Then {xn} converges strongly to a common fixed point of {tn : n ∈N}.

The purpose of this paper is to extend Theorem . to countably many numbers of
single-valued nonexpansive mappings on strictly convex Banach spaces, thereby the re-
sult in Theorem . is covered. The results for CAT() spaces are also derived. Our main
discoveries are Theorem . and Theorem ..

2 Preliminaries
We recall that the graph G(U) of a multivalued mapping U : E → X is G(U) = {(x, y) ∈
X ×X;x ∈ E, y ∈Ux}. The following theorem is essentially proved by Dozo [].

Theorem . ([, Theorem .]) Let X be a Banach space which satisfies Opial’s con-
dition, E be a weakly compact convex subset of X. Let T : E → K(X), where K(X) is
a family of nonempty compact subsets of X. Then the graph of U = I – T is closed in
(X,σ (X,X*))× (X,‖ · ‖), where I denotes the identity on X, σ (X,X*) the weak topology and
‖ · ‖ the norm (or strong) topology.

We will use the theorem in the following form: If {xn} is a sequence in E such that {xn}
converges weakly to some z ∈ E and {dist(xn,Txn)} converges to , then z ∈ Tz.
Let {tn : n ∈N} be a family of nonexpansive mappings from E to E. The following lemma

proved by Bruck [] plays a very important role to our proof of the main result.

Lemma . ([, Lemma ]) Let E be a nonempty closed convex subset of a strictly con-
vex Banach space X, let {tn : n ∈ N} be a family of single-valued nonexpansive mappings
on E. Suppose

⋂∞
n= Fix(tn) is nonempty. Given {λn} a sequence of positive numbers with∑∞

n= λn = . Then a mapping t on E defined by

tx =
∞∑
n=

λntnx

for all x ∈ E is well defined, nonexpansive and Fix(t) =
⋂∞

n= Fix(tn).

The following results show examples when the required condition on the nonemptiness
of the common fixed point set always satisfies:

Theorem . ([, Theorem .]) Let E be a weakly compact convex subset of a Banach
space X. Suppose E has (MFPP) and (CFPP). Let S be any commuting family of nonexpan-
sive self-mappings of E. If T : E → KC(E) is a multivalued nonexpansive mapping which

http://www.fixedpointtheoryandapplications.com/content/2012/1/112
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commutes with every member of S , where KC(E) is the family of nonempty compact convex
subsets of E. Then F(S)∩ Fix(T) �= ∅ where F(S) =

⋂
t∈S Fix(t).

Theorem . ([, Theorem .]) Let X be a Banach space satisfying the Kirk-Massa con-
dition, i.e., the asymptotic center of each bounded sequence of X in each bounded closed and
convex subset is nonempty and compact. Let E be a weakly compact convex subset of X and
let S be any commuting family of nonexpansive self-mappings of E. Suppose T : E → KC(E)
is amultivaluedmapping satisfying condition (Cλ) for some λ ∈ (, )which commutes with
every member of S . If T is upper semi-continuous, then F(S)∩ Fix(T) �= ∅.

Note that strictly convex Banach spaces satisfy the condition in the above theorems.

Remark . In our main theorems (Theorem . and Theorem .), we assume the fol-
lowing conditions:

F(S)∩ Fix(T) �= ∅ and Tw = {w} for all w ∈ F(S)∩ Fix(T). (.)

It is an open problem to find a sufficient condition to assure that the condition (.) is
satisfied.
Let (X,d) be a metric space. A geodesic joining x ∈ X to y ∈ X is a mapping c from a

closed interval [, l] ⊂ R to X such that c() = x, c(l) = y and d(c(t), c(t′)) = |t – t′| for all
t, t′ ∈ [, l]. Thus c is an isometry and d(x, y) = l. The image of c is called a geodesic (or
metric) segment joining x and y. We denote [x, y] for this geodesic if it is unique. Write
c(α + ( – α)l) = αx ⊕ ( – α)y for α ∈ (, ). The space X is said to be a geodesic space if
every two points of X are joined by a geodesic. It is said to be of hyperbolic type [] if it
satisfies:

d
(
p,αx⊕ ( – α)y

) ≤ αd(p,x) + ( – α)d(p, y) (.)

for all p ∈ X. Let {v, v, . . . , vn} ⊂ X and {λ,λ, . . . ,λn} ⊂ (, ) with
∑n

i= λi = . It had been
defined, by induction, in [] that

n⊕
i=

λivi := ( – λn)
(

λ

 – λn
v ⊕ λ

 – λn
v ⊕ · · · ⊕ λn–

 – λn
vn–

)
⊕ λnvn. (.)

The definition of ⊕ in (.) is an ordered one in the sense that it depends on the order of
points v, . . . , vn. Under (.) we can see that

d

( n⊕
i=

λivi,x

)
≤

n∑
n=

λid(vi,x) (.)

for each x ∈ X.
Following [], a metric space X is said to be a CAT() space if it is geodesically con-

nected and if every geodesic triangle in X is at least as thin as its comparison triangle in
the Euclidean plane E. In fact (cf. [] p.), the following are equivalent for a geodesic
space X:

(i) X is a CAT() space.

http://www.fixedpointtheoryandapplications.com/content/2012/1/112
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(ii) X satisfies the (CN) inequality: If x,x ∈ X and x⊕x
 is the midpoint of x and x,

then

d
(
y,
x ⊕ x



)
≤ 


d(y,x) +



d(y,x) –



d(x,x), for all y ∈ X.

Lemma . ([, Proposition .]) Let X be a CAT() space. Then for each p,q, r, s ∈ X and
α ∈ [, ],

d
(
αp⊕ ( – α)q,αr ⊕ ( – α)s

) ≤ αd(p, r) + ( – α)d(q, s). (.)

In particular, (.) holds in CAT() spaces.

In [] the element x =
⊕∞

n= λnvn has been defined. Let {λn} be a given sequence in (, )
such that

∑∞
n= λn = , let {vn} be a bounded sequence in X, and let v be an arbitrary point

in X. Let λ′
n =

∑∞
i=n+ λi and assume that

∑∞
i=n λ′

i →  as n→ ∞. Set

sn := λv ⊕ λv ⊕ · · · ⊕ λnvn ⊕ λ′
nv.

Thus, by (.),

sn =

( n∑
i=

λi

)
wn ⊕ λ′

nv, (.)

where w = v and for each n≥ ,

wn =
λ∑n
i= λi

v ⊕ λ∑n
i= λi

v ⊕ · · · ⊕ λn∑n
i= λi

vn.

We know that {sn} is a Cauchy sequence (see []). Thus sn → x as n→ ∞ for some x ∈ X.
Write

x =
∞⊕
n=

λnvn.

By (.), d(sn,wn) ≤ λ′
nd(wn, v), it is seen that limn→∞ sn = limn→∞ wn. Thus the limit x is

independent of the choice of v.

Lemma . ([, Lemma .]) Let C be a nonempty closed convex subset of a complete
CAT() space X, let {tn : n ∈ N} be a family of single-valued nonexpansive mappings on C.
Suppose

⋂∞
n= Fix(tn) is nonempty. Define t : C → C by t(x) =

⊕∞
n= λntn(x) for all x ∈ C

where {λn} ⊂ (, ) with
∑∞

n= λn =  and
∑∞

i=n λ′
i →  as n → ∞ . Then t is nonexpansive

and Fix(t) =
⋂∞

n= Fix(tn).

3 Main results
3.1 Strictly convex Banach spaces
The following result is a generalization of the result of [, Lemma .].

http://www.fixedpointtheoryandapplications.com/content/2012/1/112
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Lemma . Let E be a compact subset of a strictly convex Banach space X, let {αn} be a
sequence of real numbers such that  < a ≤ αn ≤ b <  for all n ∈ N, and let {un}, {vn} be
sequences of E satisfying, for some c≥ ,

(i) lim supn→∞ ‖un‖ ≤ c,
(ii) lim supn→∞ ‖vn‖ ≤ c and
(iii) limn→∞ ‖αnun + ( – αn)vn‖ = c.

Then, limn→∞ ‖un – vn‖ = .

Proof We suppose on the contrary that lim supn→∞ ‖un – vn‖ �= . Since E and [a,b] are
compact, there exist subsequences {unk } of {un}, {vnk } of {vn} and {αnk } of {αn} such that
limk→∞ unk = u, limk→∞ vnk = v, limk→∞ αnk = α for some u, v ∈ E with u �= v and for some
α ∈ [, ]. From (i) and (ii) we have ‖u‖ = limk→∞ ‖unk‖ ≤ c and ‖v‖ = limk→∞ ‖vnk‖ ≤ c.
Using the strict convexity ofX and (iii), we have c = limk→∞ ‖αnkunk +(–αnk )vnk‖ = ‖αu+
( – α)v‖ < α‖u‖ + ( – α)‖v‖ ≤ c, a contradiction. Hence limn→∞ ‖un – vn‖ = . �

Now we introduce a new iteration method for a family of single-valued nonexpansive
mappings and amultivalued nonexpansivemapping. Let E be a nonempty bounded closed
convex subset of a Banach space X, let {tn : n ∈ N} be a family of single-valued nonexpan-
sivemappings on E, and let T : E → FB(E) be amultivalued nonexpansivemapping. Given
a sequence of positive numbers {γn} with ∑∞

n= γn < . The sequence {xn} of the modified
Ishikawa iteration is defined by x ∈ E, and

yn = ( – βn)xn + βnzn,

xn+ =

(
 –

n∑
i=

γi

)
xn +

n∑
i=

γitiyn,
(.)

where zn ∈ Txn, and  < a≤ βn ≤ b < . Put F := (
⋂∞

n Fix(tn))∩ Fix(T).

Theorem . Let E be a nonempty compact convex subset of a strictly convex Banach
space X, let {tn : n ∈ N} be a family of single-valued nonexpansive mappings on E, and
let T : E → FB(E) be a multivalued nonexpansive mapping. Suppose F �= ∅ and Tw = {w}
for all w ∈ F. Given a sequence of positive numbers {γn} with ∑∞

n= γn <  and {βn} with
 < a≤ βn ≤ b < . Then the sequence {xn} defined by (.) converges strongly to some v ∈ F.

Proof We follow the proof of [, Theorem .] and split the proof into five steps.
Step . limn→∞ ‖xn –w‖ exists for all w ∈ F :
We first note that, since Tw = {w},

‖zn –w‖ = dist(zn,Tw) ≤ H(Txn,Tw) ≤ ‖xn –w‖.

Consider the following estimates:

‖xn+ –w‖ ≤
(
 –

n∑
i=

γi

)
‖xn –w‖ +

n∑
i=

γi‖tiyn –w‖

≤
(
 –

n∑
i=

γi

)
‖xn –w‖ +

n∑
i=

γi‖yn –w‖

http://www.fixedpointtheoryandapplications.com/content/2012/1/112
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≤
(
 –

n∑
i=

γi

)
‖xn –w‖ +

( n∑
i=

γi

)(
( – βn)‖xn –w‖ + βn‖zn –w‖)

≤ ‖xn –w‖.

Therefore, {‖xn –w‖} is a bounded decreasing sequence in R, and hence limn→∞ ‖xn –w‖
exists.
Step . limn→∞ ‖xn –

∑n
i= γitiyn∑n
i= γi

‖ = :
From Step , suppose limn→∞ ‖xn –w‖ = c. We have

∥∥∥∥
∑n

i= γitiyn∑n
i= γi

–w
∥∥∥∥ ≤ ∑n

i= γi

∥∥∥∥∥
n∑
i=

γitiyn –
n∑
i=

γiw

∥∥∥∥∥
≤ ‖yn –w‖ ≤ ‖xn –w‖.

Thus

lim sup
n→∞

∥∥∥∥
∑n

i= γitiyn∑n
i= γi

–w
∥∥∥∥ ≤ lim sup

n→∞
‖yn –w‖ ≤ lim sup

n→∞
‖xn –w‖ = c. (.)

We also have

c = lim
n→∞‖xn+ –w‖

= lim
n→∞

∥∥∥∥∥
(
 –

n∑
i=

γi

)
xn +

n∑
i=

γitiyn –w

∥∥∥∥∥
= lim

n→∞

∥∥∥∥∥
(
 –

n∑
i=

γi

)
(xn –w) +

n∑
i=

γi

(∑n
i= γititn∑n
i= γi

–w
)∥∥∥∥∥.

By Lemma., since  < γ <
∑n

i= γi ≤
∑∞

i= γi < , limn→∞‖xn–
∑n

i= γitiyn∑n
i= γi

‖= limn→∞‖(xn–
w) – (

∑n
i= γitiyn∑n
i= γi

–w)‖ = .
Step . limn→∞ ‖xn – zn‖ = :
From (.), we can see that

‖xn+ –w‖ ≤
(
 –

n∑
i=

γi

)
‖xn –w‖ +

n∑
i=

γi‖yn –w‖,

andhence ‖xn+–w‖–‖xn–w‖ ≤ ∑n
i= γi(‖yn–w‖–‖xn–w‖). Therefore, ( ‖xn+–w‖–‖xn–w‖∑n

i= γi
)+

‖xn –w‖ ≤ ‖yn –w‖ and by (.) we obtain

c = lim inf
n→∞

{(‖xn+ –w‖ – ‖xn –w‖∑n
i= γi

)
+ ‖xn –w‖

}

≤ lim inf
n→∞ ‖yn –w‖ ≤ lim sup

n→∞
‖yn –w‖ ≤ c.

Thus c = limn→∞ ‖yn – w‖ = limn→∞ ‖( – βn)(xn – w) + βn(zn – w)‖. By Lemma ., since
 < a≤ βn ≤ b < , limn→∞ ‖xn – zn‖ = .
Step . limn→∞ ‖xn –

∑∞
i= γitixn∑∞
i= γi

‖ = :

http://www.fixedpointtheoryandapplications.com/content/2012/1/112
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We note from Step  that

∥∥∥∥
∑n

i= γitixn∑n
i= γi

–
∑n

i= γitiyn∑n
i= γi

∥∥∥∥ ≤ ‖xn – yn‖ = βn‖xn – zn‖ →  as n → ∞ (.)

and

‖tixn‖ ≤ ‖tixn –w‖ + ‖w‖ ≤ ‖xn –w‖ + ‖w‖
≤ ‖x –w‖ + ‖w‖ :=M

for all i ∈N. Therefore,

∥∥∥∥xn –
∑∞

i= γitixn∑∞
i= γi

∥∥∥∥ ≤
∥∥∥∥xn –

∑n
i= γitixn∑n

i= γi

∥∥∥∥ +
∥∥∥∥
∑n

i= γitixn∑n
i= γi

–
∑∞

i= γitixn∑∞
i= γi

∥∥∥∥
≤

∥∥∥∥xn –
∑n

i= γitixn∑n
i= γi

∥∥∥∥ +
∥∥∥∥
∑n

i= γitixn∑n
i= γi

–
∑n

i= γitixn∑∞
i= γi

∥∥∥∥
+

∑∞
i= γi

∞∑
i=n+

γi‖tixn‖

≤
∥∥∥∥xn –

∑n
i= γitixn∑n

i= γi

∥∥∥∥ +
∑∞

i=n+ γi

(
∑n

i= γi)(
∑∞

i= γi)

n∑
i=

γiM

+
∑∞

i=n+ γi∑∞
i= γi

M

=
∥∥∥∥xn –

∑n
i= γitixn∑n

i= γi

∥∥∥∥ +

∑∞

i=n+ γi∑∞
i= γi

M

≤
∥∥∥∥xn –

∑n
i= γitiyn∑n

i= γi

∥∥∥∥ +
∥∥∥∥
∑n

i= γitiyn∑n
i= γi

–
∑n

i= γitixn∑n
i= γi

∥∥∥∥
+

∑∞

i=n+ γi∑∞
i= γi

M.

From Step  and (.), we obtain limn→∞ ‖xn –
∑∞

i= γitixn∑∞
i= γi

‖ = .
Step . limn→∞ xn = v ∈ F :
Define a mapping t : E → E by

tx =
∑∞

n= γntnx∑∞
n= γn

for any x ∈ E. By Lemma ., t is well defined, nonexpansive and Fix(t) =
⋂∞

n= Fix(tn).
Since E is compact, there exists a subsequence {xnk } of {xn} which converges to v for some
v ∈ E. Using Step  and Step , we have

‖tv – v‖ ≤ lim
k→∞

(‖tv – txnk‖ + ‖txnk – xnk‖ + ‖xnk – v‖)
≤ lim

k→∞
(‖txnk – xnk‖ + ‖xnk – v‖) = 

http://www.fixedpointtheoryandapplications.com/content/2012/1/112
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and

dist(v,Tv) ≤ ‖v – xnk‖ + dist(xnk ,Txnk ) +H(Txnk ,Tv)

≤ ‖v – xnk‖ + ‖xnk – znk‖ + ‖xnk – v‖ →  as k → ∞.

It follows that v ∈ Fix(T)∩Fix(t) = F . Since limn→∞ ‖xn – v‖ exists by Step , limn→∞ ‖xn –
v‖ = limk→∞ ‖xnk – v‖ = . �

The following example shows that the condition ‘Tw = {w} for all w ∈ F ’ in Theorem .
is necessary.

Example . We consider the space X of Example . in []. Let X be the Hilbert space
R

 with the usual norm, and let f : [, ] → [, ] be a continuous strictly concave function
such that f () = 

 , f () =  and f ′(x) ≤  for all x ∈ [, ]. Let εn =
∑n

i=(

 )

i+, T : [, ] →
FB([, ]) be defined by T(a,b) = [, ]× [f (a), ] and tn : [, ] → [, ] be defined by

tn(a,b) =

{
(a, εn), b < εn,
(a,b), otherwise.

It is straightforward showing that T and each tn are nonexpansive. Set x = (, ) ∈ [, ]

and for a subsequence {γn} in (, ) with
∑∞

n= γn < . Let {xn = (an,bn)} be a sequence in
[, ] defined as

yn =


xn +



zn,

xn+ =

(
 –

n∑
i=

γi

)
xn +

n∑
i=

γitiyn,
(.)

where

zn =

{(
, f (an)

)
, n is odd,(

, f (an)
)
, n is even.

We will show that {xn} does not converge to a common fixed point of T and {tn}.

Proof Clearly, {zn} is a divergent sequence. We note that εn ↑ 
 and for each y = (a,b) ∈

[, ] with b ≥ 
 , we have tiy = y for all i. If we put yn = (cn,dn), then dn ≥ 

 for all n. Since∑∞
n= γn < , we must have d(xn, zn) →  as n → ∞. Suppose {xn} converges to z for some

z ∈ F = {(a,b) ∈ [, ] : b ≥ f (a)}. Thus {zn} also converges to z, a contradiction. �

It is noticed that F is not convex. Thus it is not a nonexpansive retract of any convex set.
It can be also observed that if we redefine the mapping T as T(a,b) = {a} × [ +b , ] we can
easily verify that T is nonexpansive and the condition (.) is satisfied.

http://www.fixedpointtheoryandapplications.com/content/2012/1/112
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Remark . With the same proof, Theorem . is valid when {xn} is of the following form:
For a permutation π on N, define {xn} in E by x ∈ E and

yn = ( – βn)xn + βnzn,

xn+ =

(
 –

n∑
i=

γπ (i)

)
xn +

n∑
i=

γπ (i)tπ (i)yn,

zn ∈ Txn, and  < a ≤ βn ≤ b < .
Note also that the above result is equivalent to:
Let {In} be a sequence of subsets of N satisfying In ⊂ In+ for n ∈ N and

⋃∞
n= In = N.

Define {xn} in E by x ∈ E and

yn = ( – βn)xn + βnzn,

xn+ =

(
 –

∑
i∈In

γi

)
xn +

∑
i∈In

γitiyn,

zn ∈ Txn, and  < a ≤ βn ≤ b < . Then the sequence {xn} converges strongly to some v ∈ F .

Thus Theorem . contains Theorem ..
With the application of the demiclosedness principle (Theorem.), aweak convergence

version of Theorem . also holds:

Theorem . Let X be a strictly convex Banach space satisfying the Opial’s condition, E
be a weakly compact convex subset of X, let {tn : n ∈ N} be a family of single-valued non-
expansive mappings on E, and let T : E → FB(E) be a multivalued nonexpansive mapping.
Suppose F �= ∅ and Tw = {w} for all w ∈ F. Given a sequence of positive numbers {γn} with
 <

∑∞
n= γn <  and {βn} with  < a ≤ βn ≤ b < . Then the sequence {xn} defined by (.)

converges weakly to some v ∈ F.

Proof In the proof of Theorem ., by applying the Opial’s condition, it follows from a
standard argument that {xn} converges weakly to some v ∈ E. Then Theorem . implies
that v is a point in F . �

3.2 CAT(0) spaces
Let E be a nonempty bounded closed convex subset of a complete CAT() space X, let
{tn : n ∈ N} be a family of single-valued nonexpansive mappings on E, and T : E → FB(E)
be a multivalued nonexpansive mapping. Given {γn} a sequence of positive numbers with∑∞

n= γn <  and
∑∞

i=n γ ′
i →  as n → ∞ where γ ′

n =
∑∞

i=n+ γi. The sequence {xn} of the
modified Ishikawa iteration is defined by

yn = ( – βn)xn ⊕ βnzn,

xn+ =

(
 –

n∑
i=

γi

)
xn ⊕

( n∑
i=

γi

) n⊕
i=

γi∑n
i= γi

tiyn,
(.)

where x ∈ E, zn ∈ Txn, and  < a ≤ βn ≤ b < . Put F :=
⋂∞

n= Fix(tn)∩ Fix(T).

http://www.fixedpointtheoryandapplications.com/content/2012/1/112
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Theorem . Let E be a compact convex subset of a complete CAT() space X. Let {tn : n ∈
N} be a family of single-valued nonexpansive mappings on E, and let T : E → FB(E) be a
multivalued nonexpansive mapping. Suppose F �= ∅ and Tw = {w} for all w ∈ F. Given {γn}
a sequence of positive numbers with

∑∞
n= γn <  and

∑∞
i=n γ ′

i →  as n → ∞ where γ ′
n =∑∞

i=n+ γi. If  < a≤ βn ≤ b < , then the sequence {xn} defined by (.) converges strongly to
some v ∈ F.

Proof The proof follows along the lines with the proof of Theorem .. Recall that wx =
tx and wnx =

⊕n
i=

γi∑n
i= γi

tix for all n≥ . Thus, by (.),

xn+ =

(
 –

n∑
i=

γi

)
xn ⊕

( n∑
i=

γi

)
wnyn.

As before, we consider the proof in  steps. Because of the same details in some cases,
we only present proofs for Step  to Step .
Step . limn→∞ d(xn,wnyn) = :
Let w ∈ F , we have wnw = w for all n. Using the nonexpansiveness of wn, we see that

d(wnyn,w) ≤ d(yn,w) ≤ ( – βn)d(xn,w) + βnd(zn,w) ≤ d(xn,w). (.)

By (.) and using (CN) inequality,

d(xn+,w) ≤
(
 –

n∑
i=

γi

)
d(xn,w) +

( n∑
i=

γi

)
d(wnyn,w)

–
n∑
i=

γi

(
 –

n∑
i=

γi

)
d(xn,wnyn)

≤ d(xn,w) –
n∑
i=

γi

(
 –

n∑
i=

γi

)
d(xn,wnyn).

Let γ =
∑∞

i= γi. Since  < γ ≤ ∑n
i= γi ≤ γ < ,

γ( – γ )d(xn,wnyn) ≤
n∑
i=

γi

(
 –

n∑
i=

γi

)
d(xn,wnyn) ≤ d(xn,w) – d(xn+,w).

This implies that

∞∑
n=

[
γ( – γ )d(xn,wnyn)

] ≤ d(x,w) <∞,

and hence limn→∞ d(xn,wnyn) = .
Step . limn→∞ d(xn, zn) = :
Using (.) and (CN) inequality, we have

d(wnyn,w) ≤ d(yn,w) ≤ ( – βn)d(xn,w) + βnd(zn,w) – βn( – βn)d(xn, zn)

≤ d(xn,w) – βn( – βn)d(xn, zn),
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and thus

d(xn+,u) ≤
(
 –

n∑
i=

γi

)
d(xn,w) +

n∑
i=

γid(wnyn,w)

≤ d(xn,w) – βn

( n∑
i=

γi

)
( – βn)d(xn, zn).

As before,

aγ( – b)d(xn, zn) ≤ βn

( n∑
i=

γi

)
( – βn)d(xn, zn)≤ d(xn,w) – d(xn+,w).

This also implies that limn→∞ d(xn, zn) = .
Step . limn→∞ d(xn, txn) = , where t =

⊕∞
i=

γi∑∞
i= γi

ti:
Since E is compact, there exists a subsequence {yn′ } of {yn} such that yn′ → y as n′ → ∞

for some y ∈ E. Using the nonexpansiveness of wn′ and t, we have

d(wn′yn′ , tyn′ ) ≤ d(wn′yn′ ,wn′y) + d(wn′y, ty) + d(ty, tyn′ )

≤ d(yn′ , y) + d(wn′y, ty) →  as n′ → ∞.

Therefore, limn→∞ d(wnyn, tyn) = . From Step  and Step  we have

d(xn, txn) ≤ d(xn, tyn) + d(tyn, txn)

≤ d(xn, tyn) + d(yn,xn)

≤ d(xn,wnyn) + d(wnyn, tyn) + βnd(xn, zn) →  as n→ ∞. �
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