
O’Sullivan et al. BMC Bioinformatics 2013, 14:148
http://www.biomedcentral.com/1471-2105/14/148

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref
SOFTWARE Open Access
Software for selecting the most informative sets
of genomic loci for multi-target microbial typing
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Abstract

Background: High-throughput sequencing can identify numerous potential genomic targets for microbial strain
typing, but identification of the most informative combinations requires the use of computational screening tools.
This paper describes novel software – Automated Selection of Typing Target Subsets (AuSeTTS) - that allows
intelligent selection of optimal targets for pathogen strain typing. The objective of this software is to maximise
both discriminatory power, using Simpson’s index of diversity (D), and concordance with existing typing methods,
using the adjusted Wallace coefficient (AW). The program interrogates molecular typing results for panels of
isolates, based on large target sets, and iteratively examines each target, one-by-one, to determine the most
informative subset.

Results: AuSeTTS was evaluated using three target sets: 51 binary targets (13 toxin genes, 16 phage-related loci
and 22 SCCmec elements), used for multilocus typing of 153 methicillin-resistant Staphylococcus aureus (MRSA)
isolates; 17 MLVA loci in 502 Streptococcus pneumoniae isolates from the MLVA database (www.mlva.eu) and 12
MLST loci for 98 Cryptococcus spp. isolates.
The maximum D for MRSA, 0.984, was achieved with a subset of 20 targets and a D value of 0.954 with 7 targets.
Twelve targets predicted MLST with a maximum AW of 0.9994. All 17 S. pneumoniae MLVA targets were required to
achieve maximum D of 0.997, but 4 targets reached D of 0.990. Twelve targets predicted pneumococcal serotype
with a maximum AW of 0.899 and 9 predicted MLST with maximum AW of 0.963. Eight of the 12 MLST loci were
sufficient to achieve the maximum D of 0.963 for Cryptococcus spp.

Conclusions: Computerised analysis with AuSeTTS allows rapid selection of the most discriminatory targets for
incorporation into typing schemes. Output of the program is presented in both tabular and graphical formats and
the software is available for free download from http://www.cidmpublichealth.org/pages/ausetts.html.

Keywords: Comparative genomics, Multilocus sequence typing, MVLA, Binary typing, Software, Microbial typing,
MRSA, Cryptococcus, Staphylococcus aureus, Streptococcus pneumoniae
Background
Microbial strain typing schemes, with variable dis-
criminatory powers, are increasingly applied to study
long-term evolution, detect emergence of new or hyper
virulent clones, identify outbreaks and track transmis-
sion chains. New high-throughput DNA sequencing me-
thods identify hitherto unrecognised variation in the
genomes of even closely related isolates, which is a valu-
able source of targets for use in new microbial typing
schemes. These genotyping systems can be tailored to
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[1] but systematic assessment of the characteristics of
potential targets is required to ensure the quality and re-
liability of the resulting typing scheme.
Existing typing systems involve interrogation of several

genetic loci to determine sequence variation (e.g. multi-
locus sequence typing, MLST), length polymorphisms
(e.g. multi-locus variable number of tandem repeats
analysis, MLVA) or the presence or absence of genetic
targets (i.e. binary typing). Next generation sequencing
technologies have yielded vast amounts of sequencing
information for a wide variety of organisms, and bench
top sequencers permit real-time sub typing of bacteria
by sequencing small batches of bacteria in a matter of
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hours [2]. This has prompted some to advocate whole
genome sequencing as a routine typing method [3], but
limitations of data analysis and assigning cut-offs for re-
latedness mean that whole genome data is more com-
monly used to identify loci that may be useful to design
informative typing systems [4]. A critical step in deciding
which loci to incorporate into such typing systems is to
estimate the discriminatory power and concordance with
other typing systems that would be achieved with differ-
ent combinations of loci.
The essential characteristics of a microbial typing sys-

tem include appropriate discriminatory power for the
research question being studied, consistency with both
clinical epidemiology and established typing methods,
stability, reproducibility, type ability, ease of use and in-
terpretation, high throughput and low cost [5].
Discriminatory power is most frequently assessed

using Simpson’s index of diversity (D), which gives the
probability that isolates randomly selected from a popu-
lation would differ using the typing method.
A number of indices can likewise be used to measure

concordance between typing systems or between a typing
system and epidemiologic classifications. The Wallace co-
efficient (W) estimates the probability that two isolates
assigned the same type by the method under evaluation
(M1) belong to the same type using the comparator
method (M2). W is a directional measure; that is the re-
sults for the concordance of M1 with M2 are different
from those of the concordance of M2 with M1.
When choosing targets identified by comparative ge-

nomics for incorporation into a new typing system, a
good starting point is to select those that in combination
give the most favourable results for these measures
of discriminatory power and/or concordance using an
existing collection of typed isolates. However, examin-
ation of every possible combination of candidate targets,
individually, is often computationally expensive. For ex-
ample, comparison of all possible subsets of 100 po-
tential targets available for use in a typing system, to
determine the most informative subset, would require
1030 calculations, which is beyond the capacity of stan-
dard computers. Therefore, alternative approaches are
required. Software has been developed to interrogate
informative single nucleotide polymorphisms (SNPs) in
sequence based data (Minimum SNPs) but it is not
designed to handle other forms of typing data [6,7]. Fur-
thermore, while it can be used to identify SNPs, which
are most predictive of a user-nominated sequence type,
it does not consider overall measures of concordance be-
tween typing systems. We report here a new computa-
tional approach selecting the most informative sets of
genomic loci for multi-target microbial typing and dis-
cuss its application to different typing methods for pa-
thogenic bacteria and fungi.
Implementation
In constructing an approach for interrogating combi-
nations of targets, which are either binary and/or mul-
tistate (where a target can assume any of >2 possible
values), we developed a heuristic based on the stepwise
accumulation of informative targets. Here ‘informative’
means the combination of targets producing either the
greatest discriminatory power or the greatest concord-
ance with existing typing methods (as selected by the
user). This heuristic assumes that the most informative
combination of n + 1 targets includes the most inform-
ative combination of n targets as a subset. While this as-
sumption may not always hold true, it vastly reduces the
number of combinations that need to be examined to
determine the maximally informative subset of targets
and it can be confirmed post-hoc for a given dataset.
AuSeTTS (Automated Selection of Typing Target Sub-

sets) is a software program designed to analyse a large array
of typing data for a panel of isolates and determine the opti-
mal combination of typing targets to maximise discrimin-
atory power and/or concordance measures for a specified
subset size. The analysis can be performed with (heuristic
search) or without (exhaustive search) the heuristic de-
scribed above. The software was written in Microsoft Visual
Basic for Excel (2010); it is available for free download from
http://www.cidmpublichealth.org/pages/ausetts.html and
also accompanies this paper (Additional file 1).
The input data consist of a table of typing results with

the targets in columns and the isolates in rows. Each cell
represents the result for a given target in a given isolate
and is expressed as character-based data (for example 0
or 1 for binary data, allele numbers for MLST or num-
bers of repeats for MLVA data). One or more columns
can be specified as the comparator typing method for
calculating measures of concordance and typing results
can be represented in the dataset multiple times by pro-
viding numbers of isolates for each row in a specified
column. Non-informative targets (i.e. which have the same
result for every isolate or are completely concordant with
a second target) are automatically removed from the set
before analysis.
Using the heuristic search, the software initially ranks

each target by their individual discriminatory power or
concordance. It then examines all other targets in com-
bination with the most informative target(s) to identify
the most informative combinations of two targets. Fur-
ther targets are then added iteratively until the whole
dataset has been examined. When a ‘tie’ between combi-
nations is encountered each of the tied combinations
continue to be considered, with additional targets being
added until the ties are broken. Once the ties are bro-
ken, the less informative combination(s) are abandoned.
A ‘threshold’ is ultimately determined: the number of
targets, beyond which adding more targets does not
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further increase discriminatory power or concordance.
Figure 1 presents a schematic overview of the program.
The output is a list of targets for each subset size
that maximise discriminatory power or concordance,
with the results of these measures and 95% confidence in-
tervals. The information is also presented graphically
(Figure 2).
Using an exhaustive search, the user specifies the

number of targets to be included (the subset size).
The software then examines every possible combin-
ation of targets producing a subset of this size and
calculates the discriminatory power (and, if specified,
the concordance measures). The combinations with
the highest achievable discriminatory power are
returned, along with 95% confidence intervals. The
exhaustive search gives a definitive result that is not
dependent on the heuristic. It may not be feasible to
examine very large datasets with an exhaustive search:
on testing, examining a subset of 5 binary targets
from a dataset of 20 targets for 100 isolates (15,504
possible combinations) took 20 seconds, while doub-
ling the number of targets to 10 from the same
dataset increases the number of combinations to be
examined by more than 10-fold which led to a cor-
responding increase in the computing time. Thus the
problem using the exhaustive search becomes NP-
complete for very large datasets, and the heuristic ap-
proach becomes necessary.

Formulas
The formula used for calculating D was as follows:

D ¼ 1−
1

N N−1ð Þ
XS
j¼1

nj nj−1
� �

Where N is the number of isolates in the sample
population, S is the number of distinct types identi-
fied in the population and nj is the number of isolates
of the type j [8]. The following formulas have been
developed for calculating confidence intervals for D
[9,10]:
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N
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Where σ2 is the variance and CI is the approximate
95% confidence interval. This formula used for variance
is a large sample approximation; a non-approximated
formula for variance has also been described [10].
To calculate W, the typing results for both methods

for each isolate in the data set must be examined against
those for every other isolate in the data set to see if they
match or are discordant. The formula used for W is
given by [11]:

W M1;M2ð Þ ¼ α

αþ b

Where a is the number of instances where two isolates
of the same type by method M1 are of the same type by
method M2, while b is the number of instances where
two isolates of the same type by method M1 are of a
different type by method M2. The Adjusted Wallace
coefficient (AW) incorporates an adjustment to account
for concordance that may occur by chance alone. The
formula for AW is given by [12]:

AW M1;M2ð Þ ¼
W M1;M2ð Þ þ D M2ð Þ−1

D M2ð Þ

Where D(M2) is the Simpson’s index of diversity of the
dataset using typing method M2. In addition, the Rand
(R), adjusted Rand (AR) and the approximate 95% confi-
dence intervals of AW are also calculated [12,13]. The
analytical confidence interval calculations for W may not
be valid for W values of <0.5. An alternative method for
calculation of confidence intervals for these measures of
congruence is to use Jackknife resampling [14], for
which an online tool is available [15].
Confidence intervals are provided for the purposes of

comparison of results with other typing methods. How-
ever, in the algorithm, only the point estimates of D,
AW, or AR, without confidence intervals, were used to
determine the most informative values of each combin-
ation of targets. This approach reduces the complexity of
the heuristic and, hence, the computation time required
but the results relate only to the input dataset. The
optimal combination of targets may therefore be different
for larger sample sizes or samples from different popula-
tions of the same microbial species.

Results and discussion
Validation
To examine the robustness of the assumption that tar-
gets may be added in a stepwise fashion while maximi-
sing the parameter of interest (heuristic search), random
datasets were generated and tested using both search
types. These random datasets were defined by varying a)
the number of targets, b) the number of different states
each target could assume, c) the number of strain types
and d) the number of isolates distributed (unevenly)
amongst the strain types.
For each dataset, a heuristic search was used to calcu-

late the threshold subset size. The heuristic search result
for a subset of one target less than the threshold was
compared with an exhaustive search result specifying the
same sized subset. If the resulting maximum parameter



Figure 1 Schematic overview of iterative assessment of typing targets conducted by AuSeTTS (heuristic search).
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Figure 2 AuSeTTS graphical output. (A). Relationship between the number of target loci and the discriminatory power of molecular subtyping.
Results for analysis of MRSA binary typing data. The maximum Simpson’s Index of Diversity was achieved with a combination of 20 targets.
(B). MRSA binary typing data analysis to maximise the Wallace coefficient. Maximum concordance of binary type to predict MLST was achieved
with 12 binary targets, with an AW value of 0.994.
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value, using the exhaustive search was the same as that
of the heuristic search, the heuristic was considered to
be valid. If the maximal parameter value achieved by the
heuristic search was less than that using the exhaustive
search, the heuristic was considered not to have held.
25600 randomly generated datasets were examined for
each of the 5 parameters of interest. The heuristic was
valid in 79.4% (95% confidence interval 79-80), 98.2%
(98-99), 83.4% (0.83-0.84), 92.9% (92-93) and 93.6%
(93-94) of random datasets for D, AW(A>B), AW(B>A),
R and AR, respectively.
Factors associated with failure of the heuristic to iden-

tify the combination of targets that maximised D in-
cluded: a value of D between 0.90 and 0.96, and a larger
number of targets analysed. It performed best when the
maximum D of the whole dataset was 1 (87.8% 95% CI
87-89). The number of strain types, the number of iso-
lates in the dataset and the number of states each target
could assume did not influence the likelihood of the
heuristic being valid.
The heuristic performed well for all four concordance

measures. Factors associated with a lower likelihood of
the heuristic being valid for concordance measures
included an increasing number of targets in the
dataset, D value of the dataset between 0.9 and 0.96,
examination of a subset of close to half of the total
number of targets and, for AW(A>B), a maximum AW
value between 0.1-0.35.
Full details of the validation are available in the sup-

plementary material (Additional file 2).
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Application
The software was used to analyse different forms of mi-
crobial typing data generated by well-validated methods,
specifically, binary typing data for Staphylococcus aureus
[16-18], MLVA for Streptococcus pneumoniae [19] and
MLST for Cryptococcus spp. [20,21].

Selection of targets for Staphylococcus aureus strain
typing
Typing results for 51 binary targets in 153 methicillin-
resistant S. aureus (MRSA) isolates (42 well characte-
rised reference isolates and 111 clinical isolates from our
institution) were available from previous experiments in
our laboratory [16-18]. The targets comprised: 13 toxin
genes [17], 16 phage-derived open reading frames [18]
and 22 SCCmec elements [16] which had been inter-
rogated using multiplex-PCR reverse line blot assays
[22,23].
The maximum D value of binary typing with all 51

targets for this collection of MRSA isolates was 0.984
(95% confidence interval 0.975-0.992). AuSeTTS heuris-
tic search showed that this could be achieved with a sub-
set of 20 binary targets, while a subset of just 7 targets
achieved a D value of 0.954 (0.941-0.967) (Figure 2A).
When used to predict MLST (which had been de-
termined by either the conventional [24] or SNP-based
[25] methods for all 153 isolates), a maximum Adjusted
Wallace coefficient of concordance (AW) of 0.9994
(0.999-1.000) was achieved with 12 targets (Figure 2B).
One binary type consisted of two isolates with different
MLST (which were single-locus variants). Isolates within
each of the remaining binary types all belonged to one
MLST type.
This data was used to develop a novel 19-target binary

typing system for MRSA [26].

Selection of targets for Streptococcus pneumoniae strain
typing
Results of MLVA typing, using 17 loci, for 1449 Strep-
tococcus pneumoniae isolates (representing 906 possible
MLVA types) were available from the MLVA online data-
base (www.mlva.eu) [19] for analysis by AuSeTTS. A
maximum D of 0.997 (0.997-0.998) was achieved with all
17 loci but only 4 targets were required to achieve a D
value of 0.990 (0.988-0.991), which divided the isolates
into 438 MLVA types.
A subset of the isolates for which MLVA results were

available also had been serotyped (537 isolates represen-
ting 43 serotypes and 398 MLVA types), and these we
used to determine the combination of MLVA loci which
could best predict the serotype. A maximum AW of
0.899 (0.857-0.942) for serotype was achieved using 12
of the MLVA loci. This particular combination of 12 tar-
gets divided the dataset into 370 MLVA types, 352 of
which contained only one serotype, while 15 contained
two, two contained one and one MLVA type represented
by 6 isolates harboured 5 different serotypes.
A similar analysis was performed with MLST data

which were available for 96 of the isolates consisting of
27 sequence types (ST) and 77 possible MLVA types. A
maximum AW of 0.963 (0.943-0.983) for MLVA to pre-
dict ST was achieved with 9 targets which divided the 96
isolates into 60 MLVA types. One MLVA type consisted
of 3 isolates with 3 different MLST types. All other
MLVA types consisted of isolates with matching MLST
types.

Selection of targets for Cryptococcus species strain typing
Twelve MLST loci for 98 Cryptococcus spp. isolates from
a previously published study [21] were examined using
AuSeTTS. Eight of the 12 MLST loci provided a ma-
ximum D of 0.963 (0.945-0.981) for Cryptococcus spp.in
a heuristic search. The exhaustive search, specifying a
subset size of seven loci, indicated the same maximal D
value could be achieved with only seven loci; i.e. for this
dataset, the heuristic was invalid but the most inform-
ative combination of targets could still be identified
using an exhaustive search. This analysis was used, in
part, to determine the recommended targets for an in-
ternational consensus protocol for MLST typing of Cryp-
tococcus spp. [27].

Discussion
AuSeTTS has been successfully applied to develop typ-
ing schemes for MRSA [26] and Cryptococcus spp. [27]
and would be useful to assess the discriminatory power
of combinations of candidate targets for typing systems
for other pathogens. It can be used for a wide range of
data types, but for interrogation of informative SNPs, we
recommend Minimum SNPs, which has been designed
specifically for this purpose [6,7]. Minimum SNPs should
be used to examine input data in the form of multiple se-
quence alignments. AuSeTTS can also be used to examine
the level of concordance between results produced using
subsets of candidate targets and those of existing phe-
notyping or genotyping methods or with epidemiologic
classifications. Minimum SNPs does provide some func-
tionality with regard to concordance measures (the “not-
N” mode), but does not calculate the Wallace or Rand
coefficients or confidence intervals for the adjusted
Wallace coefficient.
While the algorithm used in the heuristic search may

not always provide a definitive result for the minimum
subset size required for the maximal D value, it will be
correct in the majority of cases. For smaller datasets,
an exhaustive search can easily be undertaken to con-
firm the validity of the heuristic. This is particularly
recommended if the dataset has several features that

http://www.mlva.eu
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were associated with a higher likelihood of the heuristic
being invalid, such as low maximum D values, a thresh-
old value close to 50% of the total number of targets, a
number of states each target can assume of <8 and a
large number of unique strain types. A worked example
demonstrating the use of AuSeTTS (Additional file 3)
using a sample dataset (Additional file 4) accompany
this paper.

Conclusions
Computerised analysis with AuSeTTS enables rapid, au-
tomated identification of the most informative targets
for incorporation into novel molecular typing schemes
for bacteria and fungi. Discriminatory power and con-
cordance, while important, are only two of the many pa-
rameters that need to be considered when developing a
new molecular typing technique. Reproducibility, sta-
bility, ease of use, ease of interpretation, throughput and
cost are additional measures that require thorough
assessment and comparison with existing methods du-
ring development and evaluation of novel typing tech-
niques [5].

Availability and requirements
Project name: AuSeTTS
Project home page: http://www.cidmpublichealth.org/
pages/ausetts.html
Operating system(s): Microsoft Windows
Programming language: Visual Basic for Applications
Other requirements: Microsoft Excel for Windows
License: Unrestricted Freeware

Additional files

Additional file 1: The AuSeTTS software file.

Additional file 2: The full description of the heuristic search
validation.

Additional file 3: A worked example using the dataset in Additional
file 4.

Additional file 4: Sample AuSeTTS dataset.

Abbreviations
AR: Adjusted Rand coefficient of concordance; AW: Adjusted Wallace
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