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Abstract
Background: The use of current high-throughput genetic, genomic and post-genomic data leads
to the simultaneous evaluation of a large number of statistical hypothesis and, at the same time, to
the multiple-testing problem. As an alternative to the too conservative Family-Wise Error-Rate
(FWER), the False Discovery Rate (FDR) has appeared for the last ten years as more appropriate
to handle this problem. However one drawback of FDR is related to a given rejection region for
the considered statistics, attributing the same value to those that are close to the boundary and
those that are not. As a result, the local FDR has been recently proposed to quantify the specific
probability for a given null hypothesis to be true.

Results: In this context we present a semi-parametric approach based on kernel estimators which
is applied to different high-throughput biological data such as patterns in DNA sequences, genes
expression and genome-wide association studies.

Conclusion: The proposed method has the practical advantages, over existing approaches, to
consider complex heterogeneities in the alternative hypothesis, to take into account prior
information (from an expert judgment or previous studies) by allowing a semi-supervised mode,
and to deal with truncated distributions such as those obtained in Monte-Carlo simulations. This
method has been implemented and is available through the R package kerfdr via the CRAN or at
http://stat.genopole.cnrs.fr/software/kerfdr.

Background
Multiple-testing problems occur in many bioinformatic
studies where we considere a large set of biological objects
(genes, SNPs, DNA patterns, etc.) and we want to test a
null hypothesis H for each object. Typically, H may be 'the
expression level of the gene is not affected by the treat-
ment' or 'the pattern is as frequent as expected in the

observed DNA sequence'. The control of the number of
false positives, i.e. falsely rejected hypotheses, is the cru-
cial issue in multiple testing. To this end, several error
rates, such as the Family-Wise Error-Rate (FWER) or the
False Discovery Rate (FDR), have emerged and various
strategies to control these criteria have been developed
(see [1] for a review).
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In the last decade the FDR criterion introduced in [2] has
received the greatest focus, due to its lower conservative-
ness compared to the FWER. The FDR is defined as the
mean proportion of false positives among the list of
rejected hypotheses. It is therefore a global criterion that
cannot be used to assess the reliability of a specific
hypothesis, i.e. that of a given gene, SNP or pattern.

More recently, a strong interest has been devoted to the
local version of the FDR, called 'local FDR' [3] and
denoted hereafter �FDR. The idea is to quantify the prob-
ability for a given null hypothesis to be true. Even if many
different strategies were designed to estimate the �FDR,
some of them based on the estimation of FDR itself [4],
most of them rely on a mixture model assumption [5],
which is a general and statistically convenient framework:
the score (test statistics, p-values) on which the testing
procedure is based follows a mixture distribution depend-
ing on the unobserved status of the hypothesis (true or
false). Different approaches have been proposed: fully
parametric [6-9], semi-parametric [10], Bayesian [11,12]
or empirical Bayes [3].

The semi-parametric approach developed by [10] uses the
knowledge of the distribution f0 of the score under the
null hypothesis, to provide a flexible non-parametric esti-
mation of the alternative distribution (denoted f1), i.e.
under the alternative hypothesis. However, some impor-
tant questions remain partially or not addressed in this
reference.

In this paper we provide an implementation of the
method with several important and practical generaliza-
tions. The Results and Discussion Section recalls the theo-
retical framework underlying our method, the properties
of the estimation algorithm as well as the main steps of its
implementation.

Performances are then studied via simulations, and com-
pared to other existing methods. Finally, applications to
various bioinformatic data sets, such as gene expressions,
DNA sequence patterns and genome-wide associations,
are carried out and proposed to the reader

Results and discussion
Semi-parametric mixture model
Our estimation of the local FDR (�FDR) relies on the
semi-parametric mixture model proposed in [10]. e have
at our disposal n hypotheses {Hi}i = 1,...,n we want to test.
Suppose that an unknown proportion 0 of them are true
nulls. For any hypothesis, we define a random variable Hi
that equals 0 if it is under H0 (true null hypothesis), and
equals 1 under H1 (false null). For each Hi, we compute a
score denoted by Xi (a p-value for example). We assume

that these scores are independent and identically distrib-
uted, with mixture distribution

f(x) = 0 f0 (x) + 1 f1 (x), (1)

where 1 = 1 - 0 states for the proportion of false null
hypotheses, f0 denotes the probability density function
(pdf) of scores under H0 and f1 is the pdf of scores under
H1. Note that f0 is completely specified. For instance if Xi
is the p-value of a Student statistic, f0 is the uniform distri-
bution on [0, 1]. If any transformation (probit or log) is
applied, f0 remains completely known. On the contrary, f1
needs systematically to be estimated so as to 0.

In our framework, �FDR defined the probability that Hi =
0 given the observed value xi of the score Xi:

This quantity may be interpreted as a measurement of
how likely the hypothesis at hand could be falsely
rejected.

Since f1 is unknown, we use the following (non-paramet-
ric) kernel estimator for a given bandwidth h > 0

in which we replace the unknown Hi's by their condi-

tional expectation  [Hi|Xi] = Pr [Hi = 1|Xi] = 1 - i.

These expectations are themselves thanks to

where  is a given estimator of the unknown proportion

and . Thus, we obtain

As 's and  depend on each other, we alternate the

computation of (3) and (4) until convergence, which is
proved in [10].

Implementation
The method may require to apply a transformation to the
sample of p-values (optional), to estimate the proportion
of null hypotheses (0), to determine an optimal value for
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the bandwidth (h) used in the kernel estimator and to
compute the estimation of f1. These technical points are
further developed and discussed in the Methods section.

Moreover, the corresponding R package allows a simple
and straightforward use. For instance the command try =
kerfdr(pv) for a given sample of p-values (pv) returns the
estimates of 0 and �FDR in try$pi0 and try$localfdr
respectively. In addition the running time is very fast
thanks to an efficient implementation using convolution
through fast Fourier transforms and a list of customizable
options for more advanced users such as the choice of 0,
h or the kernel function. The complete R code and a
pseudo-R code of kerfdr are available on the webpage.

Practical generalizations
Semi-supervised cases
Prior information is actually available in many experi-
ments. Among all the null hypotheses to be tested, some
are known to be true (control genes in microarray experi-
ments) while some others are known to be false (test
genes in spike-in settings). Such a knowledge is taken into
account in the estimation procedure described previously:
known a priori the is are kept fixed throughout the steps
of the algorithm. They contribute to the estimation of f1 in
Eq. (4), but are not updated in Eq. (3).

Truncation
Let us suppose now that we have at hand truncated data
within an interval I = [a, b]. By 'truncated', we mean that
the support of the p-values distribution is strictly smaller
than [0,1]. For instance, if B denotes the number of simu-
lations, p-values smaller than 1/B are often truncated to
0.0. How this will affect our method?

In order to deal with densities, the restrictions of f0, f1 and
f to I need to be normalized. Denoting by q0, q1 and q the
corresponding normalization factors, the mixture defini-
tion gives:

Despite q0, q1 can not be easily computed as f1 is
unknown. Fortunately, we can estimate q from a sample
X1,..., Xn of non-truncated data using

from which we derive

One should note that this estimator does not necessarily
belong to [0, 1]. In order to overcome this, we replace its

value by 0 if  < 0 and by 1 if  > 1.

For example, if the p-values are estimated through Monte-
Carlo using B = 500 simulations, the smallest non-null p-
value is 1/B = 0.002 and I = [0.002, 1.000]. Let us assume
that among a set of n = 1000 p-values, 54 are equal to 0.0,

0 = 0.9 and 1 = 0.1. We hence have  = (n - 54)/n = 946/

1000 and as q0 = 1 - 1/B = 499/500 = 0.998 we easily get

the expression of  (= 0.478).

Simulation study
A comparison with other estimation methods of �FDR is
provided in [10]. It shows that the semi-parametric
approach we propose performs as well as the empirical
Bayes approach [13] and the Gaussian mixture model [8]
when the distributions f1 and f0 are well separated. How-
ever, it outperforms them in more difficult situations,
especially in terms of stability. We focus here on the par-
ticular cases described below (semi-supervised and trun-
cation) that are not handle by the aforementioned
methods.

Simulation design
We simulated sets of p-values according to the mixture
model (1), where f0 is the uniform distribution over [0; 1].
We considered 4 different proportions of false null
hypotheses (1 - 0 = 0.01, 0.05, 0.1 and 0.3), 2 different
means for the p-values coming from the alternative distri-
bution f1 ( = 0.01 and 0.001). f1 is either an exponential
distribution (1/) or a uniform distribution over [0, 2 ].
The exponential distribution can provide values greater
than one and a beta distribution as used in [6] can appear
more appropriate; however it occurs very rarely with the
taken value for . For each of the 4 × 2 × 2 = 16 configura-
tions, S = 500 samples of size n = 1,000 were generated.

For each proportion 0 and distribution f1, the �FDR of

the i-th p-value i has a theoretical expression that is com-

puted. Denoting by , the local FDR estimate of the i-th

p-value for the simulation s (s = 1,..., S), the performances
of the method are assessed by means of the root mean
square error

The smaller the RMSE, the better the performances.
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Semi-supervised
To see how prior information improves the estimation of
�FDR, we randomly select some hypotheses for which the
status is known. The proportion  of these hypotheses is
fixed, so that the true value of the local FDR is also known
(and equal either to 0 or 1). Figure 1 shows that even a
small proportion ( = 1% or 5%) of known hypotheses
improves significantly the �FDR estimation.

Truncation
In purpose of comparison, we truncate p-values to a given
threshold p* (p* = 10-2, 10-3) and compare the generalized
method that takes account of truncation with the naive
one, in terms of the RMSE criterion. In Figure 2, the orig-

inal non-truncated p-values provide a reference that can
not be outperformed. We see that the correction improves
the quality of the estimates, especially when the trunca-
tion is severe (p* = 10-2) and that the corrected estimates
can be almost as good as the best achievable.

Applications
Gene expression data
As a first illustration, we apply our method to the classical
example of Hedenfalk [14] in which the expression levels
of n = 3,226 genes are studied. The aim is to compare
patients with two different breast cancers: 7 BRCA1 (7
patients) and BRCA2 (8 patients) corresponding to two
different gene mutations predisposing to the disease. We

Semi-supervisedFigure 1
Semi-supervised. Root Mean Square Error (RMSE) between the true local FDR  and the estimates as a function of the pro-
portion 1 - 0 (log-log scale). Proportion of known hypothesis:  = 0 (dotted), 1% (cross), 5% (asterix), 10% (circle) and 50% 
(square). Top: exponential shape for f1. Bottom: uniform shape. Left:  = 0.001. Right:  = 0.01. Variance of the RMSE lies 
between 1e-4 and 5e-4 with 500 simulations.
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use the modified t-test statistic proposed in [15] which
avoids false-positives due to bad variance estimates.

Applying our method, we obtain a proportion of null

genes of  = 66.4% which is consistent with the propor-

tion estimated in [8] (  = 65%). Figure 3 displays the

estimated densities: although the proportion of modified

genes is quite high (1 -  = 33.6%), the local FDR is

lower than 1% for only 5 genes; it is below 5% for only 69.
This shows that the local FDR is an efficient tool to reduce
the type-I error-rate in difficult cases.

The choice of the bandwidth is known to be a crucial step
in density estimation problems. In this example, we
selected a bandwidth of 0.27. To check to influence of this
choice on the results, we tried several values of h between
0.20 and 0.35. Figure 4 shows that the estimated local
FDR is not sensitive to this choice.

DNA sequence patterns
It is well known that most biological patterns in DNA
sequences have unusual frequencies due to selection
mechanisms. It is hence natural to search for new func-
tional patterns among those whose number of occur-
rences is statistically significant. In order to do so, it is
classical to adopt a test framework where the null hypoth-

̂ 0

̂ 0

̂ 0

TruncationFigure 2
Truncation. Root Mean Square Error (RMSE) between the true local FDR  and the estimates as a function of the proportion 
1 - 0 (log-log scale). Truncation: p* = 0 (untruncated: asterix), 10-3 (circle), 10-2 (cross). Estimation: naive (dotted), corrected 
(solid). Top: exponential shape for f1. Bottom: uniform shape. Left:  = 0.001. Right:  = 0.01. Variance of the RMSE lies 
between 1e-4 and 5e-4 with 500 simulations.
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esis is that the DNA sequence is generated according to a
order m  0 Markov model (the parameters of this Markov
model are usually estimated over the observed sequence).

We consider here the complete genome of the pathogen
bacteria Mycoplasma genitallium (575 kb) on which we

estimate an order m = 3 homogeneous Markov model. For
each of the 46 = 4,096 oligomers (DNA words) of length
6, we compute the exact expectation (  [N]) and stand-

ard deviation ( ) of its frequency N from which we

derive the z-score:



[ ]N

Genes expression: estimated densities for the Hedenfalk datasetFigure 3
Genes expression: estimated densities for the Hedenfalk dataset. The expression levels of n = 3,226 genes for 7 
BRCA1 and 8 BRCA2 patients (corresponding to two different gene mutations predisposing to the disease) are studied [14]; p-
values are computed by using the modified t-test statistic proposed in [15].

kerfdr(): pi1 =  0.336  and bw =  0.269
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where Nobs is the observed frequency of the oligomer in
the genome.

Thanks to a simple CLT argument, we get that the distri-
bution of Z is approximately a standard Gaussian under
the null hypothesis. It is hence possible to use this approx-
imation either by working directly with the z-score or by
computing the two-sided p-value associated to each obser-
vation:

The natural approach is to estimate the densities from the
p-values (Figure 5) where all the 'exceptional' oligomers
(under and over-represented) accumulate on the left side
of the resulting density. But the flexibility of our method
allows us to make the estimations directly on the basis of
the z-scores (Figure 6) by taking into account their bimo-
dal distribution under H1 and distinguishing the oligom-

ers that are under-represented (on the left side of the
resulting density) from those that are over-represented
(on the right side). If both strategies provide the same esti-

mation for the proportion of 'null' oligomers (  =

57.3%), �FDR estimations are sensibly different in partic-
ular for the ligomers that are over-represented (data not
shown).

Quality control in genome-wide association studies
In association studies, deviations from Hardy-Weinberg
equilibrium (HWE) can be due to inbreeding, population
stratification or selections. They can also be a symptom of
lack of quality in genotyping because of a tendency to mis-
scall heterozygous genotypes as homozygous for instance
[16]. As a result, testing for HWE has often been proposed
as a data quality check with the aim to discard loci that
deviate from the equilibrium. Testing for deviations from
HWE can be carried out using the Pearson chi-square sta-
tistic (XHW) that quantifies the distance between the
observed genotype proportions and the ones expected
under the equilibrium.

Here, the HWE test is applied to controls of genome-wide
case-control data on the multiple sclerosis from France
(Rennes). The data set consists in 74,067 Single Nucle-
otide Polymorphisms (SNPs). Since the usual chi-square
approximation can be poor when there are low genotype
counts, p-values are computed via Monte-Carlo simula-
tions (number of simulations B = 10,000) which repre-
sents a typical case of truncation of p-values for those that
are below the level of precision given by the number of
simulations.

Applying our method, we obtain a proportion of null

SNPs of  = 99.44%. Figure 7 displays the estimated

densities, showing a large overlap between the two distri-
butions f0 and f1. By considering a threshold of 1%, then

29 SNPs would be declared to deviate from HWE, and up
to 537 for a threshold of 5%. These quantities come down

Z
N N

N
= −obs 


[ ]

[ ]
~ ( , )
H0

0 1

p Z Z-value = < − + > + ( ( , ) | |) ( ( , ) | |) 0 1 0 1

̂ 0

̂ 0

Genes expression: sensitivity of local FDR estimates to the choice of the bandwidthFigure 4
Genes expression: sensitivity of local FDR estimates to the choice of the bandwidth. h takes the values 0.20 (dot-
ted), 0.27 (dashes) and 0.35 (line); local FDR are given in log10 scale.
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to 454 and 576 respectively when local FDR are estimated
in the naive way (not accounting for the truncation). Con-
sequently and in addition to our simulations, this appli-
cation underlines an inflation of excluded SNPs when the
information about a truncation, when it exists, is not
taken into account in the estimation procedure.

Conclusion
A simple computational approach to local FDR considers
a two-components normal mixture model for modeling
the observed empirical distribution (f) where the null dis-
tribution (f0) is the standard normal and the alternative
distribution (f1) is a normal density with unspecified
mean and variance. But the reliability of this approach

obviously depends on how well the proposed two-com-
ponents normal mixture model approximates the real dis-
tribution.

Our semi-parametric approach does not assume any con-
strained alternative distribution and is hence much more
flexible. Nonetheless it requires a complete specification
of the null distribution, the a priori proportion of true null
hypotheses (0), as well asthe bandwidth (h) for which
efficient estimation methods have been developed. The
performances of the approach compared to existing meth-
ods were assessed in a preceding publication [10] which
showed its advantages in difficult situations where the dis-
tributions f0 and f1 are not well separated. We focused here

Patterns in DNA sequences: estimated densities for all 4,096 oligomers of size 6 using p-valuesFigure 5
Patterns in DNA sequences: estimated densities for all 4,096 oligomers of size 6 using p-values. We consider 
here the complete genome of the pathogen bacteria Mycoplasma genitallium (575 kb); For each of the 46 = 4,096 oligomers of 

length 6, we compute the exact expectation (  [N]) and standard deviation ( ) of its frequency N from which we 

derive the z-score and the corresponding p-value.

kerfdr(): pi1 =  0.427  and bw =  0.272
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on the implementation of the approach, and on two inter-
esting extensions such as the possibility to use prior infor-
mation in the estimation procedure (semi-supervised)
and the ability to handle truncated distribution such as
those generated by Monte-Carlo estimation of p-values.
Our simulation showed that these informations can sig-
nificantly improve the quality of estimates. As an illustra-
tion, we analyzed three high-throughput biological
dataset concerning genes expressions, DNA sequence pat-
terns, and genome-wide association studies. The corre-
sponding R package available at http://
stat.genopole.cnrs.fr/software/kerfdr is fast, thanks to fast
Fourier transforms, straightforward to use and propose
customizable options to advanced users.

Finally, most of the local FDR estimation procedures
derived from the Benjamini and Hochberg framework,
including our approach, assume that p-values testing true
null hypotheses are independent observations. If it may
well be the case for patterns, in practice this assumption
does not hold for all the genes or SNPs. A proposed solu-
tion is to cluster highly correlated genes (or SNPs)
together, and to represent a cluster by a single gene or a
linear combination of the associated genes [8]. Theses
approaches also generally assume that p-values testing
true null hypotheses are continuous and uniform over
[0,1]. These issues are likely to be alive fields of research
in the near future.

Patterns in DNA sequences: estimated densities for all 4,096 oligomers of size 6 using z-scoresFigure 6
Patterns in DNA sequences: estimated densities for all 4,096 oligomers of size 6 using z-scores. This is the same 
dataset than Figure 5 with the difference that Local FDR is estimated from the z-scores directly instead of p-values. It results in 
a bimodal density for f1.

kerfdr(): pi1 =  0.427  and bw =  0.331
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Methods
Probit or logarithm transformations
While it is obviously possible to work directly with a sam-
ple of p-values (in this case, f0 is simply the uniform den-
sity over [0, 1]) this option is seldom used in practice. This
comes from the fact that most H1 p-values are concen-
trated near 0 while H0 ones are uniformly distributed
between 0 and 1. Working with the rough p-values will
hence favor estimation of f0 over f1 which is precisely our
opposite goal. In order to overcome this problem it is then
classical to introduce a transformation that will allow us
to "zoom" on the interesting part of the distribution. We
propose here to consider two such transformations:

Probit transformation
X = probit(P) = -1(P)

where P is a p-value and F is the cumulative distribution
function of the normal distribution. If P ~  ([0, 1]), X
follows a normal distribution and

Logarithmic transformation
X = log10(P)

If P ~  ([0, 1]) the - log(10) × X has an exponential dis-
tribution and we easily get that
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Association studies: estimated densities for the Hardy-Weinberg test applied to a set of 74,067 SNPsFigure 7
Association studies: estimated densities for the Hardy-Weinberg test applied to a set of 74,067 SNPs. DNA 
were genotyped using a 100 K Affymetrix chip. The algorithm used for making genotype calls has been previously described by 
Affymetrix. Local FDR is computed from the p-values resulting from an Hardy-Weinberg equilibrium test applied to each SNP. 
Note that f0 is almost perfectly overlapping f since 0 is close to 1.
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Two assets of this transformation are to give more weight
to small p-values and to be easier to interpret than the pro-
bit transformation (X = -2 correspond to P = 10-2, X = -5
to P = 10-5).

Estimation of 0
For all 0 § §  1 we have

where T is either the probit or the log10 function. We
hence get

We have q0 = 1 -  but q1 is unknown. We notice that the
higher , the closer to 0 q1 will be. As we can estimate q
from a sample X1,..., Xn by

we obtain the following (conservative) estimator:

which satisfies 0 =  + O(q1).

It is therefore necessary to find a tradeoff between the

magnitude of the error O(q1) (lowest for  = 1.0) and the

quality of the estimation  (best for  = 0.0).

Storey [17] first proposed to use  = 0.5 which appears to
be a good choice in most cases.

Determination of the bandwidth
About the choice of the bandwidth, our first approach
consists in selecting h as if we were applying a kernel esti-
mation over the whole sample.

For that matter, the literature proposes many methods
already implemented in R: biased and unbiased cross-val-
idation estimations (bcv and ucv), method using estima-
tion of derivatives from [18] (sj-ste for solve-the-equation
and st-dpi for direct-plugin) and, in two simple heuristics
in the special case of Gaussian kernels: nrd0 from [19]
(page 48) and nrd from [20].

Estimation of f1: Convolution and Fast Fourier Transforms
If we have an observed sample x1,..., xn with weights 1,...,
n we get for all x  �

where  = i i and K states for the kernel function.

The naive computation of all  (xi) requires a quadratic

complexity. Fortunately, [21] introduced an algorithm
(later modified by [22]) based on Fast Fourier Transform
(FFT, see [23] chapter 12) allowing to perform the same
computation with a far more efficient linear complexity
(see [23] chapter 13 for more details on fast discrete con-
volution through FFT).

kerfdr and discrete p-values
In developing their original FDR-control procedure, Ben-
jamini and Hochberg [2] assumed that p-values testing
true null hypotheses are independent observations from a
continuous uniform distribution over [0,1]. A large family
of succeeding methods requires the same conditions, to
which kerfdr belongs. However, how the performance of
these methods are affected when the assumption of conti-
nuity or uniformity are violated has not been often con-
sidered, contrary to the assumption of independence (see
[24] and [25] for instance). Discrete p-values that become
more frequently encountered in practice as categorical
genomic data, such as Single-Nucleotide-Polymorphisms,
Comparative-Genomic-Hybridation and Copy-Number-
Variation become more widely available, clearly violate
the assumption of uniformity and introduces instability
into FDR-like and local FDR estimates.

In kerfdr, 0 and the shape of f0 are parameters of the
method. Since with discrete p-values, correct estimators of
0 and f0 are tricky to obtain with classical methods
included in the package, it is still feasible to use methods
more adapted to each situation, such as those proposed by
[26-29], in order to pre-compute 0 and/or f0 before run-
ning kerfdr and to minimize the problems generated by
discrete p-values. However, how our algorithm behaves
exactly in this context has still to be considered along with
its extension dependent data.

For instance in Figure 7, the short decrease in local FDR
observed for the p-values near 1 should be interpreted as
a nuisance effect that can happen due to a more severe dis-
creteness of p-values near 1 (here computed by Monte-
Carlo simulations) and hence should be ignored by the
user.
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