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Abstract
In this paper we study the following second-order periodic system:

x′′ + V ′(x) + p(x)f (t) = 0,

where V(x) has a singularity. Under some assumptions on the V(x), p(x) and f (t), by
Ortega’s small twist theorem, we obtain the existence of quasi-periodic solutions and
boundedness of all the solutions.
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1 Introduction andmain result
In the early s, Littlewood [] asked whether or not the solutions of the Duffing-type
equations,

x′′ + g(x, t) = , (.)

are bounded for all time, i.e., whether there are resonances that might cause the amplitude
of the oscillations to increase without bound.
The first positive result of boundedness of solutions in the superlinear case (i.e., g(x,t)

x →
∞ as |x| → ∞) was due to Morris []. By means of KAM theorem, Morris proved that
every solution of differential equation (.) is bounded if g(x, t) = x – p(t), where p(t)
is piecewise continuous and periodic. This result relies on the fact that the nonlinearity
x can guarantee the twist condition of KAM theorem. Later, several authors (see [, ])
improved the result of (.) and obtained a similar result for a large class of superlinear
functions g(x, t).
When g(x, t) satisfies

 ≤ k ≤ g(x, t)
x

≤ K ≤ +∞, ∀x ∈ R,

i.e., differential equation (.) is semilinear, similar results also hold. But the proof is more
difficult since there may be a resonant case.
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Liu [] studied the following equation:

(
�p

(
x′))′ + α�p

(
x+

)
+ β�p

(
x–

)
= f (x, t),

where f (x, t) is π-periodic in t and has limits f±(t) as x → ±∞. Under some reasonable
assumptions on f (x, t), Liu [] proved the existence of quasi-periodic solutions and the
boundedness of solutions. Later, Cheng and Xu [] studied a more general equation

(
�p

(
x′) +�

(
x′))′ + α�p

(
x+

)
+ β�p(x–) = φ(x, t), (.)

where φ(x, t) is π-periodic in t. They defined a new function φ̄(t,x) = φ(t,x)
|x|p––σ , where σ ∈

(,p), φ̄(t,x) has limits φ±(t) and the similar property to f (x, t) in []. Then the authors
proved the boundedness of solutions for (.). We observe that φ(x, t) in [] is unbounded
while f (x, t) in [] is bounded and that is the major difference between [] and []. The
idea in [, ] is to change the original problem to a Hamiltonian system and then use a
twist theorem of area-preserving mapping to the Poincaré map.
Recently, Capietto et al. [] studied the following equation:

x′′ +V ′(x) = F(x, t), (.)

where F(x, t) = p(t) is a π-periodic function, V (x) = 
x


+ +


(–x–)ν

– , x+ =max{x, }, x– =
max{–x, } and ν is a positive integer. Under the Lazer-Leach assumption that

 +



∫ π


p(t + θ ) sin θ dθ > , ∀t ∈ R, (.)

they proved the boundedness of solutions and the existence of a quasi-periodic solution
by the Moser twist theorem. It was the first time that the equation of the boundedness of
all solutions was treated in case of a singular potential.
Motivated by the papers [–], we observe that F(x, t) = p(t) in (.) is smooth and

bounded, so a natural question is to find sufficient conditions on F(x, t) such that all solu-
tions of (.) are bounded when F(x, t) is unbounded. The purpose of this paper is to deal
with this problem.
We consider the following equation:

x′′ +V ′(x) + p(x)f (t) = , (.)

where

V =


x+ +


 – x–

– , x > –. (.)

In order to state our main results, we give some notations and assumptions. Let f (t) be
a π-periodic function and

lim
x→+∞

p(x)
|x|α = , P(x) =

∫ x


p(s)ds, (.)
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where  < α < . We suppose that the following Lazer-Leach assumption holds:

∫ π


f (t + θ )(sin θ )+α dθ > , ∀t ∈ R. (.)

Our main result is the following theorem.

Theorem  Under assumptions (.)-(.), all the solutions of (.) are defined for all t ∈
(–∞, +∞), and for each solution x(t), we have supt∈R(|x(t)| + |x′(t)|) < +∞.

The main idea of our proof is acquired from []. The proof of Theorem  is based on a
small twist theorem due to Ortega []. Hypotheses (.)-(.) of our theorem are used to
prove that the Poincaré mapping of (.) satisfies the assumptions of Ortega’s theorem.
Moreover, we have the following theorem on solutions of Mather type.

Theorem  Assume that f (t) ∈ C satisfies (.); then, there is ε >  such that for any ω ∈
( 
π
, 

π+ε
), equation (.) has a solution (xω(t),x′

ω(t)) ofMather type with rotation numberω.
More precisely,
Case : ω = p

q is rational. The solutions (xω(t + iπ ),x′
ω(t + iπ )),  ≤ i ≤ q – , are inde-

pendent periodic solutions of periodic qπ ;moreover, in this case,

lim
q→∞min

t∈R
(∣∣xω(t)

∣∣ + ∣∣x′
ω(t)

∣∣) = +∞.

Case : ω is irrational.The solution (xω(t),x′
ω(t)) is either a usual quasi-periodic solution

or a generalized one.

2 Proof of the theorem
2.1 Action-angle variables and some estimates
Observe that (.) is equivalent to the following Hamiltonian system:

x′ =
∂H
∂y

, y′ = –
∂H
∂x

(.)

with the Hamiltonian function

H(x, y, t) =


y +V (x) + P(x)f (t).

In order to introduce action and angle variables, we first consider the auxiliary au-
tonomous equation

x′ = y, y′ = –V ′(x), (.)

which is an integrable Hamiltonian system with the Hamiltonian function

H(x, y, t) =


y +V (x).

The closed curves H(x, y, t) = h >  are just the integral curves of (.).

http://www.journalofinequalitiesandapplications.com/content/2013/1/476
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Denote by T(h) the time period of the integral curve �h of (.) defined byH(x, y, t) = h
and by I the area enclosed by the closed curve �h for every h > . Let – < –αh <  < βh be
such that V (–αh) = V (βh) = h. It is easy to see that

I(h) = 
∫ βh

–αh

√

(
h –V (s)

)
ds, ∀h > ,

and

T(h) = I ′(h) = 
∫ βh

αh

√
(h –V (s))

ds, ∀h > .

By a direct computation, we get

I(h) = 
∫ βh



√

(
h –V (s)

)
ds + 

∫ 

–αh

√

(
h –V (s)

)
ds

= πh + 
∫ αh



√

(
h –V (–s)

)
ds,

so

T(h) = π +
∫ αh



√
(h –V (–s))

ds.

We then have

I(h) = I–(h) + I+(h), T(h) = T–(h) + T+(h),

where

I–(h) = 
∫ –αh



√

(
h –V (s)

)
ds, I+(h) = πh,

T–(h) = 
∫ –αh



√
(h –V (–s))

ds, T+(h) = π .

We now give the estimates on the functions I– and T–.

Lemma  We have

hn
∣∣∣∣dnT–(h)

dhn

∣∣∣∣ ≤ Ch–

 ,

and

hn
∣∣∣∣dnI–(h)

dhn

∣∣∣∣ ≤ Ch

 ,

where n = , , . . . , , h → +∞. Note that here and below we always use C, C or C′
 to

indicate some constants.
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Proof Now we estimate the first inequality. We choose V (s)
h = η as the new variable of

integration, then we have

T–(h) =
∫ 

–αh

√
(h –V (s))

ds =
∫ 



√
h

V ′(s(η,h))
√

( – η)
dη.

Since V (s) = 
–s –  and V (s)

h = η, we have s =
√

ηh
+ηh . By a direct computation, we have

V ′(s) =
s

( – s)
=

√

ηh( + ηh)√
 + ηh

,

then we get

T (n)
– (h) =

(–
 )!

(– 
 – n)!

∫ 



ηn√
η( – η)( + ηh)  +n

dη, n = , , . . . , .

When ≤ η ≤ h– and h is sufficient large, there exits C such that –η > C, so we have

∫ h–



ηn√
η( – η)( + ηh)  +n

dη ≤ C
∫ h–



ηn√
η( – η)

dη

≤ C
C

∫ h–


ηn– 

 dη ≤ Ch–

 –n. (.)

Since h– 
 ≤ η ≤ , we have

h

 <  + h


 ≤  + ηh≤  + h,

then
∫ 

h–



ηn√
η( – η)( + ηh)  +n

dη ≤ C
∫ 

h–



ηnhn√
η( – η)hn( + ηh)n( + ηh) 

dη

≤ C
∫ 

h–



√
η( – η)hn( + ηh) 

dη

≤ C
∫ 

h–



√
η( – η)hnh 


dη

≤ Ch–

 –n

∫ 



√
η( – η)

dη ≤ Ch–

 –n. (.)

Observing that there is C >  such that
√
 – η ≥ C when h– ≤ η ≤ h– 

 and h → +∞,
we have

∫ h–



h–

ηn√
η( – η)( + ηh)  +n

dη

≤ Ch–

 –n

∫ h–



h–

√
η( – η)η 


dη

http://www.journalofinequalitiesandapplications.com/content/2013/1/476


Jiang et al. Journal of Inequalities and Applications 2013, 2013:476 Page 6 of 15
http://www.journalofinequalitiesandapplications.com/content/2013/1/476

≤ C

C
h–


 –n

∫ h–



h–


η dη =

C

C
h–


 –n


η

∣∣∣h–



h–

=
C

C
h–


 –n

(
h – h



) ≤ Ch–


 –n. (.)

By (.)-(.) we have T (n)
– (h) ≤ Ch– 

 –n, n = , , . . . , .
The proof of the second inequality is similar to that of the first one, so we only give a

brief proof. We choose V (s)
h = η as the new variable of integration, so we have

∂s
∂h

=
η

V ′ , s =

√
ηh

 + ηh

and

V ′(s) =
s

( – s)
=

√

ηh( + ηh)√
 + ηh

.

By a direct computation, we have

I–(h) = 
∫ 

–αh

√

(
h –V (s)

)
ds = h

∫ 



√
( – η)

√
η( + ηh) 

dη. (.)

By (.), we can easily get

I(n)– (h) = I(n)– (h) + I(n)– (h) = n
(–

 )!
(– 

 – n + )!

∫ 



√
( – η)√

η

ηn–

( + ηh)  +n–
dη

+
(–

 )!
(– 

 – n)!
h

∫ 



√
( – η)√

η

ηn

( + ηh)  +n
dη, (.)

where n = , , . . . , .
By a similar way to that in estimating T (n)

– (h), we get

I(n)– (h)≤ Ch

 –n, I(n)– (h)≤ Ch


 –n,

which means that

I(n)– (h)≤ Ch

 –n, n = , , . . . , .

Thus Lemma  is proved. �

Remark  It follows from the definitions of T+(h), T–(h) and Lemma  that

lim
h→+∞

T–(h) = , lim
h→+∞

T+(h) = π .

Thus the time period T(h) is dominated by T+(h) when h is sufficiently large. From the
relation betweenT–(h) and I–(h), we know I(h) is dominated by I+(h) when h is sufficiently
large.

http://www.journalofinequalitiesandapplications.com/content/2013/1/476
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Remark  It also follows from the definition of I(h), I–(h), I+(h) and Remark  that
∣∣∣∣hn dnI(h)

dhn

∣∣∣∣ ≤ CI(h) for n≥ .

Remark  Note that h = h(I) is the inverse function of I. By Remark , we have
∣∣∣∣In dnh(I)

dIn

∣∣∣∣ ≤ Ch(I) for n≥ .

We now carry out the standard reduction to the action-angle variables. For this purpose,
we define the generating function S(x, I) =

∫
C

√
(h –V (s))ds, where C is the part of the

closed curve �h connecting the point on the y-axis and point (x, y).
We define the well-know map (θ , I) → (x, y) by

y =
∂S
∂x

(x, I), θ =
∂S
∂I

(x, I),

which is symplectic since

dx∧ dy = dx∧ (Sxx dx + SxI dI) = SxI dx∧ dI,

dθ ∧ dI = (SIx dx + SII dI)∧ dI = SIx dx∧ dI.

From the above discussion, we can easily get

θ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

π
T(h(x,y))

(T–(h(x,y)) + arcsin x√
(h(x,y))

) if x > , y > ,

π
T(h(x,y))

(T–(h(x,y)) + π + arcsin x√
(h(x,y))

) if x > , y < ,

π
T(h(x,y))

(
∫ x
–αh

√
(h(x,y)+–(–s)–)

ds) if x < , y > ,

π
T(h(x,y))

(T(h(x, y)) –
∫ x
–αh

√
(h(x,y)+–(–s)–)

ds) if x < , y < 

(.)

and

I(x, y) = I
(
h(x, y)

)
= 

∫ βh

–αh

√

(
h(x, y) –V (s)

)
ds. (.)

In the new variables (θ , I), system (.) becomes

θ ′ =
∂H
∂I

, I ′ = –
∂H
∂θ

, (.)

where

H(θ , I, t) = πh(I) + πP
(
x(I, θ )

)
f (t). (.)

In order to estimate πP(I, θ ), we need the estimate on the functions x(I, θ ).

Lemma  For I sufficient large and –αh ≤ x < , the following estimates hold:
∣∣∣∣In ∂nx(I, θ )

∂In

∣∣∣∣ ≤ c
√
I for  ≤ n≤ .

http://www.journalofinequalitiesandapplications.com/content/2013/1/476
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The lemma was first proved in [], later Capietto et al. [] gave a different proof; using
the method of induction-hypothesis, Jiang and Fang [] also gave another proof. So, for
concision, we omit the proof.

2.2 New action and angle variables
Now we are concerned with Hamiltonian system (.) with the Hamiltonian function
H(θ , I, t) given by (.). Note that

I dθ –H dt = –(H dt – I dθ ).

This means that if one can solve I from (.) as a function of H (θ and t as parameters),
then

dH
dθ

= –
∂I
∂t

(t,H , θ ),
dt
dθ

=
∂I
∂H

(t,H , θ ) (.)

is also a Hamiltonian system with the Hamiltonian function I and now the action, angle
and time variables are H , t and θ .
From (.) and Lemma , we have

∂H
∂I

→  as I → +∞.

So, we assume that I can be written as

I = I
(
H
π

+ R(H , t, θ )
)
,

where R satisfies |R| < H
π
. Recalling that h is the inverse function of I, we have

H
π

+ R(H , t, θ ) = h(I),

which implies that

R(H , t, θ ) = P
(
x(I, θ )

)
f (t).

As a consequence, R is implicitly defined by

R(H , t, θ ) = P
[
x
(
I

(
H
π

+ R(H , t, θ )
)
, θ

)]
f (t). (.)

Now we give the estimates of R. By a similar way to that in estimating Lemma . in [],
we have the following lemma.

Lemma  The function R(H , t, θ ) satisfies the following estimates:

∣∣∣∣∂m+lR(H , t, θ )
∂Hm ∂tl

∣∣∣∣ ≤H
α+
 for m + l ≤ .

http://www.journalofinequalitiesandapplications.com/content/2013/1/476
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Moreover, by the implicit function theorem, there exists a function R = R(t,H , θ ) such
that

R(H , t, θ ) = P
(
x(H , θ )

)
f (t) + R(H , t, θ ).

Since

R(H , t, θ ) = R(H , t, θ ) – P
(
x(H , θ )

)
f (t)

= P
{
x
[
I

(
H
π

+ R(H , t, θ )
)
, θ

]}
f (t) – P

(
x(H , θ )

)
f (t)

=
∫ 


p
{
x
[
H + s(πR + I–), θ

]}

· ∂x
∂I

(
H + s(πR + I–), θ

) · (πR + I–)f (t)ds.

By Lemmas  and , we have the estimates on R(H , t, θ ).

Lemma  | ∂k+lR(H,t,θ )
∂kH ∂ l t | <H α

 for k + l ≤ .

For the estimate of I(H
π
+R), we need the estimate on I–(Hπ +R). By Lemma  and noticing

that |R| < H
π
, we have the following lemma.

Lemma  | ∂k+l I–(Hπ +R)
∂kH ∂ l t | <H 

 for k + l ≤ .

Now the new Hamiltonian function I = I(t,H , θ ) is written in the form

I = I
(
H
π

+ R
)
= I+

(
H
π

+ R
)
+ I–

(
H
π

+ R
)

=H + πR(H , t, θ ) + I–
(
H
π

+ R
)

=H + πP
(
x(H , θ )

)
f (t) + πR(H , t, θ ) + I–

(
H
π

+ R
)
.

System (.) is of the form

⎧⎨
⎩

dt
dθ

= ∂I
∂H =  + π ∂x

∂H (H , θ )p(x(H , θ ))f (t) + π
∂R
∂H (H , t, θ ) + ∂I–

∂H (H , t, θ ),
dH
dθ

= – ∂I
∂t = –πP(x(θ ,H))f ′(t) – π

∂R
∂t (t,H , θ ) – ∂I–

∂t (H , t, θ ).
(.)

Introduce a new action variable ρ ∈ [, ] and a parameter ε >  by H = ε–ρ . Then H �
⇔  < ε  . Under this transformation, system (.) is changed into the form

⎧⎨
⎩

dt
dθ

= ∂I
∂H =  + π ∂x

∂H (H , θ )p(x(H , θ ))f (t) + π
∂R
∂H (H , t, θ ) + ∂I–

∂H (H , t, θ ),
dρ

dθ
= – ∂I

∂t = –ε[πP(x(θ ,H))f ′(t) + π
∂R
∂t (H , t, θ ) + ∂I–

∂t (H , t, θ )],
(.)

which is also a Hamiltonian system with the new Hamiltonian function

�(t,ρ, θ ; ε) = ρ + πε–P
(
x
(
θ , ε–ρ

))
f (t) + πε–R

(
ε–ρ, θ , t

)
+ ε–I–

(
ε–ρ, θ , t

)
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/476
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Obviously, if ε  , the solution (t(θ , t,ρ),ρ(θ , t,ρ)) of (.) with the initial data
(t,ρ) ∈ R × [, ] is defined in the interval θ ∈ [, π ] and ρ(θ , t,ρ) ∈ [  , ]. So, the
Poincaré map of (.) is well defined in the domain R× [, ].

Lemma  ([] Lemma .) The Poincaré map of (.) has the intersection property.

The proof is similar to the corresponding one in [].
For convenience, we introduce the notation Ok() and ok(). We say a function f (t,ρ,

θ , ε) ∈Ok() if f is smooth in (t,ρ) and for k + k ≤ k,

∣∣∣∣ ∂k+k

∂tk∂ρk
f (t,ρ, θ , ε)

∣∣∣∣ ≤ C,

for some constant C >  which is independent of the arguments t, ρ , θ , ε.
Similarly, we say f (t,ρ, θ , ε) ∈ ok() if f is smooth in (t,ρ) and for k + k ≤ k,

lim
ε→

∣∣∣∣ ∂k+k

∂tk∂ρk
f (t,ρ, θ , ε)

∣∣∣∣ = ,

uniformly in (t,ρ, θ ).

2.3 Poincaré map and twist theorems
Wewill useOrtega’s small twist theorem to prove that the Poincarémap P has an invariant
closed curve if ε is sufficiently small. Let us first recall the theorem in [].

Lemma  (Ortega’s theorem) Let A = S
 × [a,b] be a finite cylinder with universal cover

A =R× [a,b]. The coordinate in A is denoted by (τ ,ν). Consider the map

f : A→ S×R.

We assume that the map has the intersection property. Suppose that f : A → R × R,
(τ,ν)→ (τ,ν) is a lift of f and it has the form

⎧⎨
⎩τ = τ + Nπ + δl(τ,ν) + δg̃(τ,ν),

ν = ν + δl(τ,ν) + δg̃(τ,ν),
(.)

where N is an integer, δ ∈ (, ) is a parameter. The functions l, l, g̃ and g̃ satisfy

l ∈ C(A), l(τ,ν) > ,
∂l
∂ν

(τ,ν) > , ∀(τ,ν) ∈ A,

l(·, ·), g̃(·, ·, ε), g̃(·, ·, ε) ∈ C(A).
(.)

In addition, we assume that there is a function I : A→ R satisfying

I ∈ C(A),
∂I
∂ν

(τ,ν) > , ∀(τ,ν) ∈ A (.)

and

l(τ,ν) · ∂I
∂τo

(τ,ν) + l(τ,ν) · ∂I
∂ν

(τ,ν) = , ∀(τ,ν) ∈ A. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/476
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Moreover, suppose that there are two numbers ã and b̃ such that a < ã < b̃ < b and

IM(a) < Im(ã)≤ IM(ã) < Im(b̃) ≤ IM(b̃) < Im(b), (.)

where

IM(r) =max
ρ∈S

I(ρo, τo), Im(r) =min
ρ∈S

I(ρo, τo).

Then there exist ε >  and � >  such that if δ < � and

∥∥g̃(·, ·, ε)∥∥C(A) +
∥∥g̃(·, ·, ε)∥∥C(A) < ε,

the mapping f has an invariant curve in �A, the constant ε is independent of δ.

We make the ansatz that the solution of (.) with the initial condition (t(),ρ()) =
(t,ρ) is of the form

t = t + θ + ε–α�(t,ρ, θ ; ε), ρ = ρ + ε–α�(t,ρ, θ ; ε).

Then the Poincaré map of (.) is

P : t = t + π + ε–α�(t,ρ, π ; ε), ρ = ρ + ε–α�(t,ρ, π ; ε). (.)

The functions � and � satisfy

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

� = πεα– ∫ θ


∂x
∂H (ε

–ρ, θ )p(x(ε–ρ, θ ))f (t)dθ

+ πεα– ∫ θ

 (
∂R
∂H (ε–ρ, t, θ ) + ∂I–

∂H (ε–ρ, t, θ ))dθ ,

� = –πεα+ ∫ θ

 P(x(ε–ρ, θ ))f ′(t)dθ

– εα+ ∫ θ

 (π
∂R
∂t (ε

–ρ, t, θ ) – ∂I–
∂t (ε

–ρ, t, θ ))dθ ,

(.)

where t = t + θ + ε–α�, ρ = ρ + ε–α�. By Lemmas ,  and , we know that

|�| + |�| ≤ C for θ ∈ [, π ]. (.)

Hence, for ρ ∈ [, ], we may choose ε sufficiently small such that

ρ + ε� ≥ ρ


≥ 


. (.)

Moreover, we can prove that

�,� ∈ O(). (.)

Similar to the way of estimating R, by a direct calculation, we have the following lemma.
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Lemma  The following estimates hold:

P
(
x
(
ε–ρ, θ

))
– P

(
x
(
ε–ρ, θ

)) ∈ ε–αO(),

∂x
∂H

(
ε–ρ, θ

)
p
(
x
(
ε–ρ, θ

))
–

∂x
∂H

(
ε–ρ, θ

)
p
(
x
(
ε–ρ, θ

)) ∈ ε–αO().

Now we turn to give an asymptotic expression of the Poincaré map of (.), that is, we
study the behavior of the functions � and � at θ = π as ε → . In order to estimate �

and �, we need to introduce the following definition and lemma. Let

�+(I) =meas
{
θ ∈ [,π ],x(H, θ ) > 

}
, �–(I) = T –�+(I),

where H = ε–ρ.

Lemma 

�+(I) = π + εO(), �–(I) = εO().

Proof This lemma was proved in [], so we omit the details. �

For estimate � and �, we need the estimates of x and xH .
We recall that when x < , we have

∣∣x(H, θ )
∣∣ =O(),

∣∣xH(H, θ )
∣∣ = εO().

When x > , by the definition of θ , we have

arcsin
x(H, θ )√

h
=
T(h)

π
θ –

T–(h)


= θ + εO(),

which yields that

x(H, θ ) =
√
H

π
sin θ +O(),

xH (H, θ ) =

√


Hπ
sin θ + εO().

Now we can give the estimates of � and �.

Lemma  The following estimates hold true:

�(t,ρ, π ; ε) =
(

π

ρ

) α–


∫ π


(sin θ )+αf (t + θ )dθ + o(),

�(t,ρ, π ; ε) = –π
–α
 (ρ)

α+


∫ π


(sin θ )+αf ′(t + θ )dθ + o()

for ε → .
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Proof Firstly we consider �. By Lemmas , ,  and (.), we have

�(t,ρ, π ; ε) = πεα–
∫ π



∂x
∂H

(
ε–ρ, θ

)
p
(
x
(
ε–ρ, θ

))
f (t)dθ

+ εα–
∫ π


π

∂R

∂H
(
x
(
ε–ρ, θ

)
, t

)
+

∂I–
∂H

(
x
(
ε–ρ, θ

)
, t

)
dθ

= πεα–
∫ π



∂x
∂H

(
ε–ρ, θ

)
p
(
x
(
ε–ρ, θ

))
f (t + θ )dθ + εαO()

= πεα–
∫

�+

∂x
∂H

(
ε–ρ, θ

)
p
(
x
(
ε–ρ, θ

))
f (t + θ )dθ

+ πεα–
∫

�–

∂x
∂H

(
ε–ρ, θ

)
p
(
x
(
ε–ρ, θ

))
f (t + θ )dθ + εαO().

Since limx→+∞ p(x)
|x|α =  and ε →  means x→ ∞, we have

πεα–
∫

�+

∂x
∂H

(
ε–ρ, θ

)
p
(
x
(
ε–ρ

)
, θ

)
f (t + θ )dθ

= πεα–
∫

�+

∂x
∂H

(
θ , ε–ρ

)|x|αf (t + θ )dθ + εαO(). (.)

By the measure of �–, we have

πεα–
∫

�–

∂x
∂H

(
ε–ρ, θ

)
p
(
x
(
ε–ρ, θ

))
f (t + θ )dθ = εαO(). (.)

By (.) and (.), we have

�(t,ρ, π ; ε) = πεα–
∫

�+

∂x
∂H

(
θ , ε–ρ

)|x|αf (t + θ )dθ + εαO()

= πεα–
∫ π



∂x
∂H

(
θ , ε–ρ

)|x|αf (t + θ )dθ + εαO()

=
(

π

ρ

) –α


∫ π


(sin θ )α+f (t + θ )dθ + o().

Now we consider �. By Lemmas , ,  and (.), we have

�(t,ρ, π ; ε) = –πεα+
∫ π


P
(
x
(
θ , ε–ρ

))
f ′(t)dθ

– εα+
∫ π



[
π

∂R

∂t
(
x
(
θ , ε–ρ

)
, t

)
+

∂I–
∂t

(
x
(
θ , ε–ρ

)
, t

)]
dθ

= –πεα+
∫ π


P
(
x
(
θ , ε–ρ

))
f ′(t + θ )dθ + εαO()

= –πεα+
∫

�+

P
(
x
(
θ , ε–ρ

))
f ′(t + θ )dθ

– πεα+
∫

�–

P
(
x
(
θ , ε–ρ

))
f ′(t + θ )dθ + εαO().
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By (.) and ε →  means x → ∞, we have

–πεα+
∫

�+

P
(
x
(
θ , ε–ρ

))
f ′(t + θ )dθ

= –
πεα+

α + 

∫
�+

∣∣x(θ , ε–ρ
)∣∣αx(θ , ε–ρ

)
f ′(t + θ )dθ + εαO(). (.)

By the measure of �–, we have

–πεα+
∫

�–

P
(
x
(
θ , ε–ρ

))
f ′(t + θ )dθ = εαO(). (.)

By (.) and (.), we have

� = –
πεα+

α + 

∫
�+

∣∣x(θ , ε–ρ
)∣∣αx(θ , ε–ρ

)
f ′(t + θ )dθ + εαO()

= –
πεα+

α + 

∫ π



∣∣x(θ , ε–ρ
)∣∣αx(θ , ε–ρ

)
f ′(t + θ )dθ + εαO()

= –


α + 
π

–α
 (ρ)

α+


∫ π


(sin θ )+αf ′(t + θ )dθ + o().

Thus Lemma  is proved. �

2.4 Proof of Theorem 1
Let

�(t,ρ) =
(

π

ρ

) –α


∫ π


(sin θ )+αf (t + θ )dθ ,

�(t,ρ) = –


α + 
π

–α
 (ρ)

α+


∫ π


(sin θ )+αf ′(t + θ )dθ .

Then there are two functions φ and φ such that the Poincaré map of (.), given by
(.), is of the form

P : t = t + π + ε–α�(t,ρ) + ε–αφ,

ρ = ρ + ε–α�(t,ρ) + ε–αφ,
(.)

where φ,φ ∈ o().
Since

∫ π

 p(t + θ ) sin θ dθ > , ∀t ∈ R, we have

� > ,
∂�

∂ρ
�= .

Let

L =
ρ
– +α


∫ π

 (sin θ )+αf (t + θ )dθ
.
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Then

∂L
∂t

�(t,ρ) +
∂L
∂ρ

�(t,ρ) = .

The other assumptions of Ortega’s theorem are easily verified. Hence, there is an invari-
ant curve of P in the annulus (t,ρ) ∈ S × [, ], which implies the boundedness of our
original equation (.). Then Theorem  is proved.

2.5 Proof of Theorem 2
We apply Aubry-Mather theory. By TheoremB in [] and themonotone twist property of
the Poincaré map P guaranteed by ∂�

∂ρ
< , it is straightforward to check that Theorem 

is correct.
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