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The kinetic temperature in complex plasmas is often measured using particle tracking velocimetry.

Here, we introduce a criterion which minimizes the probability of faulty tracking of particles with

normally distributed random displacements in consecutive frames. Faulty particle tracking results

in a measurement bias of the deduced velocity distribution function and hence the deduced kinetic

temperature. For particles with a normal velocity distribution function, mistracking biases the

obtained velocity distribution function towards small velocities at the expense of large velocities,

i.e., the inferred velocity distribution is more peaked and its tail is less pronounced. The kinetic

temperature is therefore systematically underestimated in measurements. We give a prescription to

mitigate this type of error. [http://dx.doi.org/10.1063/1.4864326]

I. INTRODUCTION

Dusty particles in complex plasmas are usually

described by two different temperatures: the surface temper-

ature of the dust particles and the kinetic temperature which

describes the chaotic motion of the dust particles. Accurate

knowledge of the kinetic temperature is essential for heat-

transfer studies in complex plasmas.1–3 Complex plasma is

also used to study phase transition in crystalline structures3–5

where correct measurements of the kinetic temperature are

important. Usually, the kinetic temperature is measured by

means of high-speed cameras which record projections of

dust particle locations on the image planes of the cameras.

Then 2D projections of the trajectories can be inferred from

these images. If two or more cameras are used, 3D trajecto-

ries can be reconstructed.6–10 This method is called particle

tracking velocimetry (PTV). It is used in fluid dynamics to

study flows,8,10–14 in combustion physics,15,16 in fusion

research,17–19 and in complex plasma physics.9,20–22

There are several types of errors which may occur dur-

ing PTV measurements, for example, errors related to parti-

cle acceleration,23,24 uncertainties in particle positions due to

finite camera resolution,23,25 or wrongly reconstructed parti-

cle locations as a result of measurement ambiguities.10 In

this paper, we study the problem of assigning trajectories to

particles, i.e., finding correspondence between indistinguish-

able particles in consecutive frames which is also a source of

errors. Velocity distribution function measurements require

correct tracking of the particles leading to correct trajectory

assignments. However, we will show that incorrect tracking

of particles will lead to deformation of the velocity distribu-

tion function and hence to significant errors in kinetic

temperature measurements as well as measurements of other

quantities that depend on the velocity distribution function.

If the particles were distinguishable, any given particle could

be uniquely identified in the next frame, and hence all

particles in one frame could be matched to a particle in the

next frame. However, if the particles are indistinguishable, it

is not possible to identify a given particle in one frame

uniquely in the next frame. Hence, mismatches of particles

are bound to occur. This will lead faulty trajectory and veloc-

ity assignments of the mismatched particles. Therefore, the

velocity distribution function will be distorted. We will

show that the measured velocity distribution function will

be biased towards smaller velocities at the expense of

larger velocities, leading to a bias towards lower kinetic

temperatures.

The results demonstrated in this paper are applicable not

only to complex plasmas but also to colloids26–29 and granu-

lar materials.30–34

In Sec. II, we formulate the problem and introduce a

matching criterion as the basis for its solution which we pres-

ent in Sec. III. In Sec. IV, we derive analytical expressions

for the probabilities of correct tracking of two particles. In

Sec. V, we derive analytical expressions for the biased distri-

bution of their random displacements caused by faulty track-

ing. These results are tested numerically in Sec. VI, where

we study the probability of mistracking and biasing the dis-

tribution function for a large number of particles. Section

VII concludes the paper.

II. PROBLEM FORMULATION AND MATCHING
CRITERION

Let us consider a group of indistinguishable particles in

a volume viewed by several cameras. The cameras are

synchronized and take a series of 2D images of projections

of particle positions on their image planes. For simplicity,

we assume here that the particle positions in 3D can be

unambiguously reconstructed from a set of simultaneously

acquired 2D camera images which we refer to as frame. To

deduce the particle trajectories, particles in consecutive

frames have to be matched. If they were distinguishable, this
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would be easy. But since they are indistinguishable, it is

impossible to identify any given particle in the next frame.

The problem of particle tracking is formulated as a search of

3D trajectories of individually moving particles from a

sequence of frames. We assume that no particles leave or

enter the observation volume. Particle trajectories can be

deduced from coordinates in consecutive frames. In the case

of regular motion, one can predict the coordinates of the par-

ticles in the next frame from their deduced velocities in pre-

vious frames and aid the correct matching of particles in

consecutive frames. The tracking problem arises when the

particles randomly deviate from their predicted trajectories.

A possible tracking error can be especially significant when

the random deviation is comparable with or larger than the

inter-particle distance. In this paper we give a particle match-

ing criterion to ensure the statistically optimal tracking of

chaotically moving particles for any inter-particle distance.

We derive expressions for the bias of statistical parameters

of measured trajectories which deviate from the real

trajectories.

Further analysis deals with the chaotic component of the

particle motion, whereas we subtract out the regular compo-

nent of the motion. The regular component can be found by

extrapolation of particle coordinates from their coordinates

in previous frames and their instantaneous velocities in the

previous frame. Random differences between extrapolated

particle positions and actual particle positions are referred to

as jumps between frames. These jumps make up the chaotic

component of the particle motion.

III. MATCHING CRITERION

When jumps are much smaller than inter-particle dis-

tances, a particle trajectory can be efficiently reconstructed

just by choosing the particle that is closest to its predicted

position. However, if the particle jump size is comparable to

the inter-particle distance, such a simple assignment is not

possible. For jumps of arbitrary length, in particular, large

jumps comparable to the inter-particle distance, we formu-

late the matching condition as a minimization problem as

follows. We consider a normal isotropic distribution of par-

ticle jumps

f ðsÞ ¼ 1

D
ffiffiffiffiffiffi
2p
p exp � s2

2D2

� �
; (1)

where s is the projected displacement from the predicted par-

ticle position. D2 is its variance and scales inversely with the

frame rate of detection cameras.

N particles in two consecutive frames can be matched in

N! possible ways. The probability density of one particular

way is the product of the probability densities of jumps for

all N particles. Hence, the probability density Pk of a particu-

lar way k becomes

Pk ¼
1

D
ffiffiffiffiffiffi
2p
p

� �N

exp �

XN

i¼1

X
j¼x;y;z

s2
ijk

2D2

0
BB@

1
CCA
: (2)

The realization with maximum probability density is the one

with least squared sum of jumps, and hence the matching

criterion becomes:

minimize: S2
k ¼

XN

i¼1

X
j¼x;y;z

s2
ijk; (3)

where S2
k stands for the sum of squared jump lengths of all

particles from one frame to the kth of N! possible permuta-

tions of particles in the successive frame.

We choose a normal distribution of jumps due to its sim-

plicity for further analysis and universality. However, in

many experiments with abnormal diffusion, deviations from

the Gaussian pdfs were reported.35–38 The matching criterion

for the non-Gaussian distribution of jumps can be formulated

in a similar way by maximizing the probability density Pk of

a particular way k.

IV. PROBABILITY OF PARTICLE MISTRACKING

The matching criterion in Eq. (3) provides the statisti-

cally best way of tracking the particles recorded in two

consecutive frames. However, this does not imply that all

particles are tracked correctly. We illustrate and quantify a

systematic tracking error in the case of just two particles in

the following. Consider the situation depicted in Figure 1.

The filled red and the empty blue circles denote two particles

at two instances. Continuous arrows show true jumps of the

particles of the same color. However, according to the

matching criterion, the trajectory reconstruction algorithm

would assign the filled red particle as empty blue and the

empty blue particle as filled red in the next time step.

Dashed lines indicate faulty trajectories which appear as a

result of such a switching event.

Now we quantify the probability of this event. Let the

particles be distributed uniformly in space and jumps in two

consecutive frames be distributed normally (Sec. III).

Suppose that the distance between the particles is r. Now, we

construct a new Cartesian coordinate system so that its origin

is located halfway between the particles. Particle 1 has coor-

dinates (�r/2, 0, 0) and particle 2 has coordinates (r/2, 0, 0).

The probabilities for particle 1 to change its current position

to the range between (x1, x1 þ dx1) and for particle 2 to

FIG. 1. Demonstration of faulty particle matching leading to faulty trajecto-

ries for both particles. Filled red and empty blue circles represent two par-

ticles in two consecutive frames at times t and t þ dt. Continuous arrows

denote true directions of movement. Dashed arrows represent faulty trajecto-

ries that are assigned by the algorithm.
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change its current position to the range (x2, x2 þ dx2) are

given by

dP1 ¼
dx1

D
ffiffiffiffiffiffi
2p
p exp �ðx1 þ r=2Þ2

2D2

 !
;

dP2 ¼
dx2

D
ffiffiffiffiffiffi
2p
p exp �ðx2 � r=2Þ2

2D2

 !
:

(4)

The particles are tracked incorrectly if x1> x2 as we

illustrate in Figure 2. The probability P12i of incorrect track-

ing of two particles separated by distance r is given by the

integration of the product of dP1 and dP2 in the region

x1> x2, as it is given in the following equation:

P12i¼
1

2pD2

ð1
�1

dx1

ðx1

�1

dx2 exp �ðx1þ r=2Þ2þðx2� r=2Þ2

2D2

 !

¼ 0:5 1� erf
r

2D

� �� �
; (5)

where erf stands for the error-function. The integration is

done using Ref. 39. The probability of correct tracking is

P12c ¼ 1� P12i ¼ 0:5þ 0:5 erf
r

2D

� �
: (6)

For D� r, P12c converges to 0.5, corresponding to the 50%

chance to match 2 particles correctly if the jump size is

much larger than the inter-particle distance.

We derived the probability of incorrect tracking accord-

ing to Eq. (5) for particles separated by a fixed distance r.

However, a random spatial distribution of particles results in

random distances between them. If the distribution of distan-

ces between neighbouring particles is a random variable

described by the distribution function f2, the incremental prob-

ability dPi of faulty tracking becomes dPi ¼ P12if2dr. From

here on, we assume that particles are distributed uniformly in

space in the first frame. Hence, according to Ref. 40, the dis-

tribution of distances between neighbouring particles is

f2ðr; kÞ ¼ 4pkr2 exp � 4pkr3

3

� �
; (7)

where k is the intensity of a 3D Poisson process. k relates to

the mean squared distance between neighbouring particles in

the following way:

hr2i ¼ 3

4pk

� �2=3

Cð5=3Þ; (8)

where C denotes the Gamma-function.

The probability of correct tracking is then given by

Pc ¼ 1�
ð1
0

P12i f2dx

¼ 1ffiffiffi
p
p

ð1
0

expð�x2Þ 1þ exp � 32pkD3x3

3

� �� �
dx: (9)

Figure 3 shows a probability of correct tracking for

random distances of uniformly distributed particles Pc as

function of normalized particle jump. The normalization

is done to the root mean square distance between neigh-

boring particles, which relates to the intensity of the 3D

Poisson process k according to Eq. (8). The normalized

jump sN in this case is defined in the following

equation:

sN ¼
Dffiffiffiffiffiffiffiffi
hr2i

p : (10)

Black circles in Figure 3 denote the result of a straightfor-

ward numerical simulation of the matching criterion accord-

ing to Eq. (3). We find very good agreement between the

predicted result according to theory and the numerical

simulation.

V. EFFECT OF MISTRACKING ON MEASURED
VELOCITY DISTRIBUTION FUNCTIONS

Application of the matching criterion results in peaking

of tracked random velocities around zero. The predicted

FIG. 2. Schematic of a new coordinate system and particles displacements

from one frame to another. Particle 1 (empty blue circles) moves in between

frames to a new position between two planes x¼ x1 and x¼ x1 þ dx. The

displacement is schematically depicted by the blue arrow. Particle 2 (filled

red circles) moves to a new position between two planes x¼ x2 and x¼ x2 þ
dx. The displacement is schematically depicted by the red arrow. In (a)

x1< x2, reconstructed trajectories of two particles coincide with the true tra-

jectories; (b) x1> x2, particles 1 and 2 switch their positions in the recon-

struction leading to faulty trajectory assignments.

FIG. 3. Probability of correct tracking calculated for particles randomly and

uniformly distributed in space (red solid line) plotted as a function of the

normalized particle jump. Circles denote the result of a numerical simulation

which will be discussed in Sec. VI.
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effect would be that the measured distribution function is

more peaked and has a smaller variance. In the following,

we confirm this point quantitatively. We would like to

know the probability density of a particle to jump from

one frame to another by a distance q. The distance to its

nearest neighbour is r. Consider a spherical coordinate

system with the origin at the particle of interest. The prob-

ability density function (pdf) to find the particle at distance

q from the origin consists of two terms. The first term

describes the pdf that the particle really made a jump q
and we accounted for it correctly. The second term shows

the pdf that the particle of interest jumped elsewhere and

its nearest neighbour jumped such that we have mistaken it

for the particle of interest at distance q from its previous

location:

@3Fðr; x; y; z;DÞ
@x@y@z

¼ f ðxÞf ðyÞf ðzÞ
ð1

z

f ðz0 � rÞdz0

þ f ðxÞf ðyÞf ðz� rÞ
ð1

z

f ðz0Þdz0;

x ¼q cosð/Þ sinðhÞ; y ¼ q sinð/ÞsinðhÞ;

z ¼q cosðhÞ; @3Fðr; x; y; z;DÞ
@x@y@z

! @3Fðr; q; h;/;DÞ
q2@q@X

;

@X ¼ sinðhÞ@h@/: (11)

Here, f stands for the normal distribution function as in

equation (1), r is the distance between particles in the first

frame, the z-axis goes through two particles in the first frame,

and h is the angle between the z-axis and the candidate parti-

cle in the next frame.

The posed problem is completely isotropic in terms of /
and h angles. Integration over them reduces the dimensional-

ity of Eq. (11). The analytic expression for this integral is

shown in the Appendix.

@Fðr; q;DÞ
@q

¼
ð2p

0

d/
ðp

0

dh
@3Fðr; q; h;/;DÞ

@q@X
sinðhÞ: (12)

Integration of Eq. (12) over angle h and averaging over

q, which is distributed according to Eq. (7), gives a measura-

ble distribution of radial jumps

@f ðD; kÞ
@q

¼ 1

4p

ð1
0

@Fðr; q;DÞ
@q

f2ðr; kÞdr: (13)

In this equation, 4p is already taken into account in Eq. (7)

for f2. Therefore, the value of the integral is divided by 4p in

order to avoid accounting for it twice. However, the meas-

ured quantity is the pdf of a projection of an isotropic radial

particle jump on one Cartesian axis, according to the geome-

try of the considered problem

@FðD; kÞ
@s

¼ 2p
ð1

s

@f ðD; kÞ
@q

dq
q
: (14)

In the following, we choose a distribution function

which we refer to as true. We sample particle jumps from

this distribution function and follow them by particle track-

ing. We then simulate a PTV measurement from the known

true particle trajectories. The measured distribution function

is then different from the true distribution function due to the

bias originating from tracking errors. The deduced distribu-

tion function is also plotted in Figure 4. The plot shows good

agreement between the analytically obtained pdf and the pdf

measured in the numerical experiment, where two particles

are tracked for 105 frames. The calculations are done for nor-

malized jump sN¼ 2.

We fit the measured distribution with a Maxwellian

function of the form

ff it ¼ A � exp � s2

2D2
f it

 !
: (15)

For comparison, we introduce a quantity w which is the

ratio of squared widths of the fitted Maxwellian and the

true distribution function. It can be interpreted as the ratio

of the measured and true kinetic temperatures, if we define

the kinetic temperature as squared width of the fitted

Gaussian

w ¼ Df it

D

� �2

: (16)

We also compare actual second moments of measured and

true distribution functions. This can also be understood as

the ratio of the measured and true kinetic temperatures, if we

define the kinetic temperature as the second moment of the

measured velocity distribution function

h ¼ M2ðfmÞ
D2

; (17)

where M2(fm) denotes the second moment of the measured

distribution function. We also calculate the deviation of the

measured distribution function from normal by plotting its

FIG. 4. Measured (circles) and analytically calculated (solid line) pdfs of

particle displacements. The graph is plotted for two particles tracked over

105 frames and normalized jump sN¼ 2.
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reduced moment m, which is always equal to zero for the

normal distribution

m ¼ M4ðfmÞ
M2ðfmÞ2

� 3; (18)

where M4(fm) denotes the fourth moment of the measured

distribution function. The results of the comparison are

shown in Figure 5 as a function of dimensionless parameter

sN. Deviations of the reduced moment m from zero show that

the measured displacement distribution function is not

Maxwellian, although it has similar appearance and can be

well fitted by a single normal distribution, but with different

width.

In Figure 5, we also compare our theoretical model

with numerical simulations in which two particles were

tracked for 105 frames. The very good agreement between

theory and the numerical simulation demonstrates that the

nature of the measurement-induced systematic error due to

faulty particle matching is well understood. The results for

the two-particle model can also be used when more par-

ticles are present in the frame, if the fraction of swapping

trajectories of three or more particles is negligible. The case

of three or more particles is addressed quantitatively in

Sec. VI.

VI. NUMERICAL TRACKING

Analytical results from Sec. IV are obtained for two par-

ticles. Usually more than two particles are tracked.

Nevertheless, the two-particle case gives useful insight into

the mechanisms of particle mistracking. Here, we extend our

results to more than two particles by straightforward numeri-

cal implementation of the matching criterion that we used

for the analytical analysis of the probability of correct track-

ing. We again assume a uniform distribution of particles in

space and random isotropic jumps between frames.

For two particles in a frame, the maximum possible

error in the kinetic temperature measurements is below 10%.

However, when many particles per frame have to be tracked,

large errors can occur. Figure 6 shows an example of a true

(red dashed line) and a measured (blue solid line) distribu-

tion function where nine particles are tracked over 106

frames with a normalized jump size of sN¼ 2. The ratio of

variances of the measured and true jump distributions is

74%. The contour plots depicted in Figure 7 show the proba-

bility of correct tracking (a), the ratio of squared widths of

the fitted Gaussian and the true distribution function (b), the

ratio of second moments of the measured and true velocity

distribution functions (c), and the reduced moment of the

measured distribution function (d) as functions of the num-

ber of particles and their normalized jumps. One can see that

for relatively small normalized particle jumps, the probabil-

ity of correct tracking, as well as temperature ratios are

almost independent of the number of tracked particles. This

observation quantifies the statement made in Sec. V that for

relatively small normalized jumps the probability of particle

mistracking and the shape of the measured distribution func-

tion are described analytically by the two-particle model

introduced in Secs. IV and V. The form of this plot allows us

to choose a working point (i.e., lowest possible framing rate)

of the instrument based on expected temperature estimations

and a maximum tolerable probability of incorrect tracking.

Reduced moments, depicted in Figure 7(d), show how

the measured distribution function deviates from the normal

distribution for which the reduced moment m is always zero.

For small normalized jumps, the normal distribution is a

good approximation for the measured distribution function.

For larger number of particles in the frame, the normal distri-

bution is a good approximation for larger values of the nor-

malized jumps. However, this trend saturates when sN¼ 1.

For larger sN, the measured distribution functions deviates

from the Gaussian. The larger sN, the larger the deviation

becomes.

FIG. 5. Analysis of tracking in two particle system as a function of normal-

ized displacement sN. (a) Ratio between measured and true second moments

of the distribution function h (blue dashed line—analytical solution, blue

circles—numerical experiment); ratio of squared widths of the fitted

Gaussian to the measured distribution function and variance of the true dis-

tribution function w (red solid line—analytical solution, red triangles—nu-

merical experiment); (b) reduced moment m of the measured distribution

function of displacements (black solid line—analytical solution, black

circles—numerical experiment). The numerical experiment is performed for

106 realizations.

FIG. 6. Measured (blue solid line) and true (red dashed line) distributions of

particle jumps, obtained for nine particles per frame and tracked over 106

frames. Normalized jump sN¼ 2. Ratio of variances h¼ 0.74.
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VII. CONCLUSIONS

We have derived a matching criterion which provides

the highest fidelity of particle tracking when the chaotic

component of particle velocities is normally distributed.

However, faulty tracking is bound to occur. We have derived

analytic expressions for the probability of correct tracking

for two particles and arbitrary jump size. The expressions are

also valid for more than two particles assuming that the aver-

age particle jump size between frames is smaller than the

root mean square distance between neighbouring particles.

From this, we have found the effect of mistracking on

the deduced distribution function. Mistracking biases the

deduced velocity distribution function towards smaller

velocities. This bias has up to now not been considered.

We showed numerically that for small normalized

jumps mistracking between two particles is a dominant

mechanism of deformation of the measured velocity distri-

bution function. This allows choosing a minimum tolerable

framing rate for cameras, which is important because the

error due to finite camera resolution is proportional to the

framing rate.23

Generally, the measured distribution function is not

Gaussian, although for small normalized jumps it is a good

approximation. However, one has to remember that for

tracking a large number of particles with non-exact algo-

rithms (those which do not use a straightforward implemen-

tation of the matching criterion), the measured distribution

function can be strongly non-Maxwellian and the difference

in temperature definition (i.e., the second moment of the

measured velocity distribution function or the squared width

of the fitted Maxwellian distribution) can make a substantial

difference.
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APPENDIX: ANALYTICAL EXPRESSION

The probability density to detect displacement q of a

particle, which is separated by distance r from its neighbour,

is determined by the following equation:
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