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Abstract—The ongoing demand for smaller and lighter power
supplies is driving the motivation to increase the switching
frequencies of power converters. Drastic increases however come
along with new challenges, namely the increase of switching
losses in all components. The application of power circuitsused
in radio frequency transmission equipment helps to overcome
those. However those circuits were not designed to meet the
same requirements as power converters. This paper summarizes
the contributions in recent years in application of very high
frequency (VHF) technologies in power electronics, shows results
of the recent advances and describes the remaining challenges.
The presented results include a self-oscillating gate-drive, air
core inductor optimizations, an offline LED driver with a power
density of 8.9 W/cm3 and a 120 MHz, 9 W DC powered LED
driver with 89 % efficiency as well as a bidirectional VHF
converter. The challenges to be solved before VHF converters
can be used effectively in industrial products are within those
three categories: components, circuit architectures and reliability
testing.

Index Terms—VHF circuits, power conversion, DC-DC power
converters, resonant inverters, zero voltage switching

I. I NTRODUCTION

The continuing trend of miniaturization in industrial and
consumer electronics is continuously driving a demand for
smaller power supplies. Weight and cost reduction demands
accompany this trend. Within power supplies the major size,
weight and cost drivers are typically the passive components.
Increasing the switching frequency of power converters can
reduce the size, weight and therefore the cost of those. For
substantial size and weight reduction, the switching frequen-
cies are increased up to the very high frequency (VHF) band
(30 MHz to 300 MHz), which leads to a merge in circuit
technologies used in radio frequency transmitters [1]–[6]and
the classical power electronics circuits.
The VHF amplifiers are designed for DC-AC conversion,
where the AC simultaneously is the switching frequency.
Generally those circuits [1], [2] drive a known load impedance,
typically a50 Ω antenna. Traditionally the topologies used for
those circuits have been characterized as classes with running
labels following the alphabet. Class-A, class-B and class-C are
described in [2], [7]. These classes are characterized through
the relative amount of time, the power transistor is conducting
the load current with respect to the period of the VHF signal.
For class-A the transistor conducts the load current50 %
of the time. Class-B operates between25 % and 50 % and
class-C between0 % and 25 %. This leads to theoretical

maximum achievable efficiencies of50 %, up to 78.5 %
and up to100 % for class-A, B and C respectively. Their
power electronics counter parts are linear regulators. Class-D
is described in [8] and the first power circuit topology, that
allows for theoretical100 % efficiency under all operating
conditions. The equivalent are strictly all hard-switchedpower
converters. Class-E as described in [3], [4] and class-F as
demonstrated in [5], [6] correspond to all power converters,
that apply zero voltage switching (ZVS) and zero-current
switching (ZCS) techniques respectively.
Similarly to switch-mode power supplies, those VHF ampli-
fiers convert the constant supply voltages into a high-frequent
voltage by operating power semiconductors in the triode region
only. The major difference is that VHF amplifiers do not
convert the energy back into a constant voltage or current level.
Numerous research works have been published [9]–[20], filling
this gap and making VHF technologies available for power
electronics. This paper describes the individual contributions
of those in greater detail. However there are still some chal-
lenges left, before VHF switch-mode power supplies can re-
lieve their advantages for products in industrial and consumer
electronics.
This paper elaborates on the most recent advances, showing
prototypes and measurement results in section II. Section III
describes the remaining challenges based on previous work
and characterizes them. Section IV concludes the paper.

II. RECENT ADVANCES

Recent research results enhanced the state-of-the art in VHF
converters. Most of the work in recent years has focused on
class-E derived topologies.

A. Optimal operation

The class-E based power circuits allow for a second degree
of soft switching. Despite turning the power switches on, when
the voltage across them is zero (ZVS), also the derivatives of
these signals are taken into account. This is called ZdVS and
ZdCS respectively. The technique has been applied to power
converters in [19]. The schematic in Fig. 1 shows the adoption
of the principles of a class-E oscillator, e.g. shown in [21]–
[23], to a class-E based power self-oscillating VHF converter
(DC-DC) [19], [24]. A converter achieving both ZVS and
ZdVS at all times operates in optimal mode.
Other implementation replaced either the resonant tank [25],
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Fig. 1: Schematic of a self-oscillating VHF converter [24] with
LED load.

[26] or the input inductor [11], [27] with a transmission line.
The resulting waveforms of this circuit have been reported in

e.g. [28]–[33] and Fig. from 2 repeats the simulated waveforms
of this converter, wherevs and is are the voltage and the
current across and through the switch andvD and iD are
voltage and current across and through the rectifier diode.vG
is the control signal of the power switch andVo and Vi are
input and output voltages of the converter. The top graphvs
visualizes the optimization of the converter for both ZVS and
ZdVS.
Fig. 3 is a photograph of the implementation of this converter.
The overall efficiency of the97 MHz converter is55 %.
The advantage of this converter is, that it is based on a

widely documented circuit topology from the communication
electronics applications. As implemented here, it also provides
means of output regulation. The downside is the voltage stress
across the power switch,3.6 times higher as in hard-switched
converters.

B. Suboptimal operation

Due to the tight adjustment of the turn on instance of
the power switch for achieving ZVS and ZdVS the degrees
of freedom in this converter are low. That limits the input
and output voltage ranges. Furthermore the efficiency is not
acceptable. In this case, the majority of the losses are due to
conduction losses in the power semiconductors, which are due
to the on-resistance of the power switch. As the gate voltageis
not significantly higher than the threshold voltage, the devices
minimum on-resistance could not be achieved.
Suboptimal operation of class-E converters as described in[4]
opened for higher degrees of freedom in the design of class-E
based DC-DC converters. This means that the ZdVS condition
is only fulfilled under nominal load conditions and only ZVS
is fulfilled otherwise. The resulting converter waveform inthe
optimal and suboptimal operating regions are shown in Fig. 4.
The effects of these operation mode as described in [34] have
been extended in [20] to LED lighting applications.
Note that the body diode of the MOSFET is conducting in the
beginning of the MOSFETs conduction period. This is due to
wrong timing in the turn-on of the power device. The energy
lost in the body diode ruins the efficiency of this particular
converter.
Furthermore [20] provides a detailed analysis of the power

components parasitics and the effect of their nonlinearities.
The basis for this analysis has been, among others, laid in

Fig. 2: Simulated waveforms for a ZVS and ZdVS class-E
based converter from [19].

Fig. 3: Photograph of the self-oscillating VHF converter from
[24].

[35], [36] for the analysis of class-E amplifiers, which is fully
applicable to class-E based power converters when tuning the
rectifier to act as a an ohmic load. The most relevant parasitics
of the power switch are the input and output capacitances.
The later is the most critical for the design of the converter.
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(a) optimal operation

(b) suboptimal operation

Fig. 4: Measurements of gate-source and drain-source voltages
Vgs and Vds of the power switch and the turn-on instances.
Note that the drain-source voltage has an offset of−0.5 V,
due to the oscilloscopes offset.

Simultaneously the output capacitance is highly nonlinear,
which was taken into account in the analysis in [20]. There
the nonlinearity of the output capacitanceCds is modeled with
(1)

Cds(Vc) =
Cj0

(1 + Vc

Vbi
)γ

, (1)

where

Cj0 is the junction capacitance at0 V,
Vbi is the built-in junction potential, typically0.5−0.9 V

[29],
γ is the junction sensitivity or gradual coefficient. Typ-

ically γ = 1/3 for gradient junctions, whileγ = 0.5
for abrupt junctions [1] hence junction diodes [29],
and

v is the junction voltage.

This results in a voltage waveformVc of the power switch as
a function of the converters input currentIin and the above

Fig. 5: Voltage waveform of the power switch in relation to
DC input voltage for a nonlinear output capacitance from [20].
Vbi is the junction potential of the process.

output capacitances parameters as given in (2).

Vc=Vbi

(

[

Iin(1−γ)

ωCj0Vbi

(ωt−
3π

2
−

π

2
cosωt−sinωt)+1

]
1

1−γ

− 1

)

(2)
Fig. 5 shows the relative voltage waveform of the power switch
as a function of time and junction potentialVbi for a junction
sensitivity ofγ = 0.5.
The remaining components of the power stage have been

investigated in [20] as well. Thereby most focus is on the
inductors, as these are the most volume consuming parts, have
the biggest weight and typically a big impact on the overall
price of the converter. Therefore the inductors have been
integrated as toroids into the printed circuit board (PCB).This
process is described in [37] and Fig. 6 shows the principle.
A power stage has been designed to operate in suboptimal

mode under consideration of the power switches nonlinear
output capacitance. The converters efficiency is in the same
area as the one presented in II-A and again limited by a high
on-resistance, which is due to a low gate drive voltage.
While giving up on the single operating point operation in
optimal operation mode, the suboptimal operating converters
theoretically allows for different conduction angle operation
on the cost of tighter timing to operate in ZVS.

C. Class-E based SEPIC converter

For dealing with the efficiency challenge, [38] compared a
number of power switches both in simulation and experiment.
Furthermore multiple air-core inductors where calculated, de-
signed and implemented. An extraction is shown in Fig. 8.
The prototypes reach Q-values beyond100 and resonance
frequencies up to340 MHz. Fig. 9 shows a photograph of
the implemented converters. On top of that an effective line-
and load regulation scheme was realized in those. The designs
where verified in a SEPIC converter (Fig. 7) [39], based on
the topologies presented in [40], achieving a power densityof
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Fig. 6: PCB integrated inductor from [37]. The cross-section
of the PCB toroid and the resulting flux arrows are shown.

Fig. 7: Schematic of a class-E based SEPIC VHF converter
[39].

Fig. 8: Photograph of various air core inductors [38].

8.9 W/cm3 (146 W/in3) by switching at51 MHz for offline
LED applications.

Fig. 10 shows the implementation of the final prototype with
70 MHz switching frequency. The voltage step-down ratio of
the converters is10 and the output power range is between1
and4W at an efficiency within this range beyond70 %.

Compared to the above reported converters, the SEPIC
converter is not based on an inverter that delivers a sinusoidal
output. The later is crucial in telecommunication applications,
when using the class-E inverter as a transmitter, but completely
unnecessary demand as an intermediate VHF link within a
DC/DC power converter. Relaxing this requirement removes
the resonant tank inductor, and therefore the resonant tanks
bandpass behavior. On the other hand the rectifier can no

Fig. 9: Photograph of numerous prototypes for comparing
measured efficiency with simulations [38].

Fig. 10: Photograph of a closed loop low-power VHF converter
with an efficiency beyond70 % from [38]. The TO220
components in the upper left corner are the dummy load
resistance.

longer freely be chosen between several topologies, but hasto
be implemented with a diode, not referenced to ground, which
is a disadvantage in some implementation technologies, such
as integrated circuits.

D. Interleaved VHF converters

Additionally the self-oscillating principle from [19], [24]
was combined with the interleave principle from [41], [42]
in [43], resulting into a significant efficiency improvement.
Interleaving two converter legs allows furthermore to use the
ripple cancelation as described in [44] and applied in [41].The
complete schematic of the open loop implementation is shown
in Fig. 11. The realized converter is switching at120 MHz,
i.e. beyond the FM band, converts an input voltage between
6 and9 V into an output current between0.4 and0.5 A and
has an efficiency between80 and89 % within this operation
range. The output power range is3 to 9 W, corresponding to
an output voltage range between7 V and20 V. The converter
is designed to drive LEDs. Fig. 12 shows both a SPICE
based simulation and a the measurement of the power switches
voltage waveforms. Fig. 13 shows the efficiency graph of this
converter.
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Fig. 11: Full schematic of the open-loop interleaved class-E
converter from [43].

(a) simulated waveforms

(b) measured waveforms

Fig. 12: Drain-source waveforms of the two power switches
in the interleaved converter from [43].

Interleaved converters allow for input and/or output ripple
cancellation, segmented power stages, which enables higher
power levels [45]. But those converters suffer from different
optimal frequencies due to tolerances for each leg, which either
might result in beat tones, when operating each of them at its
own optimal resonant frequencies, or a non-optimal operation
point with respect to efficiency for all legs, when operatingall
legs at the same frequency.

E. Bidirectional VHF converter

Replacing the diode in Fig. 1 with a transistor, the class-
E amplifier and the class-E synchronous rectifier form a
symmetric schematic as shown in Fig. 14. This was realized
in [46] and resulted in a bidirectional converter with the same

Fig. 13: Efficiency of a battery driven LED driver switching
at 120 MHz [43].

Fig. 14: Schematic of a VHF converter with class-E inverter
and synchronous class-E rectifer [46].

Fig. 15: Photograph of a bidirectional VHF converter [46].

conversion ration from both sides. Operating in the forward
mode, the transistorM1 is the power switch, operating in
class-E mode, andM2 is used as synchronous rectifier in
class-E operation. In the reverse operating mode, the voltage
designatedVout is acting as the input voltage andM2 becomes
the inverter switch, whileM1 turns into the synchronous
rectifier. The maximum achieved efficiency with this topology
was70 % switching at30 MHz. A photograph of the prototype
and thermal pictures of the converter are shown in Fig. 15 and
Fig. 16 respectively.

The bidirectional converter allows for lower conduction
losses in the rectifier and allows for two-quadrant operation
at the cost of an extra gate, which needs a control signal.

III. C HALLENGES OFVHF CONVERTERS

Lately remaining research challenges have been described
in [47], [48] This section is summarizing the remaining
challenges common in all above described converters with
repect to implementation in products. It is dividing the major



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JESTPE.2013.2294798, IEEE Journal of Emerging and Selected Topics in Power Electronics

6 IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, VOL . ?, NO. ?, NOVEMBER 2013

(a) class-E inverter

(b) class-E synchronous rectifier

Fig. 16: Thermal photographs of bidirectional VHF converter
in thermal equilibrium [46].

remaining show stoppers into three categories and describes
those afterwards with respect to existing products on the power
supply market, with switching frequencies below the VHF
range.
VHF operation of power supplies differs from sub-megahertz
operated power supplies (here called traditional power con-
verters) mainly by the following subjects:

• Electronic components, both active and passive,
• Circuit architectures for power stages and control parts,
• Adjacent behavior, such as electromagnetic compatibility

(EMC), mechanics and other reliability tests.

A. Components

Especially inductive components are size, weight and cost
optimization limitations in nowadays power circuits. Simul-
taneously VHF converters provide a major opportunity to
overcome those.
Among the challenges are core losses, skin and proximity
effect [27], [49]–[54]. For driving further miniaturization of
VHF power supplies an obvious next step is to integrate

the whole converter in a package (Power Supply in Package
(PSiP)) or even on a single chip (Power Supply on Chip
(PwrSoC)). The most challenging part for this goal is the
integration of the inductors. Great progress has been made
and summarized lately in [55], [56]. However realizations of
integrated inductors with Q-values beyond 100 in the relevant
frequency ranges remain to be seen. Hybrid concepts as shown
in [57] might be applicable. Another challenge within passive
components for VHF is the creation of a galvanic isolation
barrier [58]–[60].
Despite passive components also active components, i.e. the
power semiconductors, need to fulfill other requirements than
in usual power supplies [61]–[63]. The parasitic components
have a big influence on the design of the overall converter, as
they are part of the design parameters. Unlike traditional power
stages, the parasitic elements are therefore not considered
undesired, but form an integral part of the stage. An example
is the output capacitanceCoss of the power semiconductor in
a class-E based power supply. According to [19] it is depen-
dent on output powerPout, input voltageVin and switching
frequencyfsw as shown in (3).

Pout = 2π2fswCossV
2

in (3)

This means that the output capacitanceCoss is limiting the
maximum switching frequency for a given application, which
specifiesPout andVin

B. Architectures

Where traditional power electronics circuits use square wave
gate drive signals, the presented VHF converters so far utilized
sinusoidal gate drive [18], [24], [64], [65]. This is mainlydue
to the input capacitanceCiss of VHF power semiconductors,
which require a high peak current at extremely high speed. To
consider the drive voltage trapezoidal its rise and fall times
have to be less than1 ns [65]. A trapezoidal or square wave
drive would minimize the time of the power switch in linear
operation and therefore decreases the losses.
The degrees of freedom in terms of modulation principles are
less for VHF converters. Whereas power electronics circuits
usually use pulse width modulation or phase modulation, the
VHF converters efficiency is dependent on those parameters.
Therefore they need to be adjusted statically to avoid losses
by leaving the ZVS (or ZCS) range. A way to get around this
is to apply burst mode control [17], [64], [66]. This method
however introduces another low frequency component in the
spectrum, which has to be buffered or filtered at both the in-
and output of the converter. A requirement that enforces the
use of bulky components and therefore is counterproductiveto
the intended advantages of VHF converters in the first place.
While the VHF converters offer good possibilities for fast
transient regulations, their low frequency control performance
is limited by intrinsic bandpass behaviors through serial capac-
itors. Even though some rectifiers are available with parallel
capacitances and impedance transformation [19], [67], more
suitable architectures are missing. Thereby it needs to be
taken into account, that the original VHF power circuits are
designed to match a defined load (typically the impedance of
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the antenna) and therefore impedance transformation circuits
can be realized in a passive way. Power converters however
are connected to highly varying loads, i.e. load circuit in
idle - drawing no energy from the supply - and full load -
demanding the maximum output from the supply. Therefore
active and lossless impedance matching circuits are required.
Having such circuits at hand opens for utilization of the high
gain bandwidth in VHF converters for line and load regulation.

C. Adjacencies

Lastly the interaction of VHF converters with its physical
environment is different than the one of traditional power
converters.
On one hand, the electromagnetic interaction between circuits
increases, the higher the relevant frequencies are [68]–[71].
Fields are distributed easier both inside the converter and
to its surroundings. The electrical behavior also becomes
highly dependent on electromechanical interfaces, such as
cooling and housing. However the harmonics of the resonant
waveforms are falling faster, than the harmonics in hard
switched traditional power converters [20]. Also the harmonics
of the fundamental switching frequency are spaced wider. That
means the distance can be used to place strategically important
EMC bands, dependent on the application.
On the other hand, the carefully adjusted operating points of
VHF converters (for efficiency purposes) are highly dependent
on temperature [19], [20]. Adaptive mechanisms for ensuring
optimal operation over industry standard temperature ranges
are yet to come.

IV. CONCLUSION

The merge of techniques used in radio communication
electronics and power electronics was pointed out. The devel-
opment through the previous decades has been revisited and
recent developments were summarized. Remaining challenges
and the latest advances were described. The implementations
of numerous VHF converters were presented. Among them
are low-power, high-step-down converters with a switching
frequency of70 MHz and an efficiency beyond70 % as well
as a 120 MHz, 9 W LED driver with an efficiency up to
89 %. Both converters maintain high efficiencies over a wide
load range.
The remaining challenges, that require solutions before VHF
converters can be implemented in numerous industrial appli-
cations were found to be within the categorizes components,
circuit architectures and reliability testing.
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