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Abstract

Background: The analysis of next generation sequencing (NGS) has become a standard task for many laboratories

in the life sciences. Though there exists several tools to support users in the manipulation of such datasets on various
levels, few are built on the basis of vertical integration. Here, we present the NExt generation Analysis Toolbox (NEAT)

that allows non-expert users including wet-lab scientists to comprehensively build, run and analyze NGS data through
double-clickable executables without the need of any programming experience.

Results: In comparison to many publicly available tools including Galaxy, NEAT provides three main advantages:

(1) Through the development of double-clickable executables, NEAT is efficient (completes within <24 hours),

easy to implement and intuitive; (2) Storage space, maximum number of job submissions, wall time and cluster-specific
parameters can be customized as NEAT is run on the institution’s cluster; (3) NEAT allows users to visualize and
summarize NGS data rapidly and efficiently using various built-in exploratory data analysis tools including

metagenomic and differentially expressed gene analysis.

To simplify the control of the workflow, NEAT projects are built around a unique and centralized file containing sample
names, replicates, conditions, antibodies, alignment-, filtering- and peak calling parameters as well as cluster-specific
paths and settings. Moreover, the small-sized files produced by NEAT allow users to easily manipulate, consolidate and

share datasets from different users and institutions.

Conclusions: NEAT provides biologists and bioinformaticians with a robust, efficient and comprehensive tool for the
analysis of massive NGS datasets. Frameworks such as NEAT not only allow novice users to overcome the increasing
number of technical hurdles due to the complexity of manipulating large datasets, but provide more advance users
with tools that ensure high reproducibility standards in the NGS era. NEAT is publically available at https://github.com/

pschorderet/NEAT.
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Background

Massively parallel / next generation sequencing (NGS)
has become a central tool for many projects related to
the life sciences, including fields such as molecular
biology, evolutionary biology, metagenomics and oncol-
ogy. These novel technologies have brought tremendous
depth to our understanding of epigenetics and are
becoming widely used in many experimental setups.
Recent improvements in sequencing technologies have
made it commonplace to obtain 20 to 40 gigabits of data
from a single experiment [1] while the cost per mega
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base has dropped by half nearly every six months since
2008 [2, 3]. The explosion of NGS data in the life
sciences has lead to surpass the petabase barrier [4]. In
addition to the massive amount of data generated in the
genomics era, the empiric observation that NGS analysis
constitutes one of the major bottlenecks in modern
genomics projects has brought new challenges includ-
ing the urgent need to create efficient and reprodu-
cible analysis pipelines accessible to both biologists
and bioinformaticians.

Biologists have embraced NGS technologies with great
enthusiasm, mainly because of the opportunities and
promises they provide. However, although NGS allows
rapid assessment of genome wide changes, paradoxically,
the computational power and complexity required for its
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analysis has significantly hindered the overall turnaround
time for wet-lab scientists, many of whom rely on over-
whelmed bioinformatics core facilities. A common effort
has thus been established to support the post-genomic
era including the development of important interfaces
such as genome browsers (UCSC [5-7], Ensembl [8]),
annotation databases (ENCODE [9], modENCODE [10])
and tools to manipulate big data files (BEDTools [11],
SAMtools [12]). Moreover, many scientists have contrib-
uted to the development of Galaxy, an open source,
web-based platform that provides various tools for NGS
data analysis [13, 14]. Finally, the R community is pro-
viding increased support to the field of bioinformatics by
developing and providing a plethora of open source
packages as part of the Bioconductor consortium [15].
The development of publically available tools has
undoubtedly facilitated the analysis of NGS data. How-
ever, several loopholes still remain. For example, irre-
spective of how user-friendly these tools might be, they
are often daunting for scientists that have little to no
programming experience. This particular segment is
often brought to the dilemma of choosing between
investing the effort to learn the computational skills ne-
cessary to analyze their own data or waiting for it to be
analyzed by computational cores. Empirically, the major-
ity of the decisions converge to the later. In the mean-
time, scientists still heavily rely on the ability to visualize
their data to steer their projects. We thus feel that the
community would strongly benefit from easy-to-use
tools that do not require programming skills. The reason
such applications have never been implemented likely
stems from the disparity of each individual project and
the need to apply specific parameters to each of them on
a case-by-case scenario. Nevertheless, there is a strong
demand for tools to rapidly assess whether the technical
aspect of an experiment succeeded (antibody specificity,
conditions, sequencing depth, etc), even though the
tradeoff of using default parameters might well intro-
duces some bias and imperfections in the analysis.
Another loophole in NGS analysis is seen with more
advanced users. Indeed, many computational biologists,
who strongly depend on automation for the majority of
their work, continue to manually manipulate files
(renaming, filing, copying, etc). This apparent dichotomy
can be explained by the lack of tools to support vertical
integration of NGS analysis while managing their
interdependencies. For example, the vast majority of
tools that support singular repetitive tasks that can be
run in parallel (mapping, filtering, etc.), rarely provide
an easy solution for the integration of these tasks into a
complicated multi-dimensional workflow. As such, few
softwares allow users to efficiently run custom made
pipelines on the same server on which the data is stored
long term. For example, Galaxy, the most widely used
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open-source platform for data analysis has a powerful
and intuitive web-based front-end interface. Neverthe-
less, users are required to upload files and are often
limited by various regulations including maximum job
submissions, wall time and storage space. Other tools
such as HT Station [16] require scientists to continuously
follow the job statuses and manually manipulate files
and keys between different steps. These iterative and
error-prone processes, which, de facto, cannot be re-
ferred to as pipelines, are cumbersome and time-
consuming,.

To address some of the above-discussed issues, we
present NEAT, a framework developed to help manage
ChIPseq and RNAseq pipelines in a robust, reproducible
and user-friendly manner. NEAT offers several auto-
mated modules (unzip, rename, QC, chiprx, map, filter,
peakcalling, creation of wig files, etc) that can be run
through double-clickable icons from any desktop or
laptop, an interface that not only facilitates the analysis
of NGS data, but that makes it accessible to non-expert
users. Furthermore, NEAT includes downstream applica-
tions that allow users to effortlessly explore NGS data
using a graphical user interface (GUI) display. In sum-
mary, we believe that NEAT will help biologists as well
as established bioinformaticians create, manage and
analyze complex NGS pipelines, as well as assess NGS
data within 24 h of the sequencing run completion
through a simple GUL

Implementation

We have created an NGS framework under the UNIX
operating system called NEAT that can easily be run
either through the command line or through a graphical
user interface (GUI). NEAT is a modular, reliable and
user-friendly framework that allows users to build both
ChIPseq and RNAseq pipeline using plain words (‘map’
will map and so on). NEAT is completely automated and
supports users in the analysis of NGS data by managing
all jobs and their dependencies from a single, centralized
file. NEAT is designed to be run by scientists with no
programming experience and as such, pipelines can be
build and managed using double-clickable executables
on a simple laptop. On the other hand, its modular
architecture allows advanced users to easily customize
NEAT to their own needs. In additional, NEAT can be
implemented in the vast majority of institutions (com-
patible with LSF and PBS) regardless of rules and
regulations as all cluster parameters including queuing
priority, node allocation, number of CPUs and wall time
can be parameterized from a single file.

After having installed NEAT using the ‘Iustall.app’
module (Additional files 1 and 2), the analysis consists
of a 4-step process, each of which has a unique GUL (1)
create a new project; (2) run NEAT; (3) download data
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to local computer; (4) run additional analyses (Fig. 1 and
Additional files 1 and 2). Although all steps can be
run either on a remote server or on a local computer,
step (2) requires high computational power and we
therefore suggest running it through the GUI, which
will launch the pipeline on the remote high capacity
cluster specified by the user. Sections (1), (3) and (4)
can be run locally without the need for internet access,
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which is an advantage for users that are uncomfortable
with cloud computing or when traveling.

The four steps of the NEAT framework are described
below. In addition, step-by-step tutorials can be found in
the supplemental material (Additional files 1 and 2). The
tutorials allow users to follow through an entire NGS
analysis using a provided test data set. The test datasets,
which are either H3K4me3 ChIPseq data or RNAseq
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Fig. 1 NEAT architecture. NGS data can be analyzed using NEAT in less than a day. Users follow a logical 4-step process, including the creation of
a new project, running the pipeline on a remote server or in the cloud, transferring the data to a local computer and proceeding to the analysis.
“depicts modules that are restricted to ChIPseq experiments. The modules depicted reflect a non-exhaustive list. Left-hand figure represents a
conceptual framework; Right hand icons represent the double-clickable executables that run the different processes
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data from mouse embryonic stem cells, have been
truncated such that the entire analysis should take less than
two hours. Running the test data will also ensure NEAT
and its dependencies (packages, scripts, etc) are properly
installed before submitting large, memory-savvy analyses.

Step 1: Creating a NEAT project

The first step of the NEAT framework is to build a
new project. This can be done through the ‘New
Project’ application (Fig. 1 and Additional files 1 and
2), which will prompt users to enter some details in-
cluding the directory the project will be created in
and the name of the project. Once executed, the user
will be asked to fill in the foremost important step of
NEAT: the Targets.txt file.

The Targets.txt file is the most important piece of NEAT
and users are expected to invest the time and effort to
ensure all paths and parameters exist and are correctly set.
It is worth noting that once set, most of these parameters
will not change on a specific computer cluster (users from
the same institute will use the same parameters). We
therefore suggest that more advanced users modify the
original Targets.txt template file (Additional files 1 and 2),
which is used as template each time a new project is
created. This will significantly ease the process of building
new projects and will minimize errors due to inexistent
files or wrong paths. For down stream analysis of NEAT
projects (see step 4), several widely used database names
can be found in the Species_specificities.txt file for
reference (Additional files 1 and 2).

While the upper portion of the Targets.txt file sets up
the backbone of NEAT, the bottom portion contains the
details of the experimental setup including the names of
the compressed fastq files (usually provided by the sequen-
cing core), the names that the users would like to give to
the samples, their relationship (replicate, sample to input,
etc) and antibody specificities. For paired-end runs, it is
important to note that the sample name of the reverse-
reads needs to be consistent with the forward-reads
sample name, followed by ‘_R2’ (underscore R2). For
example, if the ‘FileName of the forward reads is
‘PSa36-1_Dox_K4me3] the corresponding reverse read
file should be named ‘PSa36-1 Dox K4me3 R2. In
addition, the reverse-reads file information should be
set below the ‘PE corresponding samples’ mark at the
bottom of the Targets.txt file instead of the SAMPLES
INFO’section (Fig. 2 and Additional files 1 and 2).

Finally, in addition to containing the data processed by
the pipeline, most importantly, the Targets.txt file contains
the building blocks of the pipeline. These blocks are
specified under the ‘Steps fo_execute pipe’ and can be
written in plain English words, e.g. ‘unzip, ‘map; filter’ etc.
The different default building blocks are described
below. As NEAT uses exact word matching, users that do
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not want to run a given block are free to delete it or
rename it (for example as 'chiprs_NO").

Unzip

The ‘unzip’ module will unzip, rename and store fatsq files
in a newly created folder within the project folder. Al-
though this strategy can seem cumbersome for space issues,
it allows systematic storage of backups without manipulat-
ing the original compressed file, which helps organize and
keep track of the sequencing runs.

Sequencing cores use different compression formats.
For this reason, users can specify the file extension and
the unzip command in the AdvancedSettings.txt file
(Additional files 1 and 2). This module will unzip the
compressed files found in the directory specified in
the ‘Remote_path_to_orifastq gz parameter and which
names are found in the ‘OriFileName’ column of the
Targets.txt file, and will rename them according to the
users setup in the ‘FileName’. All files will be stored in
the newly created ‘fatsq’ folder (Additional file 3).

QcC

The ‘QC’ module uses the R systemPipeR package (Girke T.
(2014) systemPipeR: NGS workflow and report generation
environment. URL https://github.com/tgirke/systemPipeR)
to provide a variety of high quality control outputs including
per cycle quality box plots, base proportion, relative k-mer
diversity, length and occurrence distribution of reads,
number of reads above quality cutoffs and mean quality
distribution. The ‘QC” building block, together with the
‘GRanges’ modules (see below) are the rare exception
that require the installation of external R packages.
Additional information on package installation can be
found in the tutorials (Additional files 4, 1 and 2).

ChlPrx

ChIPrx [17] is a cutting edge normalization method for
ChIPseq that performs genome-wide quantitative compar-
isons using a defined quantity of an exogenous epigenome,
e.g. a spike-in control. The detailed algorithm of ChIP-RX
has been implemented as previously published [17]. For
the sake of consistency, the same mapping and filtering
parameters will be used for both the alignment of the
standard and the spike-in epigenome. If no spike-in con-
trols are used, all ChIP-RX parameters can be dashed (*-).

Map

The ‘map’ module maps reads using either bwa [18] or
bowtie [19]. For RNAseq projects, the splice-aware,
bowtie-based Tophat [20] algorithm is preferred. The
standard parameters for either algorithm can be modi-
fied in the AdvancedSettings.txt file, including maximum
number of gaps, gap extension, maximum edit distance,
number of threads, mismatch and gap penalty, etc.
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LSS S SR ESE RS ENEEREESESSESEESENEESESSEEEESEESEEEEREEEESEESEESE]

# #
# ChIPseq #
# #
H#-H-H-H-H-H-H-H- - - - R R - - - - - - - - - - - - - - - - -
# |
# My project Title = "<PROJECT_NAME>" |
# Date of creation = "<DATE>" |
# |
# |
# |
# |
oo GENERAL INFO ------------------ |
# |
# My_personal_email = "<my.email@myschool.edu>" |
# My_personal_ssh = "<user ver_address.edu>" |
# My_project_title = "<PROJECT_NAME>" |
# Reference_genome = "mm9" |
# Reference_genome_rx = "dm9" |
# |
# |
Hemmmmmmmemmeeee LOCAL INFO ---------=---meomem |
# |
# Local_path_to_proj = "<LOCAL_PATH_TO_PROJECT>" |
# Local_path_to_NEAT = "<LOCAL_PATH_TO_NEAT>" |
# Proj_TaxonDatabase = "TxDb.Mmusculus.UCSC.mm9.knownGene" |
# Proj_TaxonDatabaseDic = "org.Mm.eg.db" |
# Proj_TaxonBSgenome = "BSgenome.Mmusculus.UCSC.mm9" |
# Proj_TaxonDatabaseKey = "GENEID" |
# |
# |
] REMOTE INFO --------==snznnmeen |
# |
# Remote_path_to_proj = "<REMOTE_PATH_TO_PROJECT>" |
# Remote_path_to_NEAT = "<REMOTE_PATH_TO_NEAT>" |
# |
# Remote_path_to_orifastq.gz = "/home/NEAT/ChIPpip/scripts/testdata” |
# Remote_path_to_chrLens.dat = "/<PATH_TO>/mm9_chr_lens.dat" |
# Remote_path_to_RefGen.fasta = "/<PATH_TO>/mm9.fa" |
# Remote_path_to_chrLens_dat_ChIP_rx = "/<PATH_TO>/dm9_chr_lens.dat" |
# Remote_path_to_RefGen_fasta_ChIP_rx= "/<PATH_TO>/dm9.fa" |
# |
# |
ffrmmmmmmm e PARAMETERS ----------==----=-- |
# |
# Aligner_algo_short = "BWA" |
# Paired_end_seq_run "o" |
# Remove_from_bigwig = "random, chrM" |
# PeakCaller_R_script = "PeakCaller_SPP.R" |
# |
# Steps_to_execute_pipe = "unzip + map + filter + peakcalling + ... + cleanfiles + granges" |
: |
P — SAMPLES INFO ----r--nmecmenme |
# |
OriFileName FileName OrilnpName InpName Factor Rep FileShort Exp Date |
PSa36-1 noDox_K4me3  PSa37-3_R1  noDox_Inp K4me3 1 noDox |
PSa36-2 Dox_K4me3 PSa37-4_R1 Dox_Inp K4me3 2 Dox |
#

# |
#: PE corr ding pl |
# !

Cluster-specific:
User-specific:
Experiment-specific:
Experiment-specific:

Experiment-specific other:

Fill in once per institute
Fill in once per user

Fill in at each experiment
Automatically filled in

Other paramters

Fig. 2 The Target.txt file. NEAT is centralized around a single text file (Targets.txt) containing all required information including sample names,
inputs, their relationships, virtual paths to reference genomes, parameters, alignment and peak calling algorithms. Many of the settings are either
automatically filled in when a new project is created or need to be filled in only once. The color code helps understand which parameters are
specific to the cluster (green); the user (orange); the experiment (red and blue) or different parameters (grey)




Schorderet BMC Bioinformatics (2016) 17:53

Page 6 of 9

PS36-2.Dox Kine3 PS337-3 nobocInp PS37-4 Do Inp

ﬂﬂmﬁ

........

........
|II||I|| IIIIIIIIIIII
II Il I I

..........
III |II!|I||||IIII | |III
i
=

[l

...........

: Y H"'”""

|| ?,'

Jrates
|||||||||iii|’ ]

Dox_K4me3

no_dox_K4me3

B e noDox
— Dox
-5kb TSS +5kb
C
Dox no_dox

Dox

no_dox

no_dox

Krt8

Fig. 3 Output examples. NEAT outputs many files and graphs, some of which are depicted as examples. a Quality control of fastq files. b
Metagene analysis (ChIPseq) of the test data around all TSSs. € Venn diagrams of peak overlaps. d Scatterplots for sample-to-sample comparison
(RNAseq). e DEG smear plots with DEG highlighted and annotated. Above and below are two examples of DEG picked up by the pipeline

Additional mapping algorithms can easily be imple-
mented by advanced users (Additional files 1 and 2).

Filter

The ‘filter’ module allows the user to specify filtering
parameters (AdvancedSettings.txt) including how to
manage duplicate reads, minimum and maximum size of
fragments, etc. This module uses the samtools [12, 21]
view, sort, rmdup and index functions.

Peakcalling

The ‘peakcalling module specifies the algorithm used
to call peaks. NEAT has two well-established peak
calling methods built-in by default, including MACS
(PeakCaller MACS.R) [22] and SPP (PeakCaller_SPP.R)
[23]. It is worth noting that given that NEAT is open
source and very versatile, it is easy for advanced users
to implement their own peak calling algorithm as an
R code (Additional files 1 and 2).
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Cleanfiles

Given different mapping algorithms have distinct out-
puts, the ‘cleanfiles module helps reorganize and store
the different .bam and .bai files before proceeding to
downstream analysis. This allows advanced users to im-
plement their own mapping algorithms while still taking
advantage of NEAT’s EDA modules.

GRanges

The ‘GRanges’ module creates significantly smaller
GRanges objects (compared to bam files), which are
necessary for downstream analysis including identifica-
tion of differentially regulated genes (RNAseq) and
metagenomic analyses (ChIPseq). This eases and in-
creases the efficiency of file transfer, file sharing and
consolidation of projects. In addition, the ‘GRanges’
module creates small size wiggle files (.wig files). Wiggle
files can be loaded and visualized in various genome
browsers including IGV [24, 25]. The compression of
the file is driven in part by the binning of the data
across the genome. The bin size, which is in base
pair units, can be customized in the Advanced-
Settings.txt file.

Step 2: Running NEAT

After building a pipeline using the easy one-word
method in the ‘Steps_to_execute pipe’ line of the Tar-
gets.txt file, non-expert users can run the workflow using
the applescript double-clickable executable (Fig. 1 and
Additional files 1 and 2). More advanced users can run
it through the command line (Fig. 1 and Additional files
1 and 2). The executable will prompt users to identify
which project they want to run before opening a ter-
minal and asking them (twice) to enter their ssh pass-
word. This will allow NEAT to access and run the
pipeline on the computationally efficient remote cluster.
Once entered, NEAT automatically manages job submis-
sion, queuing and dependencies. A detailed explanation
on how to follow the pipeline and a step-by-step
debugging support can be found in the tutorials
(Additional files 1, 2 and 5). Moreover, users can de-
cide to setup automatic emailing when the pipeline
has completed. As a point of reference, running an
exhaustive pipeline (unzip + QC + chiprx + map + filter
+ peakcalling + cleanfiles + granges) on data comprising
200-400 million reads should not take more than 10 to
15 h. The project architecture of a completed NEAT pro-
ject on the remote server including the timing and loca-
tion of files and folders can be found in Additional file 3.

Step 3: Download a NEAT project from a remote server to
a local computer

The core component of NEAT (step 2), which is the
pipeline per se, is computationally demanding and is
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thus preferentially ran on a remote cluster. However,
upon completion of the pipeline, users may prefer to
view and analyze their data locally, e.g. on a desktop or a
laptop. As mentioned above, NEAT can be used to
create GRanges and wiggle files, which main advantage
are their relatively small size compared to bam files
(wig ~4-6 Mb; GRanges ~40-60 Mb; bam ~4-6 Gb).
In addition, these files can easily and rapidly be shared
by email or in batch using standard flash drives.

To download a NEAT project from a remote server to
a local computer, users can run the ‘Transfer.app’ apple-
script double clickable executable (Fig. 1 and Additional
files 1 and 2), which will automatically open a terminal
window and start the process. Users will be prompted to
locate the NEAT directory and the NEAT project. The
‘Transfer.app’ will use all the information found in the
corresponding Targets.txt file to download the NEAT
project from the remote server to the local computer.
Users should be attentive as they will be asked to enter
the corresponding ssh password several times. Down-
loading an entire project should not take more than a
few minutes.

Step 4: Exploratory data analysis using NEAT

Empirically, data visualization is an important milestone
for wet-lab scientists. This step is often critical for decid-
ing the direction to take for further experiments and
computational biologists often underestimate its import-
ance. As an effort to improve the turn around time of
NGS datasets, NEAT supports users in the creation of
wig files (see step 2) that can be visualized using various
genome browsers including IGV [24, 25].

Section 4 of NEAT also contains tools for exploratory
data analysis (EDA), which supports the creation of
human-readable files including pdf graphs and count
tables, which can be opened and analyzed in softwares
such as excel. The tools that create these files require
relatively small computational power, which allows users
to experiment using a variety of different parameters
ranging from cutoff values to DEG stringencies. The
default EDA tools consist of [ChIPseq]: metagenomic
analysis (feature-centric alignment of ChIPseq enrich-
ments), count tables and peak overlap (if SPP was used
as peak calling algorithm); [RNAseq] smear plots, DEG
analysis, consolidated count tables, RPKM, Venn dia-
grams of gene overlap and GOrilla-compatible [26, 27]
differentially expressed genes lists (Fig. 3).

It is worth noting that the metagenomic analysis in the
ChIPseq module can be easily customizable. This tool
allows users to visualize chromatin immunoprecipitation
enrichments of various samples over specific features
(contained in the MartObject folder; Additional files 1
and 2). For example, using the test dataset, users can
explore enrichment of an epigenetic mark (K4me3)
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around all transcriptional start sites (TSSs) of the mouse
genome. However, such analyses are not constrained to
any particular region, nor to regions of similar length. By
creating a simple bed file, users can assess enrichments
over their preferred regions of interest. For example,
users can visualize enrichments over all transcripts and/
or enhancers. In such case, the length will be normalized
throughout all regions. Any bed-formatted file can be
used for the metagenomic module.

Customizing NEAT modules

NEAT was developed as a user-friendly, intuitive and
versatile tool. As such, care has been taken to allow
users the ability to customize the pipeline for their
own needs. This includes easy customizable mapping
algorithms, mapping and filtering parameters, peak
calling algorithms and metagenenomic features (TSS,
transcripts, personal regions of interest, etc). In addition,
more advanced users can efficiently develop novel
modules as the code architecture has been written in a
robust, logical, highly redundant and well-annotated
manner. To add a new module, advanced users can
simply duplicate an existing module and integrate their
custom task into the script, usually consisting of a single
line of code. The NEAT framework fully automates
recurrent tasks such as batch job submissions, job
dependencies, job queuing, error management, filing,
etc., which greatly facilitates the creation of custom
modules. Full support and step-by-step explanations to
add customized modules can be found in the tutorials
(Additional files 1, 2, 5, 6 and 7).

Results
As this work presents a 'pipeline’, tangible results are in
the form of outputs (Fig. 3). Supporting arguments are
in-line.

Conclusion

Technological revolutions often drive and precede
biological revolutions. The omics field has not been im-
mune to this general rule. Such paradigm shifts are often
followed by a period of great adaptation. For massively
parallel sequencing, developing curriculums to educate
scientists with the proper skill sets will require some
time. Meanwhile, the life science community is in desper-
ate need for tools to support scientists that have been
trained prior to the sequencing of the human genome.
Although NEAT is not intended to replace thorough bio-
informatics analysis per se, we believe that it provides help-
ful tools to accompany scientists in the analysis of NGS
data and allow them to rapidly apply standard exploratory
data analysis methods to assess the quality of their experi-
ments within 24 h of the sequencing run completion.
Specifically, we strongly believe that providing wet-lab
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scientists with simple tools to facilitate rapid data
visualization, which is a significant bottleneck for many
users, will greatly benefit the community and will allow one
to better plan and foresee biological experiments without
the need to wait for thorough bioinformatics analysis.

NEAT was developed for a wide audience including sci-
entists with no a priori programming knowledge. To this
end, although NEAT should be self explanatory (double-
clickable application based), it comes with step-by-step
tutorials as well as two test datasets that will enable novice
users to follow through and reproduce entire ChIPseq and
RNAseq workflows. In addition, given the wide diversity
of interests in the life sciences, NEAT has been developed
to be versatile, easily customizable and applicable to a
wide variety of different genomes. Finally, the modular
structure of NEAT allows advanced users and computa-
tional core facilities to easily add and modify tasks,
customize settings and comply with internal rules and
regulations with minimal footprint to their existing
server architecture. Taken together, we believe NEAT
will be of general interest and has the potential to be
widely adopted for its versatility and ease of use.

NEAT is an open-source software under an MIT
license. NEAT, including tutorials and test data, is
publicly available on GitHub (https://github.com/
pschorderet/NEAT).

Availability and requirements
Project home page: https://github.com/pschorderet/NEAT
Operating system: Mac OSx
Programming language: Perl, R, Applescript
License: NEAT is an open-source software under an
MIT license

Additional files

Additional file 1: Quick guide ChIPseq. Step-by-step guide for the
analysis of ChIPseq datasets, including the provided test dataset. (PDF
834 kb)

Additional file 2: Quick guide RNAseq. Step-by-step guide for
the analysis of RNAseq datasets, including the provided test dataset.
(PDF 843 kb)

Additional file 3: Code architecture. Architecture of the provided
NEAT ChiPseq project after completion of all steps on the remote server.
The color code highlights which files are created during which step as
well as where they are stored. (PDF 34 kb)

Additional file 4: QC report. QC report generated by NEAT when
running the ChIP- and RNAseq test data set. (PDF 889 kb)

Additional file 5: Quick guide to add custom modules. Step-by-step
guide for the addition of custom modules. (PDF 360 kb)

Additional file 6: Code architecture schematic. Example of a
module’s architecture in NEAT. The left part schematically represents the
different steps that constitute each module. The right part represents
some example code and how it is imbricated. The example reflects NEAT
run on a torque manager system (qsub/PBS) though NEAT can be run on
other systems as well including LSF clsuters (bsub). (PDF 960 kb)
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Additional file 7: Code architecture. Code architecture for the
additional of custom modules. Custom code should replace the red font
(make sure the loop is correct depending on whether it is a ChiPseq or
RNAseq module). The module backbone as well as the submission
procedures are robust, highly repetitive and will automatically manage
job submission and queuing. (PDF 458 kb)
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