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Summary

Multivariate phase type distributions:
Applications and parameter estimation

The best known univariate probability distribution is the normal distribu-
tion. It is used throughout the literature in a broad field of applications.
In cases where it is not sensible to use the normal distribution alternative
distributions are at hand and well understood, many of these belonging to
the class of phase type distributions. Phase type distributions have several
advantages. They are versatile in the sense that they can be used to approx-
imate any given probability distribution on the positive reals. There exist
general probabilistic results for the entire class of phase type distributions,
allowing for different estimation methods for the whole class or subclasses of
phase type distributions. These attributes make this class of distributions
an interesting alternative to the normal distribution.

When facing multivariate problems, the only general distribution that al-
lows for estimation and statistical inference, is the multivariate normal dis-
tribution. Unfortunately only little is known about the general class of
multivariate phase type distribution. Considering the results concerning
parameter estimation and inference theory of univariate phase type distri-
butions, the class of multivariate phase type distributions shows potential
for similar great results.

My PhD studies were part of the the work package 3 of the UNITE project.
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The overall goal of the UNITE project is to improve the decision support
prior to deciding on a project by reducing systematic model bias and by
quantifying and reducing model uncertainties.

Research has shown that the errors on cost estimates for infrastructure
projects clearly do not follow a normal distribution but is skewed towards
cost overruns. This skewness can be described using phase type distribu-
tions. Cost benefit analysis assesses potential future projects and depend
on reliable cost estimates. The Successive Principle is a group analysis
method primarily used for analyzing medium to large projects in relation
to cost or duration. We believe that the mathematical modeling used in
the Successive Principle can be improved. We suggested a novel approach
for modeling the total duration of a project using a univariate phase type
distribution. The model is then extended to catch the correlation between
duration and cost estimates using a bivariate phase type distribution. The
use of our model can improve estimates for duration and costs and therefore
help project management to make the optimal decisions.

The work conducted during my PhD studies aimed at shedding light on the
class of multivariate phase type distributions. This thesis contains analytical
and numerical results for parameter estimations and inference theory for a
family of multivariate phase type distributions. The results can be used as a
stepping stone towards understanding multivariate phase type distributions
better. However, we are far from uncovering the full potential of general
multivariate phase type distributions. Deeper understanding of multivariate
phase type distributions will open up a broad field of research areas they
can be applied to.

This thesis consists of a summary report and two research papers. The work
was carried out in the period 2010 - 2014.



Resumé

Multivariate fasetypefordelinger:
Anvendelser og parameterestimering

Den bedst kendte univariate sandsynlighedsfordeling er normalfordelingen.
Den er grundigt beskrevet i litteraturen inden for et bredt felt af anven-
delsesområder. I de tilfælde, hvor det ikke er meningsfuldt at anvende nor-
malfordelingen, findes alternative sandsynlighedsfordelinger som alle er godt
beskrevet; mange af disse tilhører klassen af fasetypefordelinger. Fasetype-
fordelinger har adskillige fordele. De er alsidige forstået på den måde, at de
kan benyttes til at tilnærme en vilkårlig sandsynlighedsfordeling defineret på
den positive reelle akse. Der eksisterer generelle probabilistiske resultater
for hele klassen af fasetypefordelinger, hvilket bidrager til anvendelsen af
forskellige estimeringsmetoder på enten klassen af fasetypefordelinger eller
dens delklasser. Disse egenskaber gør klassen af fasetypefordelinger til et
interessant alternativ til normalfordelingen.

Når det kommer til multivariate problemer, så er den multivariate normal-
fordeling den eneste generelle fordeling, der tillader parameterestimering og
statistisk inferens. Desværre er kendskabet til egenskaberne af den multi-
variate fasetypefordeling stærk begrænset. Resultaterne for parameteres-
timering og inferensteori for den univariate fasetypefordeling indikerer et
potentiale for lignende gode resultater for klassen af multivariate fasetype-
fordelinger.
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Mit ph.d.-studium var en del af Work Package 3 i UNITE-projektet. UNITE-
projektet arbejder mod det overordnede mål at forbedre kvaliteten af beslut-
ningsgrundlaget for projekter. Dette gøres ved at reducere systematisk
model bias og ved at beskrive og reducere model usikkerheder generelt.
Forskning har vist, at afvigelsen fra omkostningsestimater for infrastruk-
turprojekter tydeligvis ikke er normaltfordelt men i stedet hælder mod
budgetoverskridelser. Denne skævhed kan beskrives med fasetypefordelinger.

Cost-benefit-analyser bruges til at evaluere potentielle fremtidige projekter
og til at udvikle pålidelige omkostningsvurderinger. Successiv Princippet
er en gruppebaseret analysemetode, der primært bruges til at prædiktere
omkostninger og varighed af mellem til store projekter. Vi mener, at den
matematiske modellering, der ligger til grund for Successiv Princippet, kan
forbedres. Vi foreslår derfor en ny tilgang til modellering af den samlede
varighed af et projekt ved hjælp af univariate fasetypefordelinger. Den
matematiske model er dernæst udvidet til også at beskrive korrelationen
mellem projektvarighed og omkostninger nu baseret på bivariate fasetype-
fordelinger. Vores model kan anvendes til at forbedre estimater for varighed
og omkostninger, og derved hjælpe projekters beslutningstagere til at træffe
en optimal beslutning.

Det arbejde, jeg har udført som en del af mit ph.d.-studium, sigtede efter
at belyse klassen af multivariate fasetypefordelinger. Denne afhandling in-
deholder analytiske og numeriske resultater for parameterestimering og in-
ferensteori for en gruppe af multivariate fasetypefordelinger. Resultaterne
kan betragtes som et første skridt i retning af en mere tilbundsgående
forståelse af multivariate fasetypefordelinger. Vi er imidlertid langt fra at
have afdækket det fulde potentiale af generelle fasetypefordelinger. En dy-
bere forståelse af multivariate fasetypefordelinger vil åbne op for et bredt
felt af anvendelsesområder.

Afhandlingen består af en opsummerende rapport og to videnskabelige ar-
tikler. Det bagvedliggende arbejde var udført i perioden 2010 til 2014.
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Symbols and Abbreviations

The following is a list of symbols and abbreviations used in the thesis. Be
aware that some symbols will have multiple meanings. However, for each
appearance it will be clear from the context which meaning the symbol
refers to.

Generally, upper case bold font letters denote matrices, lower case bold
font letters denote vectors, lower case italic font letters denote scalars or
scalar functions, upper case italic font letters denote random variables, and
calligraphic letters denote sets.

The list is not a complete list. Symbols, or meanings of symbols, which only
appear a few times, may have been omitted.

Symbols

F̄X(·) Survival function of the random variable X

〈·, ·〉 Inner product

A−1 Inverse of the matrix A

E(·) Expectation

MT transpose of matrix M

0 Matrix with all entries being zero

e Row vector of all ones

I Identity matrix

xv



⊗ Kroncker product

∼ Distributed as

' Equality in distribution

FX(·) Cumulative distribution of the random variable X

fX(·) Probability density function of the random variable X

Iq(·) Modified Bessel function of the first kind

L(·) Likelihood function

L0(·) log likelihood function

LX(·) Laplace-Stieltjes transform of the random variable X

Abbreviations

min Minimal group estimate

mode Most likely group estimate

BPH Bilateral phase type

BPH? Bilateral phase type?

CB Cost-benefit

CPH Continuous time phase type

DTU Technical University of Denmark

EM Expectation Maximization

LST Laplace-Stieltjes transform

max. Maximal group estimate

MBPH? Multivariate bilateral phase type?

MC Markov chain

MCMC Markov chain Monte Carlo

MEB Merge Event Bias

MJP Markov jump process



MPH Multivariate phase type by Assaf et al (1984)

MPH? Multivariate phase type as defined by Kulkarni (1989)

MVPH Multivariate phase type as defined by Bladt and Nielsen (2010)

PDE Partial differential equation

PH Phase type

SP Successive Principle

TPH Triangular phase type

UNITE Uncertainties in transport infrastructure evaluation





CHAPTER 1
Introduction

The research presented in this thesis has been conducted as part of the
UNITE (Uncertainties in Transport Infrastructure Evaluation) project. The
aim of the UNITE project is to improve the decision support prior to de-
ciding on a project by reducing systematic model bias and by quantifying
and reducing model uncertainties. The motivation for the UNITE project
and the work presented in this thesis comes from the recorded inaccuracy
of forecasts for planned projects (Lovallo and Kahneman, 2003). It seems
amazing that so much inaccuracy exist as "hundreds if not thousands of
billions of dollars - public and private- are currently tied up in the provision
of new infrastructure around the world" (Flyvbjerg et al, 2003a).

Flyvbjerg et al (2003b) investigated the actual project cost and compared
it to the forecast cost for 258 projects. Their result shows that on aver-
age the actual cost was 28% higher than the forecasted cost. The reasons
for underestimating the project cost cannot be clearly identified. Suggested
reasons include optimism bias and anchoring (Lovallo and Kahneman, 2003)
and political misrepresentation (Wachs, 1990). A simpler reason could be
inadequate models or the unpredictability of the future. Cost underesti-
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1. Introduction

Figure 1.1: Cost escalation in 258 transport and infrastructure projects (con-
stant prices) (Flyvbjerg et al, 2003b)

mation is not the only risk in infrastructure projects, Grimsey and Lewis
(2002) summarize at least nine different risks, one of these being operating
risk due to delays in construction.

The success of projects are classically defined by completion on time, to
budget and with appropriate quality (Williams, 2003). One of many ex-
amples for a project that failed at least two of these criteria is the Elbe
Philharmonic Hall in Hamburg. The original estimates from 2007, were
114 million Euro construction cost and a completion in 2010. The cur-
rent estimates are of 789 million Euro and a completion in 2016/2017. It
is questionable if the duration or the cost of projects are normally dis-
tributed. The underestimation of project costs and project durations is not
unique to infrastructure projects, they can be observed through all different

2



Figure 1.2: Elbe Philharmonic Hall; Example for delay and cost overrun

kinds of projects. Even software projects, which are mainly independent
of environmental influences, cannot be properly predicted (Jørgensen and
Moløkken-Østvold, 2006). The decision if a project is conducted is often de-
termined using a cost-benefit (CB) analysis. If the actual cost is higher than
the predicted cost, an alternative project could have been a wiser choice.
Similar arguments can be used in reference to the duration of projects. A
delay might, for example cause the loss of market share (electrical consumer
products) or revenue (toll roads). Recently, as part of the UNITE project
at DTU Transport Morten Skou Nicolaisen (Nicolaisen, 2012) and Jeppe
Andersen (Andersen, 2013) have collected data of transport infrastructure
projects. The data consist, e.g. of forecast cost as well as actually cost.
Further data is now being collected to relate the projects to other factors.

3



1. Introduction

This will be an interesting data base for applying and testing multivariate
models.

Current statistical models often assume normally distributed data. How-
ever, it is questionable if the duration or the cost of projects are normally
distributed. If the data is non-negative and skewed, a convenient choice used
in modeling are PH distributions as they can approximate any positive dis-
tribution arbitrarily close (Bladt, 2005). Hitherto, when facing multivariate
data the only general class of distributions allowing for statistical inference
are multivariate normal distributions. Despite the importance of the mul-
tivariate normal distribution, there are many cases where data is positive,
skewed and clearly non-normally distributed. Examples for this are found
in hydrology where simultaneous measurements of precipitation can be an-
alyzed using bivariate Gamma distributions (Yue et al, 2001), in medical
trials where they can be used to model the progress of a disease (Ahlström
et al, 1999). Multivariate PH distributions are characterized by having PH
distributed marginals. They can be used to approximate any multivariate
distribution, are straight forward to simulate and have an intuitive proba-
bilistic interpretation.

Considering the value of proper estimation methods for project cost as well
as project durations or even joint estimates for cost and duration of a
project, it is essential to provide an alternative to the normal and mul-
tivariate normal distribution. This need is even more driven by the lack of
evidence that costs or durations of projects are normally distributed. Con-
sidering univariate data, sufficient alternatives exist, allowing for modeling,
estimation and statistical inference for many different applications. For mul-
tivariate data, the options are rather limited. The versatility of multivariate
PH distributions make them a natural alternative to the multivariate nor-
mal distribution. There are very few general results for multivariate PH
distribution, one of them being the possibility to calculate all moments
analytically (Nielsen et al, 2010).

The research conducted during my PhD studies provides a first step into
the direction for estimation and statistical inference in the class of multi-
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variate PH distribution as defined by Kulkarni (1989). We have succeeded
in estimating parameters and conducting statistical inferences for a subclass
of bivariate distributions with Erlang distributed marginals which have a
broad field of applications. The inspiration for this research comes from
my external stay with Professor Mogens Bladt at the University of Mexico.
The results concerning estimations for MPH distributions have been sub-
mitted as Appendix A to the "Journal of Stochastic Modeling". The need
for estimation arises from mathematical modeling and fitting parameters
and models to data. We have altered and extended a project management
tool in order to model the entire duration of a project as a PH distributed
random variable, allowing us to state all distributional properties directly.
Furthermore, we have extended the method in order to deal with multi-
variate models, primarily in models describing the correlation between cost
and duration of projects. The results have been submitted as Appendix B
to the "European Journal of Transport and Infrastructure Research", and
show how MPH models can improve forecasts for infrastructure models.

In this thesis, Chapter 2 introduces phase type (PH) distributions and dif-
ferent methods for parameter estimation. In Chapter 3, I will introduce
multivariate phase type distributions. Chapter 4, will be used to present
my contribution to the research regarding parameter estimation for MPH
distributions. In Chapter 5, I will present an example for the use of PH
and MPH distributions in infrastructure projects. Finally, Chapter 6 will
be used to conclude the research conducted during this PhD studies and
discuss future areas of research.

I have tried to minimize the number of proofs in this thesis. With the
exception of the proof for Lemma 2.6, all proofs that do not refer to other
publications are results of my PhD studies.

5





CHAPTER 2
Univariate phase type

distributions

The best known distribution in statistical evaluations is the normal distribu-
tion. Especially when modeling error terms it is used frequently. However,
the normal distribution being a symmetric distribution with support on the
entire real axis makes it less suited to model many natural phenomena,
which for example, are not symmetric or perhaps only defined on the pos-
itive reals. In these cases PH distributions offer several advantages. One
advantage of PH distributions is the possibility to use them to approximate
any given distribution with non negative data. Furthermore, they provide
an easy stochastic interpretation and closed form solutions for the major-
ity of their statistical properties exist. One typical example is their use in
risk theory, for instance (Bladt, 2005), where claims can not be of negative
value. Neuts (1975) defined discrete time PH distribution as a probability
distribution on the nonnegative integers, "if and only if there exist a finite
Markov chain (MC) with a single absorbing state into which absorption is
certain, such that for some choice of the initial probabilities this distribution
is that of the time till absorption." Continuous PH distributions (CPH) are

7



2. Univariate phase type distributions

defined similarly on the positive reals by use of a continuous time Markov
chain. Continuous time Markov chains are also known as Markov jump
processes (MJP).

Neuts was the first to publish general results for the distribution of the
time until absorption of discrete time as well as continuous time MC. He
is known for naming them PH distributions, however, researchers before
him investigated special distributions which clearly belong to the class of
PH distributions. Some examples are Agner Krarup Erlang, who "observed
that the Gamma distribution with an integer valued shape parameter, may
be interpreted as a probability distribution constructed by sums of indepen-
dent exponential random variables" (Neuts, 1975). An application for this
distribution can be found in modeling telephone networks (Erlang, 1920).
Another pioneer has been David Cox (Cox, 1955) who generalized Erlangs
results to cover all distributions with rational Laplace transforms.

A way of stating CPH distribution is by using the representation (α,T) with
T being the sub-intensity matrix of (X(t); t ≥ 0) corresponding to the m
transient states and α correspondingly being the initial distribution among
the transient states, for a random variable τ we write τ ∼ PH(α,T). It
should be noted that the representation (α,T) for a given distribution is
not necessarily unique.

Definition 2.1. Continuous Phase type distribution Let (X(t); t ≥ 0) be
a Markov jump process on a discrete state space E = {1, 2, . . . ,m,m+ 1}
with statem+1 being an absorbing state and the states 1, . . . ,m being tran-
sient. We then define the stochastic variable τ = min {t ≥ 0 : X(t) = m+ 1}
as the time of absorption.

Let α be the initial distribution vector on the transient states so that
P (X(0) = i) = αi, αm+1 = P (τ = 0) the probability of starting in the
absorbing state, and Q be the generator matrix of X(t) with

Q =

(
T t
0 0

)
. (2.1)
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As Q is the generator matrix, T has negative diagonal entries, and for all
eigenvalues λi holds Re(λi) < 0. Furthermore T is invertible and t = −TeT

is called the exit vector. Here e = (1, . . . , 1) is a row vector of proper
dimension. I will use 0 for a matrix of appropriate dimension with all zeros.
When stating the representation of a PH distribution, often the minimal
representation is used.

Definition 2.2. Minimal representation of a PH distribution A representa-
tion (α,T) of a PH distribution is minimal if no other representation (β,S)
exists with dim(S) < dim(T).

Closed form solutions using matrix exponentials for the probability density
function fX(·) , the cumulative distribution function FX(x) = P (X < x)
as well as the Laplace-Stieltjes transform (LST) LX(·) exist.

The exponential of a matrix M is defined similarly to the definition of the
exponential for scalars as

exp(M) =
∞∑

i=0

Mi

i!
. (2.2)

Efficient numerical evaluation of the matrix exponential can be challenging.
There exist several papers on how to calculate the matrix exponential in
different ways, see for example Moler and Van Loan (1978) and Moler and
Van Loan (2003). Generally it is included in standard numerical software.
When calculating the matrix exponential of a sub generator matrix the
method of uniformization (e.g. Latouche and Ramaswami (1999)) can be
used, resulting in a more stable numerical procedure.

With Equation 2.2 and e = (1, . . . , 1) , a row vector of proper dimension,
these properties can we written as (Neuts, 1975)

fX(x) = αeTxt (2.3)
Fx(x) = 1−αeTxeT (2.4)
LX(s) = E[e−Xs] = αm+1 +α (sI−T)−1 t. (2.5)

9



2. Univariate phase type distributions

Here MT denotes the transpose of the matrix M. All moments can be
calculated by differentiating the LST and evaluating it at zero. The nth
moment of the random variable X is given by

E[Xn] = n!α(−T)−neT (2.6)

2.1 Closure properties of continuous phase type
distributions

The class of CPH is closed under standard operations such as addition,
finite mixtures, and order statistic. The closure properties can be exploited
when constructing mathematical models using different PH distributions.

Theorem 2.1. Addition of two PH random variables Let X ∼ PH(α,T)
and Y ∼ PH(β,S) be two independent and PH distributed random vari-
ables. Define the random variable Z = X + Y , then Z ∼ PH(γ,L) with
γ = (α, αm+1 · β) and

L =

(
T t · β
0 S

)
. (2.7)

Proof. The proof can be found in Neuts (1975).

The representation (γ,L) for Z is not unique. Since Z = X + Y = Y +X
also (γ?,L?) with γ? = (β,βm+1 ·α) and

L =

(
S s · β
0 T

)
. (2.8)

is a PH representation for Z. Generally it is assumed that the scalar αm+1

is zero, if αm+1 > 0 it is the probability of the underlying MJP starting in
the absorbing state, i.e. P (X = 0) = αm+1. It is then said that X has an
atom at zero.

10



2.1. Closure properties of continuous phase type distributions

It is a well known fact that the finite sum of independent exponentially dis-
tributed random variables results in an Erlang distributed random variable.
The Erlang distribution is a special case of the Gamma distribution where
the shape parameter is integer valued. The probability density function
for a random variable Z that is Gamma distributed with shape parameter
k ∈ R+ and intensity parameter λ ∈ R+ is defined as:

fZ(z) =
1

Γ(k)
λkzk−1e−λz. (2.9)

For k /∈ N, the Gamma distribution is not contained in the class of PH
distributions. If k ∈ N it is said that the random variable is Erlang k
distributed.

Example 2.1. Erlang distribution Define two exponentially distributed
random variables X ∼ exp(λ) and Y ∼ exp(λ). Their PH representa-
tion can be given by (α,T) = ((1), (−λ)). Furthermore define the random
variable Z = X + Y . Theorem 2.1 states that Z is as well PH distributed.
The PH representation is (γ,L) with γ = (1, 0) and

L =

(
−λ λ
0 −λ

)
. (2.10)

The random variable Z is Erlang two distributed with intensity parameter
λ and the representation is unique except for permutation. The density can
be given by Equation 2.9 using the general result for PH distributions as

fZ(z) = γeL·ze. (2.11)

A similar example can be constructed, choosing the random variables X
and Y to be again exponentially distributed but with different intensity
parameters. In that case Z is said to be generalized Erlang distributed,
and unlike Equation 2.9, Equation 2.11 would still be valid. A further
generalization is the Coxian distribution, allowing the MJP to reach the
absorbing state from any transient state.

11



2. Univariate phase type distributions

Example 2.2. Coxian distribution The PH representation of a Coxian dis-
tributed random variable X is (α,T) with α = (1, 0, . . . , 0) and

T =




−λ1 p1λ1 0 . . . 0 0

0 −λ2 p2λ2
. . . 0 0

...
. . . . . . . . . . . .

...

0 0
. . . −λk−2 pk−2λk−2 0

0 0 . . . 0 −λk−1 pk−1λk−1

0 0 . . . 0 0 −λk




. (2.12)

If p1 = p2 = . . . = pk−1 = 1 the Coaxian distribution is a generalized Erlang
k distribution.

Theorem 2.1 implies that the distribution of a weighted sum of independent
PH distributed random variables is contained in the class PH. Also finite
mixtures of independent and PH distributed random variables is again PH
distributed.

Theorem 2.2. Finite mixtures of PH random variables Let Xi ∼ PH(αi,Ti),
for i ∈ {1, . . . , k} be independent random variables. Define Z so that
P (Z = Xi) = pi and with that

fZ(z) =
k∑

i=1

piαie
Tizti. (2.13)

Here ti is the exit vector of the ith random variable. The distribution of
the random variable Z is a convex mixture of PH distributions, and Z ∼
PH(γ,L) with γ = (p1α1, . . . , pkαk) and

L =




T1 0 . . . 0
0 T2 . . . 0
...

...
. . .

...
0 0 . . . Tk


 . (2.14)

12



2.1. Closure properties of continuous phase type distributions

Proof. The proof can be found in Neuts (1975)

The hyper exponential distribution is one of the most prominent examples
of finite mixtures of PH distributed random variables and its distribution
can be constructed using Theorem 2.2.

Example 2.3. Hyper exponential distribution Let Xi ∼ exp(λi) for i ∈
{1, . . . , k} be k independent exponentially distributed random variables.
Furthermore choose pi so that pi > 0 and

∑k
i=1 pi = 1, construct the random

variable Z so that P (Z = Xi) = pi, then Z is a convex mixture of PH
distributed random variables and is itself PH distributed with representation
(γ,L) where

γ = (p1, . . . , pn) , (2.15)

L =




−λ1 0 . . . 0

0 −λ2
. . . 0

...
. . . . . .

...
0 0 0 −λn



. (2.16)

The density can again be stated using the PH representation or directly as
fZ(z) =

∑n
i=1 piλie

−λiz.

PH distributions are also closed under minimum and maximum operations.
It is useful to express the representation of the minimum and the maximum
of two PH random variables using the Kronecker product.

Definition 2.3. Kronecker Product Let A ∈ Rn×m and B ∈ Rq×r and
define Aij as the element of the ith row and the jth column of A. Then the
Kronecker product ⊗ is defined as

A⊗B =




A11B . . . A1mB
...

...
...

An1B
... AnmB


 ∈ Rn·q×m·r. (2.17)
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2. Univariate phase type distributions

For the minimum of two independent PH distributed random variables the
result comes from the following theorem.

Theorem 2.3. Minimum of two independent PH random variables Here
are γ = α⊗ β and

L =
(
T⊗ IY + IX ⊗ S

)
. (2.18)

The identity matrix IY has the dimensions of S and IX has the dimensions
of T.

Proof. The proof can be found in Neuts (1975).

Theorem 2.3 can be used to show that the minimum of two exponential
distributions is again an exponential distribution.

Example 2.4. Minimum of two exponentially distributed random variables
Choose X ∼ exp(λ1) and Y ∼ exp(λ2), define Z = min (X,Y ) then Z is
exponentially distributed with density

fZ(z) = (λ1 + λ2)e−(λ1+λ2)z. (2.19)

The random variable Z is of PH type and one representation is (γ,L) with
γ = (1) and

L =
(
(−λ1)⊗ IY + IX ⊗ (−λ2)

)
=
(
−(λ1 + λ2)

)
. (2.20)

Using Equation 2.3, the density of Z is identical to the result in Equation
2.19

fZ(z) = γeLze = 1e−(λ1+λ2)z(λ1 + λ2). (2.21)

The maximum of two random variables can be derived using theorem 2.3
and

max(X,Y ) = X + Y −min(X,Y )

= min(X,Y ) + (X −min(X,Y )) + (Y −min(X,Y )) .

14



2.1. Closure properties of continuous phase type distributions

We know from Theorem 2.3 that min(X,Y ) is of PH type. The difference
X−min(X,Y ) is not independent, but gives an idea for how to calculate the
maximum of two independent and PH distributed random variables. The
difference of two independent and PH distributed random variables can be
used to construct bilateral PH (BPH) distributions (Ahn and Ramaswami,
2005). It is an extension of PH distributions to the entire real axis.

Theorem 2.4. Maximum of two independent PH distributed random vari-
ables Let X ∼ PH(α,T) and Y ∼ PH(β,S) be two independent PH ran-
dom variables. Then Z = max(X,Y ) is again PH distributed with repre-
sentation (γ,L). Where γ = (α⊗ β) and

L =




T⊗ IY + IX ⊗ S IX ⊗ s t⊗ IY
0 T 0
0 0 S


 (2.22)

Proof. The proof can be found in Neuts (1975).

The first entry of the sub generator matrix L, is the sub generator of the
distribution of min(X,Y ). Afterwards the Markov jump process continues
with the duration of the remaining variable. The entries IX ⊗ s and t⊗ IY
ensure that the remaining lifetime ofX or Y continuous in the proper phase.

The exponential distribution is memoryless. The distribution of the max-
imum of two independent exponentially distributed random variables is
therefore a mixture of generalized Erlang distributions.

Example 2.5. Maximum of two exponentially distributed random variables
Choose againX ∼ exp(λ1) and Y ∼ exp(λ2), define Z = max (X,Y ). Theo-
rem 2.4 states that random variable Z is PH distributed with representation
(γ,L) with γ =

(
1 0 0

)
and

L =



−(λ1 + λ2) λ2 λ1

0 −λ1 0
0 0 −λ2


 . (2.23)

15



2. Univariate phase type distributions

From Theorem 2.3 we know that the minimum of X and Y is exp(λ1 + λ2)
distributed. Depending on which random variable is equal to the minimum
is the remaining lifetime either exp(λ1) or exp(λ2) distributed.

It is sufficient to focus on two independent random variables. The extension
to more than two random variables is straight forward since

max(x, y, z) = max(x,max(y, z)) (2.24)

as well as
min(x, y, z) = min(x,min(y, z)). (2.25)

Aside from being closed under maximum and minimum operations, PH
distributions are also closed under general order statistics.

Lemma 2.5. For i ∈ {1, . . . , n} let Xi be n independent and PH distributed
random variables. Define their order statistics as

{
X(1,n), . . . , X(n,n)

}
, where

X(1,n) = min {X1, . . . , Xn} and X(n,n) = max {X1, . . . , Xn}. The ith order
statistic X(i,n) is the ith smallest random variable and again PH distributed.

Proof. The proof can be found in Assaf and Levikson (1982).

The class of all PH distributions is infinitely large and consists of certain
subclasses. Further focus will be on the subclass of PH distributions where
the sub generator matrix can be expressed as an upper triangular matrix.
A quadratic matrix M can be called upper triangular when all sub diagonal
elements are zero

M =




m11 m12 . . . m1n

0 m22 . . . m2n
...

. . . . . .
...

0 . . . 0 mnn


 . (2.26)
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2.1. Closure properties of continuous phase type distributions

2.1.1 Closure properties of PH distributions with upper
triangular sub generator Matrix

The sub generator matrix of a PH distribution can be of almost any shape.
Only few restrictions hold, e.g. it has to be a quadratic matrix where
the diagonal elements are negative, the off diagonal elements are negative,
and the row sums have to be smaller or equal to zero. A special subclass
contained in the class of PH distribution consist of all PH distributions with
an upper triangular sub generator matrix.

Definition 2.4. Triangular phase pype distribution A PH distribution is
called Triangular PH (TPH) distribution if there exist a representation
where its sub generator matrix is an upper triangular matrix.

A PH distribution with non negative initial distribution can be expressed as
a TPH if all poles of its LST are real (O’Cinneide, 1991). Upper triangular
matrices have several advantages. One example is the calculation of the
inverse:

Lemma 2.6. Inverse of an upper triangular block matrix For a quadratic
matrix M of the following structure

M =

(
A B
0 C

)
(2.27)

the inverse M−1 is

M−1 =

(
A−1 −A−1BC−1

0 C−1

)
. (2.28)
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2. Univariate phase type distributions

Proof. By direct verification

MM−1 =

(
A B
0 C

)
·
(

A−1 −A−1BC−1

0 C−1

)
(2.29)

=

(
AA−1 A(−A−1BC−1) + BC−1

0 CC−1

)
(2.30)

=

(
I −BC−1 + BC−1

0 I

)
(2.31)

= I. (2.32)

The opposite direction M−1M can be calculated exactly the same way.

If M is the sub generator of a TPH then A and C are again upper triangular
matrices. Successive use of Lemma 2.6 makes the inversion of the sub
generator computationally cheap. When calculating the moments of PH
distributions (see Equation 2.5), it is necessary to calculate the inverse of
the sub generator matrix. For TPH distributions the computational cost of
inverting the sub generator is smaller compared to distributions which are
not generated by an upper triangular sub generator matrix. Other numerical
advantages are at hand. The class of TPH distributions has some of the
same closure properties as the complete class of PH distributions.

Theorem 2.7. Closure of the class of TPH TPH is the smallest class con-
taining all exponential distributions which is closed under finite mixtures,
finite convolutions and the formation of coherent systems.

Proof. The proof can be found in Assaf and Levikson (1982).

The expression formation of coherent systems come from reliability theory
and describe systems that fail once a certain number of components are not
functional. A simple example for a PH distribution belonging to the class
of TPH is the Erlang distribution from Example 2.1.
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2.2. Fitting PH distributions

Example 2.6. Sum of two Erlang distributed random variables Let X ∼
Er(2, λ) and Y ∼ Er(3, µ) be two independent and Erlang distributed
random variables. Define Z = X + Y , Z is then PH and more specific THP
distributed with representation (γ,L) where

γ = (1, 0, 0, 0, 0),

L =




−λ λ 0 0 0
0 −λ λ 0 0
0 0 −µ µ 0
0 0 0 −µ µ
0 0 0 0 −µ



.

Obviously, the matrix L is of upper triangular shape and therefore Z belongs
in the class of THP.

Theorem 2.7 makes the class of TPH distributions an interesting subclass.
Especially when modeling complex systems, the state space grows fast and
direct numerical inversion of the sub generator matrix can be both instable
as well as computationally expensive. Another advantage of TPH distri-
butions is the number of transitions before absorption has a finite upper
bound. This is an advantage when simulating PH distributions where it is
impossible to consider an unbounded number of transitions.

2.2 Fitting PH distributions

Probability distributions are used to describe and predict non-deterministic
behavior. A famous example from finance is the Black-Scholes model (Black
and Scholes, 1973) which is used for predicting option prices. Fitting proba-
bility distributions is about finding the distribution that best suits the given
data. The best fit of data can be achieved through different approaches,
e.g. moment matching, maximum likelihood estimation and Markov chain
Monte Carlo (MCMC) methods.

In this Section we will describe a maximum likelihood related approach
for fitting PH distributions, more specifically the expectation maximization
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2. Univariate phase type distributions

(EM) algorithm. The method seems to be of great potential for the general
class of multivariate phase type distributions. The EM algorithm also allows
for statistical inference. Asmussen et al (1996) applied the EM algorithm to
PH distributions and made it a common tool for fitting PH distributions.

Section 2.2.1 will be used to describe the basic concept of the EM algorithm
and to state specific results for its application to PH distributions. Section
2.2.2 is then used to introduce the Fisher information matrix and I will
briefly explain how to calculate it via the EM algorithm. There are some
difficulties that can arise when fitting PH distributions, e.g. the problem
of non unique representations (Neuts, 1975; O’Cinneide, 1989) also known
as over parameterization (Fackrell, 2005), making statistical inference in-
feasible. Therefore it is essential to ensure that the representation is unique
with the exception of permutations.

2.2.1 The Expectation Maximization algorithm and its
application to parameter estimation of PH
distributions

The EM algorithm is generally associated with Dempster et al (1977), how-
ever its roots go back to earlier work, e.g. Baum et al (1970) derived max-
imization techniques for the statistical analysis of Markov chains. Though
earlier work has dealt with iterative maximum likelihood estimation tech-
niques, Dempster et al (1977) generalized the specific results and named the
method. It is an iterative method for calculating maximum likelihood esti-
mates for probability density functions in cases with missing data or where
a direct evaluation of the observed data likelihood function is difficult. As
the name indicates, the algorithm contains two different steps. The expecta-
tion (E) step replaces the missing (unobserved) data with their conditional
expectation given the current parameter estimates as well as the observed
data. In the maximization (M) step, maximum likelihood estimates of the
parameters are calculated based on the observed data as well as the expec-
tations obtained through the E step. In a more general setting, maximum
likelihood estimators Θ̂ for a parameter vector Θ = (Θ1, . . . ,Θk) maxi-
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2.2. Fitting PH distributions

mize the likelihood function L(Θ; y) of a set of independent observations
y =

{
y(1), . . . , y(n)

}
. More specific, if f(y(i); Θ1, . . . ,Θk) is the probabil-

ity density function for observation i given the parameter vector Θ and y
consist of i.i.d. distributed data, the likelihood function can be written as

L(Θ; y) =

n∏

i=1

f(y(i); Θ). (2.33)

When the likelihood function is twice differentiable for Θ, then the maxi-
mum likelihood estimate Θ̂ can only take the values (Θ1, . . . ,Θk) for which

∂L(Θ; y)

∂Θi
= 0 ∀i ∈ {1, . . . , k} . (2.34)

In case the parameter space is bounded, also the boundaries become can-
didates for the the maximum likelihood estimates. The likelihood function
is locally maximized when the likelihood function around Θ̂ is convex, i.e.
the Hessian

H (L(Θ; y)) =




∂2L(Θ;y)
∂2Θ1

. . . ∂2L(Θ;y)
∂Θ1∂Θk

... . . .
...

∂2L(Θ;y)
∂Θk∂Θ1

. . . ∂2L(Θ;y)
∂Θk∂Θk


 (2.35)

is negative definite, in other words all eigenvalues of H (L(Θ; y)) have to be
negative.

Often analyzing a transformation of the likelihood function simplifies the
analysis at hand. The logarithm is a monotone and continuous function
well suited. It is the most important transform for likelihood functions,
transforming the product of the probability density functions into a sum
of the logarithm of the probability density functions. Analyzing the log
transform L0(Θ; y) of the likelihood function L(Θ; y) will result in the same
maximum likelihood estimates. The log likelihood function is defined as:

L0(Θ; y) = log(L(Θ; y)) =
n∑

i=1

log(f(y(i); Θ)). (2.36)
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2. Univariate phase type distributions

If the second derivative of L0(Θ; y) exists, it also exists for the likelihood
function and it can be used for obtaining the Fisher information. The
Fisher information matrix can be used to estimate the inverse of the variance
covariance matrix of the maximum likelihood estimates.

Definition 2.5. Observed data (Fisher) Information Matrix The entries of
the observed data information matrix I(Θ; y) for a parameter vector Θ and
the observed data y is given by the second derivative of the observed data
log likelihood function with respect to Θ, in other words

Iij(Θ, y) = −∂
2L0(Θ, y)

∂ΘiΘj
. (2.37)

Section 2.2.2 will summarize a procedure for calculating the Fisher infor-
mation matrix for parameter estimates obtained through the EM algorithm
reusing calculations used in the EM algorithm. Evaluating the likelihood
function through the EM algorithm will result in the same estimates as a
direct evaluation of the likelihood function. If more than one local maxima
of the likelihood function exist, it is not possible to determine beforehand
to which maxima either method will converge.

When using the EM algorithm, it is assumed that two sets of data exist. The
observed data y which is incomplete and the complete data x which contains
y and an unobserved part z. If the underlying probability distribution
function of the data belongs to the family of exponential distributions, e.g.
a MJP, it is possible to substitute z with its sufficient statistic (Asmussen
et al, 1996). The general procedure for the EM algorithm is described in
Algorithm 1.

To fit a PH distribution to given data, the representation (α,T) is to be
estimated. Often the only available data at hand is the time of absorption;
in this case the likelihood function is

L(α, T ; y) =
n∏

i=1

αeTy
(i)

t. (2.38)
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2.2. Fitting PH distributions

Algorithm 1: The EM algorithm

1. Choose an initial parameter vector Θ0 and set i=0.

2. (E-step) Calculate the expectation of z given the current estimate
Θi as well as the observed data

ẑ = E[z|y,Θi]

3. (M-step) Find the parameter vector that maximizes the likelihood or
log likelihood function

Θi+1 = argmaxΘL(Θ, ẑ, y) = argmaxΘL0(Θ, ẑ, y).

4. If |L(Θi+1, ẑ, y)−L(Θi, ẑ, y)| < ε stop and choose Θ̂ = Θi+1 else set
i = i+ 1 and go to 2, the E-step.

A PH distribution is generated by the time until absorption of the underly-
ing MJP, i.e. by the first time the MJP enters the absorbing state. If only
one observation y = (y(1)) is available the complete data x = (x(1)) about
the MJP consist of the information about the initial state of the MJP, the
sojourn time during each visit for each state, as well as how often it jumped
from state i to state j, and the last visited state prior to absorption in state
m+ 1. Assuming that the complete MJP has been observed the number k
of jumps prior to absorption is known and with that the complete data can
be written as x = (s0, S0, . . . , sk−1, Sk−1) where Si is the ith state visited
and si is the sojourn time of that visit for the MJP. For a PH distribution
with representation (α,T) the likelihood function of this observation can
be written as

L(α,T;x) = αS0e
TS0S0

·s0TS0S1e
TS1S1

·s1TS1S2 . . . e
TSk−1Sk−1

·sk−1tSk−1
.

(2.39)
The term Tij refers to the entry that is in the ith row and jth column of
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2. Univariate phase type distributions

the sub generator matrix T and ti refers to the ith entry in t. Due to the
product form of Equation 2.39, the sufficient statistic consists of (Bi, Zi, Nij)
for i ∈ {1, . . . ,m} and j ∈ {1, . . . ,m,m+ 1} with Bi equal one if the MJP
initiated in state i and 0 otherwise, Zi equal the accumulated sojourn time
in state i and Nij be the total number of jumps from state i to state j.
If we define Ti m+1 = ti, the complete data likelihood and log likelihood
function can be written as

L(α,T;x) = f(α,T;x) =
m∏

i=1

αBi
i

m∏

i=1

eTiiZi

m∏

i=1

m+1∏

j=1,j 6=i
T
Nij

ij

L0(α,T;x) =
m∑

i=1

Bi log(αi) +
m∑

i=1

TiiZi +
m∑

i=1

m∑

j=1,j 6=i
Nij log(Tij).

The structure of Equation 2.39, makes it straight forward to cover the
case where more than one observation is available. Assume that y =

(y(1), . . . , y(w)) and let B(k)
i , Z(k)

i , and N
(k)
ij be the sufficient statistics for

the kth observation. Since the log likelihood function is linear with respect
to the sufficient statistics we can redefine

Bi =

w∑

k=1

B
(k)
i , Zi =

w∑

k=1

Z
(k)
i , Nij =

w∑

k=1

N
(k)
ij

for i = 1, . . . ,m, j = 1, . . . ,m,m+ 1 and j 6= i. Regardless if one or several
observations are at hand, the challenge of applying the EM algorithm lies in
calculating Eα,T[B

(k)
i |y(k)], Eα,T[Z

(k)
i |y(k)], and Eα,T[N

(k)
ij |y(k)]. Asmussen

et al (1996) managed to derive closed from solutions for these expectations
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2.2. Fitting PH distributions

using mainly probabilistic arguments and obtained:

Eα,T[B
(k)
i |y(k)] =

αie
T
i e

Ty(k)t

αeTy
(k)

t
,

Eα,T[Z
(k)
i |y(k)] =

∫ yk
0 αeTueie

′
ie

T(yk−u)tdu

αeTut
,

Eα,T[N
(k)
ij |y(k)] =

Tij

∫ yk
0 αeTueie

′
je

T(yk−u)tdu

αeTykt
,

Eα,T[N
(k)
im+1|y(k)] =

tiαe
Tykei

αeTykt
for i, j ∈ {1, . . . ,m} . (2.40)

Given the sufficient statistic, differentiating and evaluating L0(α,T;x) re-
sults in the following maximum likelihood estimates:

T̂ij =
Nij

Zi
, α̂i =

Bi
w
∀i, j. (2.41)

The results from Equation 2.41 together with Equation 2.40 can be used in
Algorithm 1. However, evaluating the expressions for the conditional expec-
tations directly can be rather costly mainly due to the numerical integra-
tion. Alternatively, the equations can be used to establish a linear system
of homogeneous differential equations that can be solved using standard
methods, such as the Runge-Kutta method (Asmussen, 1992). Yet another
approach to reduce the calculation cost is the prior mentioned method of
uniformization (Bladt et al, 2011).

2.2.2 Fisher Information Matrix for estimates obtained
through the EM algorithm

In order to fit a probability distribution to data and make the distribution
usable for practitioners it is essential to estimate the unknown parameters.
However, using estimates without knowledge of their quality is a risky game.
The EM algorithm is often used in order to obtain maximum likelihood esti-
mates while avoiding to evaluate the observed data likelihood and its deriva-
tives. The EM algorithm has been criticized for the lack of possibility to
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2. Univariate phase type distributions

calculate the Fisher Information matrix. This issue has been addressed and
solved by Oakes (1999). His paper is a standard reference concerning Fisher
information in connection to the EM algorithm. McLachlan and Krishnan
dedicated an entire book to the EM algorithm (McLachlan and Krishnan,
2007), collecting several methods for obtaining the Fisher information. A
more specialized approach comes from Bladt et al (2011), they use the idea
of Oakes (1999) and combine it with the method of uniformization to apply
the EM algorithm to PH distributions with a minimal representation.

Oakes (1999) calculated the Fisher information by using the complete data
likelihood function. Define the score statistics of the complete data x as the
gradient of the complete data log likelihood function

Sc(x,Θ) =
∂L0(Θ, x)

∂Θ
(2.42)

then the Fisher information matrix can be written as:

I(Θ̂, y) = EΘ

[
− ∂2L0(Θ̂, x)

∂Θ, ∂ΘT

∣∣∣∣∣ y
]
− EΘ

[
Sc(x,Θ)Sc(x,Θ)T |y

]
. (2.43)

The second term in Equation 2.43 is often referred to as the missing in-
formation due to the incomplete data. The error terms of the estimates
are asymptotically multivariate normal distributed, and the inverse of the
Fisher information matrix can be used to approximate the variance of the
estimates. When estimating parameters that are bound to the positive axis,
e.g. when estimating intensity parameters of exponential distributions, the
error of the estimates can not be normally distributed. A solution is to
use the Fisher information matrix that approximates the error on the es-
timates for the log parameters to establish confidence intervals. Reversing
the log transform then yields sounder confidence intervals for the estimated
non-transformed parameters.

When estimating parameters for PH distributions, explicit expressions for
calculating the Fisher information matrix can be given (Bladt et al, 2011).
Their approach is based on Oakes (1999) splitting the log likelihood function
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2.2. Fitting PH distributions

similarly to Equation 2.43. For observed data y = (y(1), . . . , y(w)) of a MJP
with representation (α,T) on a m dimensional state space they express the
Fisher information matrix in terms of first derivatives with respect to α and
T of

Ui =
w∑

l=1

eTi e
Tylt

αeTylt
(2.44)

Wi =

w∑

l=1

αeTylt

αeTylei
(2.45)

Vij =

w∑

l=1

1

αeTylt

∫ yl

0
eTj e

T(yl−u)tαeTueidu. (2.46)

There is an obvious connection between the results in Equation 2.46 and
the results for calculating the conditional expectations from Equation 2.40.
These general results concerning the Fisher information matrix when ob-
taining estimates via the EM algorithm for PH distribution, as well as the
analytical results for calculating the conditional expectation of the sufficient
statistics, are based on two attributes of PH distributions: The closed form
solutions (see for example Equation 2.3) for most stochastic properties and
the probabilistic structure of the underlying MJP.

Often, natural pheonoma and therefore available data is not univariate.
This causes a demand for similar results for multivariate data. Due to the
lack of proper alternatives, the standard approach is to use the multivariate
normal distribution.
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CHAPTER 3
Multivariate phase type

distributions

An alternative to the class of multivariate normal distributions, when ana-
lyzing multivariate data, is the class of multivariate PH distributions. The
differences between multivariate PH distributions and multivariate normal
distributions are similar to the differences between univariate PH distri-
butions and univariate normal distributions. Where multivariate normal
distributions are symmetric distributions on Rn, multivariate PH distribu-
tions are only defined on Rn+ and the marginals are skewed. Multivariate
phase type distributions are a generalization of the univariate class of PH
distributions to higher dimensions. They can be characterized similarly to
the multivariate normal distribution where a vector Y = (Y1, Y2, . . . , Yn) is
multivariate normal distributed if and only if every linear combination of
the entries of Y is univariate normal distributed. Hitherto there are three
different ways of defining classes of MPH distributions. These definitions
are in chronological order from Assaf et al (1984), Kulkarni (1989), and
Bladt and Nielsen (2010).

29



3. Multivariate phase type distributions

In the following sections, I will present the definitions of the different classes
of multivariate PH distributions. Though they are all extensions of the uni-
variate case, they are partly subclasses of each other, they are of different
structure and use different abbreviations to clarify which class and con-
struction is used. I will not proceed in chronological order. In Section 3.1
I will introduce the class of multivariate PH distributions by Assaf et al
(1984). This class uses several different absorbing states in the construction
of the multivariate random vector and is denoted with MPH. Section 3.2
will be used to briefly introduce the class of multivariate phase type distri-
butions as defined by Bladt and Nielsen (2010). This class is defined using
projections of the marginal distributions of a multivariate random vector.
In order to distinguish this class from the class of MPH distributions we
will denote it with MVPH. The focus will be on Section 3.3, introducing
the class of multivariate PH distributions defined by Kulkarni (1989). He
denoted his class with MPH? to distinguish it from the class of MPH distri-
butions. This class is based on using a MJP with only one absorbing state,
resulting in a promising structure for parameter estimation as well as for
stochastic modeling.

3.1 Multivariate PH distribution by Assaf et al

Assaf et al (1984) extended the univariate class of PH distributions by
one of two straightforward extensions. Where a univariate PH distribution
is constructed by an absorbing MJP and the distribution of time until it
reaches the absorbing state, they used an absorbing MJP and considered
the joint distribution of times until certain subspaces are reached for the
first time. The times until these subspaces are reached define the random
vector Y.

Definition 3.1. The class of MPH distributions Let {X(t)}t≥0 be a MJP
on a finite state space E with one absorbing state m + 1. Let Γi, i ∈
{1, 2 . . . , n}, be nonempty absorbing subspaces of E, with

⋂
i Γi = m + 1.

Define Yi = inf {t ≥ 0 : X(t) ∈ Γi} as the first hitting time of Γi by the
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3.2. Multivariate PH distributions by Bladt and Nielsen

MJP. The vector Y = (Y1, . . . , Yn) is said to be multivariate phase type
distributed in the class of MPH distributions.

The following example should clarify the term "‘nonempty absorbing sub-
spaces"’.

Example 3.1. Absorbing subspaces in the class of MPH distributions Let us
consider a bivariate MPH distributed random variable Y = (Y1, Y2) where
the underlying MJP {X(t)}t≥0 is on the state space E = {1, 2, 3, 4, 5}, with
5 being the absorbing state, and with sub generator matrix

T =




−λ1 λ1 0 0
p · λ2 −λ2 (1− p) · λ2 0

0 0 −λ3 λ3

0 0 p · λ4 −λ4


 .

In this example Y1 = min(t ≥ 0 : X(t) = {3, 4, 5}) and Y2 = min(t ≥ 0 :
X(t) = 5), once the MJP reaches the state 3 it can never jump back to the
states 1 and 2. With other words Γ1 = {3, 4, 5} and Γ2 = {5}.

Similar to the class of PH distributions, there exist general procedures for
deriving the survival function, the LST, as well as all moments for an MPH
distribution. However, these procedures do not result in closed form ex-
pressions. Furthermore, this class is closed under similar operations as the
univariate class, e.g. finite mixtures (Assaf et al, 1984). Due to the use
of overlapping absorbing subsets the sub generator matrix has to consist of
block matrices where the lower diagonal blocks consist of zeros.

3.2 Multivariate PH distributions by Bladt and
Nielsen

Bladt and Nielsen (2010) defined multivariate PH distributions in relation
to univariate PH distributions, similar to how the multivariate normal dis-
tribution can be defined in terms of the univariate normal distributions.
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3. Multivariate phase type distributions

Definition 3.2. The class of MVPH distributions A vectorX = (X1, . . . , Xn)
follows a multivariate phase type distribution (MVPH) if the inner prod-
uct 〈X,a〉 has a (univariate) phase type distribution for all non-negative
vectors a where a 6= (0, . . . , 0).

They argued that the class of MPH? distributions by Kulkarni is a subclass
of the class of MVPH distributions. This can be shown directly using Def-
inition 3.2 as well as Theorem 6 from Kulkarni (1989). Hitherto it is not
clear if it is a strict subset or if the class of MPH? distributions equals the
class of MVPH distributions but it can be shown that all distribution con-
tained in the class of MPH? are contained in the class of MVPH (Bladt and
Nielsen, 2010) From a mathematical perspective Definition 3.2 is elegant
and creates an analogue to the definition of a multivariate Normal distri-
bution. However, Definition 3.2 is not intuitive when modeling stochastic
phenomena. The class of MVPH is not well understood and requires further
investigation.

3.3 Multivariate PH distributions by Kulkarni

Kulkarni (1989) used a different approach than Assaf et al (1984) as well as
than Bladt and Nielsen (2010). He constructed a class of multivariate PH
distribution called MPH? by using linear combinations of the occupation
times prior to absorption of a univariate PH distribution. Furthermore, he
showed that the class MPH by Assaf is a strict subset of MPH?.

Definition 3.3. Multivariate phase type? distributions Let {X(t), t ≥ 0}
be a MJP with state space E = {1, . . . ,m,m+ 1} and PH representation
(α,T). Define the random variable τ = min(t ≥ 0 : X(t) = m+ 1) as the
time of absorption and define the non-negative reward matrix R

R =




r11 r12 . . . r1n

r21 r22 . . . r2n
...

... . . .
...

rm1 rm2 . . . rmn


 (3.1)
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3.3. Multivariate PH distributions by Kulkarni

and rj(i) = rij . With that, construct the random variables

Yj =

∫ τ

0
rj (X(t)) dt, 1 ≤ j ≤ n. (3.2)

The random vector Y = (Y1, . . . , Yn) is then said to follow an MPH? distri-
bution.

I will use Example 3.1 to show how to construct an MPH? representation
for any given MPH distribution. This can be understood as an intuitive
proof of MPH⊆MPH?.

Example 3.2. Deriving an MPH? representation for a given MPH dis-
tribution Let us consider the bivariate MPH distributed random variable
Y = (Y1, Y2) from Example 3.1, the underlying MJP {X(t)}t≥0 is on the
state space E = {1, 2, 3, 4, 5}, with 5 being the absorbing state, and with
sub generator matrix

T =




−λ1 λ1 0 0
p · λ2 −λ2 (1− p) · λ2 0

0 0 −λ3 λ3

0 0 p · λ4 −λ4


 .

In the example the random variables are defined as Y1 = min(t ≥ 0 :
X(t) = {3, 4, 5}) and Y2 = min(t ≥ 0 : X(t) = 5). An MPH?(α,T?,R)
representation is α = (1, 0, 0, 0), T? = T and

R =




1 1
1 1
0 1
0 1


 . (3.3)

In a similarl manner it is possible to find an MPH? representation for all
distributions belonging to the class of MPH distributions.
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3. Multivariate phase type distributions

The restrictions for the sub generator matrix of an MPH? distribution are
the same as in the univariate case, making it possible to extend any uni-
variate PH distribution to an MPH? distribution. It can be shown that any
given MPH distribution can be expressed in terms of at least one MPH?

representation. When simulating multivariate PH distributions, in case of
MPH distributions, the hitting times of different subspaces are essential.
When simulating MPH? distributions, the occupation times in the different
states prior to absorption of the underlying MJP are of interest.

Recent work by Esparza (2011) shows how the results from the EM algo-
rithm for parameter estimation of univariate PH distributions can be mod-
ified to obtain parameter estimates for a subclass of MPH?. The results
can only be applied to MPH? distributions when the state space of the un-
derlying MJP can be split into absorbing and overlapping subspaces. For
a bivariate PH? distribution the sub generator matrix T has to be of the
following form:

T =

(
T1 T12

0 T2

)
. (3.4)

The structure used by Esparza (2011) is only applicable to a small subclass
of the the general class of MPH? distributions.

The class MPH? can be used to construct distributions on the whole reals by
using a reward vector that is not necessarily non-negative (Bladt et al, 2013).
This class is called the class of bilateral phase type? (BPH?) distributions.
The original idea for constructing BPH distribution goes back to Ahn and
Ramaswami (2005), and the class can be reconstructed when the reward
vector of a BPH? distribution is a non-zero vector with real valued entries.
The class of BPH? can easily be extended in a multivariate setting denoted
MBPH? (Bladt et al, 2011). Once the class of MPH? is better understood
and general results are available, it is likely that these results can be used
for analyzing the class of MBPH?.

Numerous examples of multivariate mixtures of exponential distributions
can be found in Kotz et al (2000). A number of them are contained in the
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3.3. Multivariate PH distributions by Kulkarni

exp(λ1) exp(λ2)
1− ρ

ρ

r1(1) r2(2)

Y1 Y2 .
Figure 3.1: Graphical depiction of Kibble’s bivariate mixtures of exponential
distributions

class of MPH? (Bladt and Nielsen, 2010) and are used as typical examples.
One specific bivariate distribution is the Kibble distribution.

Example 3.3. Kibble’s bivariate mixtures of exponential distributions The
Kibble distribution (Kibble, 1941) is a bivariate mixture of Gamma distri-
butions with shape parameter k1 and k2, intensity parameters λ1 and λ2

and correlation parameter ρ. When k1 = k2 = 1, an MPH? representation
can be given with α = (1, 0) and

T =

(
−λ1 λ1

ρ · λ2 −λ2

)
,R =

(
1 0
0 1

)
. (3.5)

This representation can be depicted graphically as shown in Figure 3.1. The
probability density function for Kibble’s bivariate mixture of exponential
distributions can for example be found in Kotz et al (2000). Alternately,
it can be derived by conditioning on the number of times the different
states are visited. Conditioned on the number of visits, the accumulated
occupation times in each state are independent and Erlang distributed.
The density of Kibble’s bivariate mixture of exponential distributions can
be written as

fY1,Y2(y1, y2) = λ1λ2e
−λ1y1−λ2y2(1− ρ)I0(2

√
ρλ1y1λ2y2) (3.6)
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3. Multivariate phase type distributions

where Iq(z) =
∑∞

i=0
1

i!Γ(i+q+1)

(
z
2

)2i+q is the modified Bessel function of the
first kind.

Opposite to the class MPH by Assaf, for distributions contained in the class
MPH? there exist no general procedures for constructing the probability
density function and the survival function, i.e. the expressions need to be
derived individually for each distribution. However, Kulkarni (1989) derived
methods for obtaining the LST, for simulation as well as systems of linear
partial differential equations (PDE) for the survival function. The survival
function F̄ (x) of a random variable X is defined as P (X > x):

F̄ (x) = 1− F (x). (3.7)

The survival function for an MPH? distributed random vector Y can be
derived using the survival function conditioned on the initial state of the
underlying MJP (X(t), t ≥ 0) on the state space E = {1, . . . ,m,m+ 1}. It
is defined as

F̄i(y1, . . . , yn) = P (Y1 > y1, . . . , Yn > yn|X(0) = i) . (3.8)

Theorem 3.1. Survival function for MPH? distributions (Kulkarni, 1989)
The functions F̄i(y1, . . . , yn), 1 ≤ i ≤ m, satisfy the following system of
simultaneous linear partial differential equations.

n∑

j=1

rj(i)
∂F̄i
∂yi

=

m∑

j=1

TijF̄j , 1 ≤ i ≤ m. (3.9)

Proof. The proof can be found in Kulkarni (1989).

A master thesis (Qin, 2011) as well as personal research time has been
dedicated to find closed form solutions to the PDEs obtained from Theorem
3.1. From a general perspective the results have been rather disappointing.
Qin (2011) used a power series extension to derive recursive equations for
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3.3. Multivariate PH distributions by Kulkarni

calculating the survival function of the Kibble distribution presented in
Example 3.3. A generalization of the results to subclasses of MPH? or the
whole class has hitherto not been possible.

As mentioned in Chapter 2, part of the versatility of univariate PH distri-
butions is the existence of closed form solutions for most major statistical
properties. This allows for derivation of general valid expressions for the
EM algorithm. Recent progress in the area of MPH? distributions has been
achieved by Bladt and Nielsen (2010) deriving closed form solutions for all
cross moments of an MPH? distribution, leading the way towards using
general MPH? distributions for stochastic modeling.

Theorem 3.2. Cross-moments for MPH? distributions The cross-moments
E
(∏n

i=1 Y
ki
i

)
, where Y follows an MPH? distribution with representation

(α,T,R) and where ki ∈ N, are given by

E

(
n∏

i=1

Y ki
i

)
= α

k!∑

l=1

k∏

i=1

(−T)−1∆(rσl(i))e
T . (3.10)

Here k =
∑n

i=1 ki. rj is the rth column of R and σl is one of the r! possible
ordered permutations of the derivatives, with σl(i) being the value among
1, . . . , n at the ith position of that permutation. Furthermore, ∆(r) is a
diagonal matrix with the entries of the vector r on the diagonal and zeros
elsewhere.

Proof. Though the theorem is due to Bladt and Nielsen (2010) an explicit
proof can be found in Nielsen et al (2010).

Often only lower order moments and cross-moments are of interest and the
results can be simplified to

E(Yi) = α(−T)−1∆(ri)e
T = α(−T)−1ri

E(Y 2
i ) = α(−T)−1∆(ri)(−T)−1ri +α(−T)−1∆(ri)(−T)−1ri = 2α((−T)−1∆(ri)(−T)−1ri

E(YiYj) = α(−T)−1∆(ri)(−T)−1rj +α(−T)−1∆(rj)(−T)−1ri.
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3. Multivariate phase type distributions

Despite these analytical results, no general class of multivariate PH dis-
tributions seems easily fit for parameter estimations. The distributions are
often over parameterized and therefore estimates are not unique. In order to
obtain parameter estimation methods similar to the ones available for uni-
variate PH distributions it is essential to have general ways of deriving the
probability density function as well as a structure allowing for probabilistic
arguments.

From the three classes of multivariate PH distributions presented, the class
of MPH? distributions is by construction the closest to the univariate class
of PH distributions making it favorable for modeling. Furthermore, it has
potential for similar parameter estimation methods as used for univariate
PH distributions. I provide a summary of our efforts in this regard in
Chapter 4.
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CHAPTER 4
Parameter estimation via the
EM algorithm for the Kibble

distribution

Regardless of the fact that the EM algorithm presented in Section 2.2.1
is a widely used tool for fitting PH distributions and additional methods
are available, hardly any work has been done for fitting multivariate PH
distributions. Very few examples are at hand, e.g. estimating parameters
for a clinical trial (Ahlström et al, 1999) and Esparza (2011) derived in her
PhD thesis an EM algorithm for special bivariate PH distributions of the
class MPH?. Her approach is restricted in the sense that the state space has
to be partitionable into absorbing subspaces similar to the requirements for
the class MPH.

From a modeling perspective the class of MPH? distributions seems intuitive
and straightforward to use. Either states or subsets of the state space can
be considered as tasks in a project. These task then contribute differently
to several factors, e.g. cost, duration, and environmental impact. Opposite
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4. Parameter estimation via the EM algorithm for the
Kibble distribution

to the univariate case, there exist no general applicable methods to obtain
maximum likelihood estimators for parameters of multivariate phase type
distributions. It is a challenging task to derive such general methods, partly
caused by the lack of general (analytic) results for obtaining the density of
MPH? distributions. Prior attempts during this PhD study to derive closed
form solutions for the probability density function and the survival func-
tion, similar to the Equations 2.3-2.5 have unfortunately been unsuccessful.
Until general results are available, subclasses of MPH? and sometimes even
individual distributions, have each to be analyzed individually in order to
derive their probabilistic properties.

A special MPH? distribution is the Kibble distribution presented in Ex-
ample 3.3. It is a bivariate distribution where the marginals are Gamma
distributed. With integer valued shape parameters the Kibble distribution
belongs to the class of MPH? distributions. For these cases the marginals
are Erlang distributed. The distribution was originally derived by Kibble
(1941), who calculated the joint distribution of the empirical variances in
samples from a bivariate normal distribution. It is a special distribution in
the sense that it is broadly applicable and known under different names, e.g.
as Moran and Downton’s, Jensen’s or Gaver’s distribution. Several other
examples can be found in the book "Continuous Multivariate Distributions"
by Kotz et al (2000). Examples for applications can be found several places.
Wang and Gosh (2000) use it for competing risk models and Yue et al (2001)
show several applications in hydrology, for example flows in different parts
of a river. Chatelain et al (2007) use bivariate Gamma distributions to
detect changes in radar images. Examples of estimation methods can be
found abundantly. Kotz et al (2000) list several moment based estimators
and summarizes their advantages and disadvantages. Chatelain et al (2007),
apply a maximum likelihood approach using general numerical methods for
finding the root of the first derivative of the probability density function in
order to estimate the correlation parameter. Iliopoulos et al (2005) as well
as Lin et al (2013) suggest a Markov chain Monte Carlo approach to obtain
Bayesian estimates.

The vast amount of different estimation methods and areas of application
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4.1. Bivariate mixtures of exponential distributions

show the importance of the Kibble distribution and with that the need for
accurate parameter estimation methods.

Hitherto, nobody has exploited the fact that under certain conditions the
Kibble distribution can be interpreted as an MPH? distribution. The Kib-
ble distribution is therefore an interesting starting point for developing pa-
rameter estimation techniques for MPH? distributions as well as statistical
inference, with several alternative estimation methods to be used for vali-
dation.

For simplicity, this thesis considers first the case where the shape param-
eters are identical and one. These results can be found in Section 4.1. In
Section 4.2 our general results are presented, removing the restriction on
the shape parameter. The shape parameters can be of any value as long
as the distribution stays in the class of MPH? distributions. These results
have been combined in Appendix A and are under review with the "Journal
of Stochastic Modeling".

4.1 Bivariate mixtures of exponential
distributions

An example for an MPH? representation as well as a graphical interpretation
for the Kibble distribution when the shape parameters k1 and k2 are one
can be found in Example 3.3. The probability density function in Equation
3.6 can be derived using the MPH? interpretation and conditioning on the
number N1 of visits to the state with exp(λ1) distributed sojourn time as
well as the number N2 of visits to the states where the sojourn time is
exp(λ2) distributed. For the case that the shape parameters are equal we
get N1 = N2. Conditioned on the number of visits the accumulated sojourn
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times Y1 and Y2 are independent and Erlang distributed.

fY1,Y2(y1, y2) =
∞∑

n=1

P (N1 = n)fY1,Y2(y1, y2|N = n)

=

∞∑

n=1

ρn−1(1− ρ)λ1
(λ1y1)n−1

(n− 1)!
e−λ1y1λ2

(λ2y2)n−1

(n− 1)!
e−λ2y2

= λ1λ2e
−λ1y1−λ2y2(1− ρ)I0(2

√
ρλ1y1λ2y2) (4.1)

Section 2.2.1 describes how the EM algorithm can be used to estimate pa-
rameters for univariate PH distributions. If we consider one observation for
the Kibble distribution (y1, y2) the complete data is then x = (y,N12, N21).
The complete data likelihood function can be written as

f(x;α,T) = αB1
1 αB2

2 · e−λ1·Z1 · e−λ2·Z2λN12
1 · (pλ2)N21 · ((1− ρ)λ2)

= 1 · e−λ1·y1 · e−λ2·y2λN1
1 · (ρλ2)N1−1 · ((1− ρ)λ2). (4.2)

In Equation 4.2 we use the fact that N1 = N2. An immediate result is that
the number of jumps form state 1 to state 2, N12 = N1, and the number
of jumps form state 2 to state 1, N21 = N1 − 1, are linearly connected.
Furthermore, the absorbing state 3 can only be reached from state 2 and
with that we get directly N23 = 1. The structure of the model only allows
for α1 = 1 as well as α2 = 0. Since α is to be α = (1, 0), it can be omitted
in the likelihood function from now on. The likelihood function belongs to
the family of exponential distributions and therefore allows us to replace
unobserved data with their sufficient statistics, similar to the approach for
univariate PH distributions described in Section 2.2.1.

In order to apply the EM algorithm to Kibble’s bivariate mixture of expo-
nential distributions it is essential to derive the calculations for the E and
the M step. Deriving the M step is straightforward by differentiating the
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4.1. Bivariate mixtures of exponential distributions

logarithm of Equation 4.2

∂ log(f(x,T))

∂λ1
= −y1 +

N1

λ1
(4.3)

∂ log(f(x,T))

∂λ2
= −y2 +

N2

λ2
(4.4)

∂ log(f(x,T))

∂ρ
=

N1

ρ
− 1

1− ρ (4.5)

and finding the root in order to obtain the maximum likelihood estimates
which yields

λ̂1 =
N1

y1
, λ̂2 =

N2

y2
and ρ̂ =

N1 − 1

N1
. (4.6)

For a set of w independent observations
{
y

(1)
1 , y

(1)
2 , . . . , y

(w)
1 , y

(w)
2

}
, with

N (v) being the number of jumps associated to the vth observation, the
complete data likelihood function can be written as

f(x,T) = e−λ1·(
∑w

v=1 y
(v)
1 ) · e−λ2·(

∑w
v=1 y

(v)
2 ) (4.7)

· λ
∑w

v=1N
(v)
1

1 · (ρλ2)
∑w

v=1(N
(v)
2 −1) · ((1− ρ)λ2)w. (4.8)

The maximum likelihood estimates for w observations then become:

λ̂1 =

∑w
v=1N

(v)

∑w
v=1 y

(v)
1

, (4.9)

λ̂2 =

∑w
v=1N

(v)

∑w
v=1 y

(v)
2

, (4.10)

ρ̂ =

∑w
v=1

(
N (v) − 1

)
∑w

v=1N
(v)

. (4.11)

These solutions for the M step of the EM algorithm for Kibble’s bivariate
mixtures of exponential distributions are very similar to the results of the
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M step in the EM algorithm for univariate PH distributions from Equation
2.41. The derivation of the E step presents more challenges. One advantage
of the Kibble distribution is, the variables Y1 and Y2 are the accumulated
occupation times in the different states. The only unknown variables of the
complete data likelihood are N1 and N2, which are only one unknown.

Lemma 4.1. Conditional expectation for Kibbles bivariate mixtures of ex-
ponentials For the Kibble distribution with MPH? representation (α,T,R)

α = (1, 0), T =

(
−λ1 λ1

ρλ2 −λ2

)
, R =

(
1 0
0 1

)
,

the conditional expectation of the number of visits N1 to the state with so-
journ time distribution being exp(λ1), given the observed values y1 and y2

as well as the current estimates for λ1, λ2, and ρ is

Eα,T,R[N1|y1, y2] =
√
λ1y1λ2y2ρ ·

I1(2
√
λ1y1λ2y2ρ)

I0(2
√
λ1y1λ2y2ρ)

+ 1 (4.12)

where Iq(z) =
∑∞

i=0
1

i!Γ(i+q+1)

(
z
2

)2i+q is the modified Bessel function of the
first kind.

Proof. For the proof we use standard calculations for conditional probabil-
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4.1. Bivariate mixtures of exponential distributions

ities and the definition of the modified Bessel function of the first kind.

Eα,T,R[N1|y1, y2] =

∞∑

k=1

kP (N1 = k|Y1 = y1, Y2 = y2)

=

∑∞
k=1 kfY1,Y2|N1

(y1y1|N1 = k)ρ(N12 = k)

fY1,Y2(y1, y2)

=

∑∞
k=1 k(1− ρ)ρk−1λ1e

−λ1y1λ2e
−λ2y2 (λ1y1λ2y2)k−1

((k−1)!)2

∑∞
k=1(1− ρ)ρk−1λ1e−λ1y1λ2e−λ2y2 (λ1y1λ2y2)k−1

((k−1)!)2

=

∑∞
k=0(k + 1) (λ1y1λ2y2ρ)k

((k)!)2

∑∞
k=0

(λ1y1λ2y2ρ)k

((k)!)2

=

∑∞
k=0(k) (λ1y1λ2y2ρ)k

((k)!)2

∑∞
k=0

(λ1y1λ2y2ρ)k

((k)!)2

+

∑∞
k=0

(λ1y1λ2y2ρ)k

((k)!)2

∑∞
k=0

(λ1y1λ2y2ρ)k

((k)!)2

=

∑∞
k=1(k) (λ1y1λ2y2ρ)k

((k)!)2

∑∞
k=0

(λ1y1λ2y2ρ)k

((k)!)2

+ 1

=

∑∞
k=0

(λ1y1λ2y2ρ)k+1

((k+1)!(k)!)
∑∞

k=0
(λ1y1λ2y2ρ)k

((k)!)2

+ 1

=

√
λ1y1λ2y2ρ

∑∞
k=0

(
√
λ1y1λ2y2ρ)2k+1

((k+1)!(k)!)
∑∞

k=0
(λ1y1λ2y2ρ)k

((k)!)2

+ 1

=
√
λ1y1λ2y2ρ ·

I1(2
√
λ1y1λ2y2ρ)

I0(2
√
λ1y1λ2y2ρ)

+ 1

As described in Section 2.2.2 the EM algorithm for univariate PH distribu-
tions allows for obtaining the Fisher information matrix directly. It is not
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possible to proceed in a similar fashion when dealing with MPH? distribu-
tions. However, the Fisher information matrix can be calculated following
the calculations on page 108-109 in McLachlan and Krishnan (2007)

I(λ̂1, λ̂2, ρ̂, y) = Eα,T,R







N1

λ21
0 0

0 N1

λ22
0

0 0 N1−1
ρ2

+ 1
(1−ρ)2




∣∣∣∣∣∣∣
y




+ Eα,T,R






−y1 + N

λ1
−y2 + N1

λ2
N1−1
ρ − 1

(1−ρ)


 ·

(
−y1 + N1

λ1
−y2 + N1

λ2
N1−1
ρ − 1

(1−ρ)

)
∣∣∣∣∣∣∣
y


 .

The conditional expectation of N1, Eα,T,R[N1|y1, y2] is used in the EM al-
gorithm and is therefore directly available for the calculation of the Fisher
information matrix. For this special case of the Kibble distribution calcu-
lating Eα,T,R[N2

1 |Y1 = y1, Y2 = y2] results in a similar expression.

Lemma 4.2. Conditional second moment for Kibbles bivariate mixture of
exponentials For the Kibble distribution with MPH? representation (α,T,R),

α = (1, 0), T =

(
−λ1 λ1

ρλ2 −λ2

)
, R =

(
1 0
0 1

)
,

the conditional second moment of the number of visits N1 to the state where
the sojourn time follows an exp(λ1) distribution, given the observed values
y1 and y2 as well as the current estimates for λ1, λ2, and ρ is

Eα,T,R[N2
1 |y1, y2] = 2 (Eα,T,R[N |y1, y2]) + 1 + ρλ1λ2y1y2 (4.13)
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Proof. The proof uses the same arguments are the proof to Lemma 4.1.

Eα,T,R[N2
1 |y1, y2] =

∞∑

n=1

nP (N = n|y1, y2) (4.14)

=

∑∞
n=1 n

2ρn−1(1− ρ)λ1
(λ1y1)n−1

(n−1)! λ2
(λ2y2)n−1

(n−1)! e−λ2y2−λ1y1
∑∞

n=1 ρ
n−1(1− ρ)λ1

(λ1y1)n−1

(n−1)! λ2
(λ2y2)n−1

(n−1)! e−λ2y2−λ1y1

=

∑∞
k=0

(k+1)2

k! · (ρλ1λ2y1y2)k

(k)!
∑∞

k=0
1
k! ·

(ρλ1λ2y1y2)k

(k)!

=

∑∞
k=0

k2

k! ·
(ρλ1λ2y1y2)k

(k)!
∑∞

k=0
1
k! ·

(ρλ1λ2y1y2)k

(k)!

+ 2 (Eα,T,R[N1|y1, y2]) + 1

=

∑∞
k=0

k
(k−1)! ·

(ρλ1λ2y1y2)k

(k)!
∑∞

k=0
1
k! ·

(ρλ1λ2y1y2)k

(k)!

+ 2 (Eα,T,R[N |y1, y2]) + 1

=

∑∞
k=1

k
(k−1)! ·

(ρλ1λ2y1y2)k

(k)!
∑∞

k=0
1
k! ·

(ρλ1λ2y1y2)k

(k)!

+ 2 (Eα,T,R[N |y1, y2]) + 1

=

∑∞
s=0

s+1
(s)! ·

(ρλ1λ2y1y2)s+1

(s+1)!
∑∞

k=0
1
k! ·

(ρλ1λ2y1y2)k

(k)!

+ 2 (Eα,T,R[N |y1, y2]) + 1

= 2 (Eα,T,R[N |y1, y2]) + 1 + ρλ1λ2y1y2 (4.15)

The result in Equation 4.13 simplifies the calculation of the Fisher infor-
mation matrix for Kibble’s bivariate mixture of exponential distributions
immensely. It consists of a combination of numerical results already ob-
tained in the last step of the EM algorithm. Lemma 4.1 and Lemma 4.2
can be used to implement the EM algorithm and evaluate the statistical
soundness of the estimates when applied to simulated data. For this spe-
cial case of the Kibble distribution Kotz et al (2000) list several moment
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based estimators of which we used a selection for comparison in the paper
in Appendix A. Furthermore, Chatelain et al (2007) have suggested a direct
estimation method evaluating the first derivative of the density function
using standard numerical methods. Their methods can also be applied for
identical shape parameters not equal to one. The comparison delivers a
repeating pattern where the estimates obtained via the EM algorithm equal
the ones obtained through the method obtained by Chatelain et al (2007).
This pattern is expected since both methods are used to calculate maxi-
mum likelihood estimates. The maximum likelihood estimates are clearly
better suited than the moment-based estimates. A representative example
can be found in table 4.1 including the estimated standard deviation σρ
for ρ which was calculated using the results from the EM algorithm. The
correlation parameter used to generate the data is in the column headed ρ,
the estimates calculated via the EM algorithm are in the column headed
ρEM , and ρCh is used to denote the estimates calculated via the approach
by Chatelain et al (2007).

Table 4.1: Comparing different estimation methods for the case of 1000 data
points, λ1 = 1, λ2 = 10

ρ ρEM ρCh σρ
0.2 0.1827 0.1827 0.0061
0.4 0.3828 0.3828 0.0090
0.6 0.6113 0.6113 0.0084
0.8 0.8088 0.8088 0.0051

The clear advantage of using the EM algorithm, though it is computational
more expensive, is the possibility to calculate the Fisher information matrix.
If the MPH? representation is unique, the Fisher information matrix allows
us to evaluate the soundness of our estimates.
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Lemma 4.3. Uniqueness of representation for the Kibble distribution The
estimates obtained for Kibbles bivariate geometrical mixtures of exponentials
via the EM algorithm are unique with the exception of permutations.

Proof. Let ' describe the identity in distribution of two MPH? distributions
and assume

α = (1, 0), T =

(
−λ1 λ1

ρ · λ2 −λ2

)
,

β = (β1, β2), U =

(
−µ1 r1 · µ1

r2 · µ2 −µ2

)
, R = I.

To prove uniqueness, we compare the Laplace transform of the two repre-
sentations:

MPH?(β,U,R) 'MPH?(α,T,R)

⇐⇒ ∀ s Lβ,U(s) = Lα,T(s)

⇐⇒ λ1λ2(1− ρ)

s1s2 + s2λ1 + s1λ2 + λ1λ2(1− ρ)

=
β1s2µ1(1− r1)µ2 + β2s1µ1µ2(1− r2) + µ1µ2(1− r1r2)

s1s2 + s2µ1 + s1µ2 + µ1µ2(1− r1r2)

⇐⇒ β1µ1µ2(1− r1)s1s
2
2 + β2µ1µ2(1− r2)s21s2

+ λ1β1µ1µ2(1− r1)s22 + λ2β2µ1µ2(1− r2)s21

+ (λ1β2µ1µ2(1− r2) + µ1µ2(1− r1r2) + β1λ2µ1µ2(1− r1)− λ1λ2(1− ρ)) s1s2

+ (λ1µ1µ2(1− r1r2) + β1λ1λ2(1− ρ)µ1µ2(1− r1)− µ1λ1λ2(1− ρ)) s2

+ (λ2µ1µ2(1− r1r2) + β2λ1λ2(1− ρ)µ1µ2(1− r2)− µ2λ1λ2(1− ρ)) s1 = 0

=⇒ {β1 = 0 ∨ r1 = 1} ∧ {β2 = 0 ∨ r2 = 1}
=⇒ µ1 = λ1, µ2 = λ2, {β1 = 1, β2 = 0, r1 = 1, r2 = ρ}
∨ {β1 = 0, β2 = 1, r1 = ρ, r2 = 1} . (4.16)

Therefore the MPH? representation for Kibble’s bivariate mixture of expo-
nential distributions is unique, with the exception of permutations.

The uniqueness of the representation is essential for further statistical anal-
ysis of the estimators and enables us to use the Fisher information matrix to
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estimate the variance covariance matrix of the estimated parameters. The
variance covariance matrix can for example be used to calculate the corre-
lation between the intensity parameters and the correlation parameter. In
our numerical example it is negative as expected, since an increase of ρ cor-
relates to more visits to the different transient states before absorption of
the underlying MJP and influences directly the accumulated sojourn times.

We have shown how to use an EM algorithm to calculate maximum likeli-
hood estimates for a bivariate mixture of exponential distributions. Using
the MPH? interpretation, it is possible to obtain more general results. The
results presented in this section are very promising.

4.2 Bivariate mixtures of Erlang distributions

The results from Section 4.1 can be extended to the cases where the shape
parameters of the Kibble distribution are not restricted to being equal to
one. The method suggested by Chatelain et al (2007) also removes the re-
striction of shape parameters equal to one, but unlike our approach they
continue to assume that the shape parameters are identical. With the fol-
lowing matrices

T =

(
−λ1 λ1

ρλ2 −λ2

)
, T? =

(
0 0

(1− ρ)λ2 0

)
, t =

(
0

(1− ρ)λ2

)

R =

(
1 0
0 1

)
, and R2 =

(
0 1

)
, (4.17)

an MPH? representation can be given with
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TE =




T T? 0 0 · · · 0 0 · · · 0
0 T T? 0 · · · 0 0 · · · 0
...

. . . . . . . . . . . .
...

... · · · ...
0 0 0 T T? 0 0 · · · 0
0 0 0 0 T t 0 · · · 0
0 0 0 0 0 −λ2 λ2 · · · 0
...

...
...

...
...

...
. . . . . .

...
0 0 0 0 0 · · · 0 −λ2 λ2

0 0 0 0 0 0 · · · 0 −λ2




, RE =




R
...
...
R
R2
...
...

R2




.

assuming that TE contains q T matrices and l additional states where the
sojourn times are exp(λ2) distributed then the underlying MJP visits the
states {1, . . . , 2q, . . . , 2q + l} prior to absorption. The initial distribution is
α = (1, 0, . . . , 0) of dimension 2 · q+ l. The probability density function can
be written as:

fY1,Y2(y1, y2) =
λ1λ2e

−λ1y1−λ2y2

(q − 1)!
(1− ρ)q

(λ1y1λ2y2)q−1(λ2y2)l

(
√
ρλ1y1λ2y2)q+l−1

· Iq+l−1(2
√
ρλ1y1λ2y2). (4.18)

With Iq(z) =
∑∞

i=0
1

i!Γ(i+q+1)

(
z
2

)2i+q being the modified Bessel function of
the first kind. For this general case, Lemma 4.1 can be generalized.

Theorem 4.4. Conditional expectation for Kibbles bivariate mixtures of
Erlang distributions For the Kibble distribution contained in the class of
MPH? distributions with intensity parameters λ1 and λ2, and q, l ∈ N the
conditional expectation of the number of visits N to the states with sojourn
time distribution being exp(λ1), given the observed values y1 and y2 as well
as the current estimates for λ1, λ2, and ρ, is

Eα,T,R[N |y1, y2] =
√
ρλ1λ2y1y2 ·

Il+q(2
√
ρλ1λ2y1y2)

Il+q−1(2
√
ρλ1λ2y1y2)

+ q (4.19)
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Proof. The proof is similar to the proof of Lemma 4.1.

Eα,T,R[N |y1, y2] =
∞∑

n=q

nP (N = n|y1, y2)

=

∑∞
n=q n

(
n−1
q−1

)
ρn−q(1− ρ)qλ1

(λ1y1)n−1

(n−1)! e−λ1y1λ2
(λ2y2)n+l−1

(n+l−1)! e−λ2y2
∑∞

n=q

(
n−1
q−1

)
ρn−q(1− ρ)qλ1

(λ1y1)n−1

(n−1)! e−λ1y1λ2
(λ2y2)n+l−1

(n+l−1)! e−λ2y2

=

∑∞
k=0

k+q
k! ·

(ρλ1λ2y1y2)k+q−1

(k+l+q−1)!
∑∞

k=0
1
k! ·

(ρλ1λ2y1y2)k+q−1

(k+l+q−1)!

=

∑∞
k=1

1
(k−1)! ·

(ρλ1λ2y1y2)k

(k+l+q−1)!
∑∞

k=0
1
k! ·

(ρλ1λ2y1y2)k

(k+l+q−1)!

+ q

=

√
ρλ1λ2y1y2

∑∞
k=0

1
k! ·

(
√
ρλ1λ2y1y2)2k+l+q

(k+l+q)!
∑∞

k=0
1
k! ·

(
√
ρλ1λ2y1y2)2k+l+q−1

(k+l+q−1)!

+ q

=
√
ρλ1λ2y1y2 ·

Il+q(2
√
ρλ1λ2y1y2)

Il+q−1(2
√
ρλ1λ2y1y2)

+ q (4.20)

Furthermore Lemma 4.2 can also be generalized to the general case.

Theorem 4.5. Conditional second moment for Kibbles bivariate mixtures
of Erlang distributions For the Kibble distribution described in Theorem
4.4, the conditional second moment of the accumulated number of visits N
to the states where the sojourn time follows an exp(λ1) distribution, given
the observed values y1 and y2 as well as the current estimates for λ1, λ2,
and ρ, is

Eα,T,R[N2|y1, y2] = ρλ1λ2y1y2 ·
Iq+l+1(2

√
ρλ1λ2y1y2)

Iq+l−1(2
√
ρλ1λ2y1y2)

+ (2q + 1) (Eα,T,R[N |y1, y2]) + q(q − 1). (4.21)
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Proof. The proof is similar to the proof of Lemma 4.2

Eα,T,R[N2|y1.y2] =
∑

n=q

P (n2 = q|y1, y2)

=

∑∞
n=q n

2
(
n−1
q−1

)
ρn−q(1− ρ)qλ1

(λ1y1)n−1

(n−1)! e−λ1y1λ2
(λ2y2)n+l−1

(n+l−1)! e−λ2y2
∑∞

n=q

(
n−1
q−1

)
ρn−q(1− ρ)qλ1

(λ1y1)n−1

(n−1)! e−λ1y1λ2
(λ2y2)n+l−1

(n+l−1)! e−λ2y2

=

∑∞
k=0

k2

k! ·
(ρλ1λ2y1y2)k+l+q−1

(k+l+q−1)!
∑∞

k=0
1
k! ·

(ρλ1λ2y1y2)k+l+q−1

(k+l+q−1)!

+ 2q (Eα,T,R[N |y1, y2]) + q2

=

∑∞
k=1

k
(k−1)! ·

(ρλ1λ2y1y2)k

(k+l+q−1)!
∑∞

k=0
1
k! ·

(ρλ1λ2y1y2)k

(k+l+q−1)!

+ 2q (Eα,T,R[N |y1, y2]) + q2

=

∑∞
s=0

s+1
(s)! ·

(ρλ1λ2y1y2)s+1

(s+l+q)!
∑∞

k=0
1
k! ·

(ρλ1λ2y1y2)k

(k+l+q−1)!

+ 2q (Eα,T,R[N |y1, y2]) + q2

=

∑∞
s=0

s
(s)! ·

(ρλ1λ2y1y2)s+1

(s+l+q)!
∑∞

k=0
1
k! ·

(ρλ1λ2y1y2)k

(k+l+q−1)!

+ (Eα,T,R[N |y1, y2]− q)

+ 2q (Eα,T,R[N |y1, y2]) + q2

=

∑∞
j=0

1
(j)! ·

(ρλ1λ2y1y2)j+2

(j+l+q+1)!
∑∞

k=0
1
k! ·

(ρλ1λ2y1y2)k

(k+l+q−1)!

+ (Eα,T,R[N |y1, y2]− q)

+ 2q (Eα,T,R[N |y1, y2]) + q2

= ρλ1λ2y1y2 ·
Iq+l+1(2

√
ρλ1λ2y1y2)

Iq+l−1(2
√
ρλ1λ2y1y2)

+ (2q + 1) (Eα,T,R[N |y1, y2]) + q(q − 1) (4.22)

With Eα,T,R[N2|y1.y2] and Eα,T,R[N |y1.y2] the Fisher information matrix
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for the estimates obtained through the EM algorithm can be calculated as

I(λ̂1, λ̂2, ρ̂, y) = Eα,T,R







N
λ21

0 0

0 N+l
λ22

0

0 0 N−q
ρ2

+ q
(1−ρ)2




∣∣∣∣∣∣∣
y




+ Eα,T,R






−y1 + N

λ1
−y2 + N+l

λ2
N−q
ρ −

q
(1−ρ)


 ·

(
−y1 + N

λ1
−y2 + N+l

λ2
N−q
ρ −

q
(1−ρ)

)
∣∣∣∣∣∣∣
y


 .

These results have been used to implement an EM algorithm with input
parameters λ1, λ2, ρ, l, q, and w that simulates w bivariate observations
and then runs the EM algorithm in order to obtain maximum likelihood
estimates of the parameters λ1, λ2 and ρ. The results are in terms of
accuracy and computational time similar to the case with q = 1 and l = 0.

Kibbles bivariate mixtures of Erlang distributions are closed under addition,
if the intensity parameters are identical, and they are in the broader sense
a subclass of the class of MPH? distributions. Theorem 4.4 and Theorem
4.5 enable the use of the EM algorithm to estimate parameters for this
family of MPH? distributions as well as to calculate statistical inference
on the estimated parameters. With this we have presented a first step
towards general estimation methods and inference theory in the class of
MPH? distributions. The next chapter will be used to give an example of
the general applicability of MPH? distributions.
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CHAPTER 5
Using phase type distributions
in project management based

on the Successive Principle

The Successive Principle (SP) is a group estimation procedure that is pri-
marily used in Scandinavia and Great Britain. It was developed at the
University of Denmark by Glahn and Lichtenberg (1984) and is compre-
hensively summarized and explained in the book "Successive Principle: A
quality assurance technique for Schedules and Budgets" (Lichtenberg, 2000).
It has similarities with the Program Evaluation and Review Technique de-
veloped by the United States Navy (Fazar, 1959), but its analyzing method
has several specific characteristics, e.g. the use of subjective probabilities
as well as the assumption that the duration or the cost of a subtask follows
an Erlang distribution. The argument for choosing Erlang distributions is
that they are not symmetric and only have support on the positive real axis.
The SP consists of two parts; first a group analysis discusses, and evalu-
ates a project establishing estimates using subjective probabilities; second
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the subjective estimates are used to create a mathematical model for the
project under consideration.

Section 5.1 outlines the procedure suggested by Lichtenberg (2000) to obtain
unbiased group estimates. Section 5.2 discusses some of the mathematical
assumptions behind the SP. Finally, in Section 5.3 we will use some of
these assumptions and suggest a new way for dealing with lead times and
show how to use the closure properties of PH distributions to model the
duration of an entire project, resulting in a general PH distribution with
representation (αD,TD). Given the PH representation we then construct
an MPH? model to capture the correlation between the duration and the
cost of a project. Analogously, it is possible to extend the model to more
than two variables.

5.1 The general concept of the SP

The different aspects of the group estimation part of the SP have been
shortly summarized by Lichtenberg (2006). The focus of our research is on
the mathematical perspective. However, it is of importance to understand
how estimates can be obtained through the SP. Therefore we only state a
simplified version of the group estimation phase used in the SP, e.g we will
not elaborate on the group psychology behind the analyzing estimation. The
center of a group analysis is the persons participating. Therefore, a group
analysis always begins with establishing a proper analysis group. The SP
suggests can be used with groups of different size. Recommendable are
groups consisting of four to twenty-five people. Lichtenberg (2000) states
that the analysis process looses its drive when the group consists of more
than ten people. It is also important that not too few people are chosen.
The SP depends on estimates that cover a wide range, when having too
few people in the analysis group this becomes unrealistic. As the subjective
probabilities obtained from each member of the group are the basis for
everything to follow, the group analysis is an essential step.

The idea of group analysis is not new. Hill (1982) discussed the advantages
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and disadvantages of group analysis and collected several sources confirming
the positive effect of knowledge sharing via group discussions. Ideally, for
the SP, the group consists of young and old, female and male, optimistic
and pessimistic as well as experts and amateurs. The right mixture of
participants is one key element. Then, the project under consideration is
discussed and potential general uncertainties are evaluated. This is followed
by establishing a break down structure and by identifying its most uncertain
elements. This often results in the identification of physical subtasks of the
project at hand, but might also construct artificial tasks. Not all elements
of a project affect the cost or duration equally. Often this effect mirrors
Pareto’s Principle (Humphreys, 2005) where the overall uncertainty of a
project is due to a minority of its subtasks. The idea of using a break
down structure to identify and rank the most uncertain events has also
been used by Hillson (2003) but in a different setting than the SP. Further
successive detailing and analyzing of the elements of a project is assumed to
result in independent items or subtasks as well as subjective triple estimates,
estimates for the most likely value , minimum value and the maximum value,
by each member of the analysis group. The individual estimates are then
used to produce group estimates. For the most likely group value (mode),
the group average of the most likely values is calculated. For the minimum
and maximum values, the groups minimum (min) and maximum values
(max) are taken. These group estimates are then used to calculate the
mean value and the standard deviation for each of the critical items. To
simplify the future text we will use the term subtasks regardless of the item
under consideration being an actual subtask or not, e.g. motivation. The
motivation of the employees during a project can influence the duration
severely. This can therefore either be attributed to the individual subtask
at hand or summarized as a generic task in itself.

5.2 Mathematical assumptions of the SP

The SP assumes that the duration or the cost of a subtask follows an Erlang
seven Er(7, λ) distribution. Example 2.1 shows how to construct an Erlang
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two distribution with intensity parameter λ as the sum of two identical, inde-
pendent, and exponentially distributed random variables. A PH representa-
tion for an Erlang seven distribution can be given with α = (1, 0, 0, 0, 0, 0, 0)
and

T =




−λ λ 0 0 0 0 0
0 −λ λ 0 0 0 0
0 0 −λ λ 0 0 0
0 0 0 −λ λ 0 0
0 0 0 0 −λ λ 0
0 0 0 0 0 −λ λ
0 0 0 0 0 0 −λ




. (5.1)

The estimates obtained through the procedure explained in Section 5.1 are
handled as if they were the mode, the 1% quantile, and the 99% quantile for
each subtask. Assuming the distribution which generates these estimates,
the local mean (m) and the local standard deviations (s) of these Erlang
seven distributions can be calculated as (Lichtenberg, 2000)

m =
min+ 2.9×mode+max

4.9

s =
max−min

4.65
. (5.2)

Let mi be the expected value for subtask i and si be the standard deviation
of subtask i. First we consider the case of cost estimates. We assume the
group analysis has identified n independent subtasks which have the largest
influence on the overall uncertainty of the projects cost. It is assumed these
subtasks are independent of each other. If two subtask are depending on
each other, they are further investigated and split in smaller subtasks until
independence can be achieved. The total expected cost C can be calculated
as:

C =
n∑

i=1

mi. (5.3)
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Figure 5.1: PDF of an Er(7,1) distribution

Furthermore, the project standard deviation S can be expressed as:

S =

√√√√
n∑

i=1

s2
i . (5.4)

These values are expressed using general results for sums of independent
random variables. The SP then assumes that the total cost of a project
is normally distributed with mean C and standard deviation S. The jus-
tification of this procedure is based on the central limit theorem. Even
though Erlang distributions are skewed (see Figure 5.1), a sum of Erlang
distributed random variables will converge towards the normal distribu-
tion. With increasing shape parameter an Erlang distribution will loose its
skewness. In Chapter 2 we have shown that the sum of Erlang distributed
random variables follows a generalized Erlang distribution. This means that
the distribution of the total cost follows a generalized Erlang distribution
where the state space of the underlying MJP is of dimension n× 7. There-
fore, the distribution of the total cost of a project will converge reasonable
fast to a normal distribution.
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Start

Task 1

End

Task 2

Task 3

Figure 5.2: A subtask with two predecessors

Special care has to be taken when estimating the total duration of a project.
Generally, the SP only considers the subtasks that lie on the time critical,
and one or two near critical, paths. The subtasks on these paths either
run parallel or successively and interact with each other, i.e. depend on
the completion or partial completion of one or more predecessors. These
interactions do not influence the total cost of a project, but do make it
more complex to create a proper mathematical model for the duration of the
project. The procedure for obtaining the triple estimates, the estimates for
min, mode, and max, in the first step of the SP is the same when modeling
the durations of a project as when modeling the cost of a project. The
structure for the case that a subtask needs two predecessors to be completed
before it can be started can be seen Figure 5.2. A simple approach is
to assume deterministic durations for each subtask. The (expected) total
duration of this project can then be calculated by taking the maximum of
the (expected) durations of subtask 1 and subtask 3 and add the (expected)
duration of task 2. It is a rare occasion in real life that a subtask takes a
fixed amount of time. If the duration of each subtask is random and not
deterministic, this simple approach is naive. This fact is only strengthened
by the complexity of external and internal factors affecting the duration of
a subtask. This is one reason why the SP assumes the duration of a subtask
is random and making it possible that the subtask which has the shorter
expected duration takes longer to complete than the subtask with the longer
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Start

Task 1

End

Task 2L
12

.

Figure 5.3: Lead time between subtask 1 and subtask 2

expected duration. In order to highlight this phenomena, let us abstract
from the idea of subtasks and consider two independent random variables
D1 and D3. Without loss of generality, assume E[D1] < E[D3] then

P (D3 < E[D3]) ≥ P (D1 < E[D3], D3 < E[D3]) (5.5)
= P (D1 < E[D3])P (D3 < E[D3]).

This is generally true, if the support of the distributions of the random
variables D1 and D3 overlaps. It represents the fact that it is less likely for
two subtask to finish on time than it is for one subtask. When estimating
durations of projects, the inequality in Equation 5.5 needs to be accounted
for. This can be done by introducing a merge event bias (MEB ) increasing
the total duration of a project. The MEB can either be calculated directly
(Gong and Rowings, 1995) or approximated. The latter is the standard
approach in the SP.

The second challenge when estimating the duration of a project, is the ex-
istence of lead times. Lead times are generally understood as the time a
subtask can start prior to completion of a predecessor. Figure 5.3 expresses
the lead time graphically as an independent subtask with a random dura-
tion. Solutions for dealing with the MEB exist. However, it can be solved
more elegantly when the duration of the subtasks follow PH distributions.
When facing randomly distributed lead times with support on the entire
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positive real axis it is necessary to expand the mathematical modeling used
in the SP. We suggest the assumption that the durations of subtasks as well
as of lead times follow Erlang distributions. We go even further and use only
the fact that Erlang distributions belong to the class of PH distributions.
We then model the duration of the entire project directly using a general
PH distribution. A PH model has the advantage that it enables the same
modeling procedure for projects with very few subtasks as for medium to
large projects. When relying on the central limiting theorem the project at
hand may not consist of too few subtasks.

5.3 Modeling structures of subtasks arising in
projects

Our research focused primarily on improving the mathematical modeling
of the duration of a project. In 2000, Lichtenberg and Partners conducted
an analysis using the SP for an large international IT development project.
Their results are based on the traditional calculations used in the SP. The
focus of the analysis was on final delivery and they identified several prob-
lems as well as solutions. The group consisted of 12 members that spend
two days analyzing the project. Steen Lichtenberg was so kind to supply
us with the original estimates as well as the structure of the project. The
critical and near critical paths determined through the group analysis step
of the SP can be seen in Figure 5.4. Our ultimate goal was to use the closure
properties of PH distributions to create a PH model for the total duration
of the project and compare the results to the original estimates.

As argued in Section 5.1 two complications arise when modeling the total
duration of a project, to model the time until completion of several possible
predecessors as well as possible lead times.

The problem of having two or more predecessors for a single subtask can
easily be solved using the closure properties of the class of PH distributions.
Let us assume a project, as described in Figure 5.2, where the final subtask
can not start before its two predecessors are completed. The duration of
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Task 1 Task 3

Task 4Task 2
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Task 5 Task 9

L
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Figure 5.4: Subtasks on the critical and near-critical paths for a software
project

the two predecessors can be modeled using the maximum of two PH dis-
tributed random variables. We know from Theorem 2.1 that it is again
PH distributed. The maximum of the two predecessors is then added to
the duration of the final subtask in order to calculate the total duration of
the project. This is an addition of two PH distributed random variables,
resulting again in a PH distributed random variable (Theorem 2.4). Hence,
the duration of this project is PH distributed.

We define D as the time from start until the end of a project, i.e. the total
duration of the project. The duration of subtask i is defined as Di and its
distribution can be described using the PH representation (αi,Ti). If we
consider a project consisting of three subtask as displayed in Figure 5.2 D
can easily be calculated as

D = max {D1, D3}+D2. (5.6)
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The distribution of D can be given by its PH representation (αD,TD) with

TD =




T1 ⊗ I3 + I1 ⊗T3 I1 ⊗ t3 t1 ⊗ I3 0
0 T1 0 t1 · α2

0 0 T3 t3 · α2

0 0 0 T2




and
αD = (α1 ⊗α3, 0, . . . , 0).

The second and more challenging complication when making a stochastic
model for the duration of a project is the occurrence of lead times Lij
between subtask i and j. We will denote the duration of lead time Lij as
Lij . We assume that Lij ≥ 0, generally speaking lead times can reduce the
total duration of a project. This can be achieved by subtracting the lead
times in the appropriate places during the calculation of the total duration.
If a project has a certain delay with respect to the completion of one or
more predecessors it can be modeled using the addition of two PH random
variables as shown in Theorem 2.1. Since lead times enable the initiation
of a subtask prior to completion of its predecessor, but not prior to the
initiation of the predecessor it is assumed that

E[Lij ] < E[Di]. (5.7)

This is a reasonable approach if the lead times and duration of the subtasks
are deterministic or their support is only on a subset of the real numbers.
Unlike the triangular distribution or other distributions commonly used
to model the duration of subtasks and lead times, PH distributions have
support on the whole real axis and therefore it follows that

P (Di < Lij) > 0,

P (Dj < Lij) > 0, and
P (Di +Dj − Lij < 0) > 0. (5.8)

The expression Di+Dj−Lij can be expressed as a bilateral PH distribution
(Ahn and Ramaswami, 2005). The possibility of negative duration of two

64



5.3. Modeling structures of subtasks arising in projects

subtask caused by the lead time as in Equation 5.8 is from a mathematical
perspective unproblematic, however from a project management perspective
troubling and unrealistic. Our solution for solving the challenge of lead
times is to redefine lead times.

Definition 5.1. Alternative definition of lead times The alternative lead
time is defined as the time a subtask j is running parallel to its predecessor
i and its duration is denoted with L̃ij .

The motivation for this definition is two-fold. Firstly, in our opinion it
seems unnatural to model a lead time as the time a successor can start
prior to the completion time of its predecessor. It is not the duration until
the completion of the predecessor that is crucial for a possible start, but
the level of completion of the predecessor. With Definition 5.1 the start
of a successor of a subtask depends on how long it has been running and
therefore which level of completion has been archived. Secondly, it allows
us to model the duration of a project using only maximum operation as
well as addition of independent and PH distributed random variables. For
the project described in Figure 5.4 the new structure using alternative lead
times can be found in Figure 5.5. In this case T̃ask 1 is not the same
subtask as Task 1 but only the part that had to be completed prior to the
start of subtask 4. The duration of a the subtask T̃ask i is denoted with D̃i.
The new local means can be calculated using the result from the classical
analysis, as done in Appendix B. If done so, one should ensure that the
expected duration until total completion of subtask i is still the same as
in the original analysis. Alternatively, or preferably, they can be derived
directly during the group estimation procedure of the SP. To demonstrate
the general concept of creating a PH model using alternative lead times we
consider a project that follows the structure presented in Figure 5.3.

Example 5.1. The project represented in Figure 5.3 can be restructured
using alternative lead times as in Figure 5.6, with E[D̃1] = E[D1]−E[L12],
E[L̃12] = E[L12], and E[D̃2] = E[D2]. Let the PH representation for the
duration of the subtasks D̃i and the alternative lead time L̃12 be (α̃i, T̃i)
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T̃ask 1 T̃ask 3

T̃ask 4T̃ask 2

Start
End

L̃
14

L̃
24

T̃ask 5 T̃ask 9

L̃
35

L̃
45

.

Figure 5.5: Software project from Figure 5.4, restructured by the use of alter-
native lead times

T̃ask 1 T̃ask 2

Start End

L̃
12

Figure 5.6: Alternative lead time between subtask 1 and 2
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and (α̃12, T̃12) respectively. The PH distribution of the total duration D
can be represented with (αD,TD) where

TD =




T̃1 t̃1 · (α̃2 ⊗ α̃12) 0 0

0 T̃2 ⊗ I12 + I2 ⊗ T̃12 I2 ⊗ t̃12 t̃2 ⊗ I12

0 0 T̃2 0

0 0 0 T̃12


 (5.9)

and αD = (α̃1, 0, . . . , 0) of appropriate dimension. The expected duration
in this example is the same as the expected duration using the traditional
lead time. Our model ensures that subtask 1 as well as subtask 2 have to
be completed in order to determine the total duration of the project. This
can be expressed as:

D = D̃1 + max
{
D̃2, L̃12

}
, (5.10)

and can capture the case that subtask 1 proceeds normally until the start
of subtask 2 and then experiences a severe delay.

If the duration of the subtasks and the lead times are Erlang 7 distributed,
already the state space of this small example grows to a dimension of 70
and with that the transition matrix is 70 × 70. It is problematic to state
the transition matrix for a complete project as in Figure 5.5, where the
state space is of dimension 3353. Even when reusing the sub generator
matrices of the subtasks and lead times, the transition matrix becomes too
big to be printed on paper in a readable manner. However, it is not a
problem to deal with these matrices numerically and we can calculate all
distributional properties of the PH distributed random variable D, e.g. the
mean, quantiles and the probability density function. The modeling steps
only use the assumption of PH distributed durations for the subtasks as well
as for the lead times. In the SP these durations are Er(7, λ) distributed
and their intensity parameter λ can be calculated using the local mean m
obtained through the SP,

λ =
7

m
. (5.11)
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Having the PH representation for D, the distribution of the time until com-
pletion as well as all moments and quantiles can easily be calculated. One
interesting result for the software project under consideration (as presented
in Figure 5.5) is the probability of the total duration of the project being
longer than expected

P (D > E[D]) = 0.4727. (5.12)

If D was normally distributed the result in Equation 5.12 should be 0.5.
This result therefore speaks against the assumption that the total duration
of a project is normal distributed. Assuming different PH distributions,
distributions which are more skewed than Erlang 7 distribution, the result
will be even more extreme. Aside from the distributional properties, the
modeling also results in the sub generator matrix TD and initial distribution
αD for D ∼ PH(αD, TD) which can be used for further analysis.

5.4 Modeling correlation between duration and
cost

Most projects are characterized by a strong dependents between their du-
ration and their cost, may it be actual cost or loss in revenue. A review of
the correlation between cost and duration for construction projects can be
found in Ogunsemi and Jagboro (2006). Different factors, e.g. wages and
cost of acquisitions, will always affect the cost. Some of them are time inde-
pendent, some are directly connected to the duration of a subtask, and some
are based on a general delay of the project. Not all factors contributing to
the total cost of a project underlie the same variability. We have focused
on the costs that are directly depending on the duration of the subtasks at
hand.

We assume that the cost a subtask generates consists of a constant part
and a part that grows linearly with the duration of the subtask, e.g. salary
or the cost for renting equipment. We define the time dependent cost of
subtask i as Ki = ci · Di. With these assumptions and the result from
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Section 5.2 it is possible to create a bivariate PH model contained in the
class of MPH? distributions that we introduced in Chapter 3. Our model
describes the correlation between time dependent cost of the subtasks on the
critical and near-critical paths and the duration of a project. With proper
parameters at hand, the extension to a bivariate model is only the beginning
and the method described can be used to include other impact factors into
the model, e.g the environmental impact of the project. These parameters
could be estimated directly using the group estimation procedure during
the group analysis of the SP, however, for the model it is irrelevant how
the parameters are derived. Alternatively it is possible to estimate these
parameters, for example via the EM algorithm, by use of data from former
projects. However, collecting data for infrastructure projects is a challenging
task, see Nicolaisen (2012) and Andersen (2013).

The next step in our modeling approach is to construct the reward matrix.
The reward column vector for the total duration of the project consists of
ones in every entry. The construction of the reward vector for the cost is not
as straightforward. The entries depend on the subtasks running parallel and
are therefore a sum of the prior estimated ci. For Example 5.1 the MPH?

representation can be given with

TD =




T̃1 t̃1 · (α̃2 ⊗ α̃12) 0 0

0 T̃2 ⊗ I12 + I2 ⊗ T̃12 I2 ⊗ t̃12 t̃2 ⊗ I12

0 0 T̃2 0

0 0 0 T̃12


 ,

RDC =




eT c1 · eT
eT (c1 + c2) · eT
eT c2 · eT
eT c1 · eT


 .

Here eT is a column vector of appropriate dimension and can vary in dimen-
sion in order to fit the dimensions of the sub matrices in TD. Having the
MPH? representation allows us to evaluate all moments and cross moments
directly (see Theorem 3.2) as well as to obtain other probabilistic quantities
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of the project through stochastic simulation. To our knowledge there exist
no other method that allows project management to evaluate the risk of
delays and cost overruns simultaneously,
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CHAPTER 6
Conclusions

This chapter will be used to summarize the work done during my PhD study
and to highlight the main contributions of my research. Finally, I will give
some suggestions for further research.

This PhD project has been part of the UNITE project which has the overall
goal to identify issues with forecasts for infrastructure projects and to im-
prove the available forecasting methods. The general topic of my research
was multivariate PH distributions. Only very little is known about the
probabilistic properties of multivariate PH distributions. My research fo-
cused especially on the class of MPH? distributions, introduced in Chapter
3. The original idea of my PhD study was to derive general results and to
apply these results to improve the mathematical modeling of infrastructure
projects. During the research we realized that it was not feasible to produce
general results for the entire class of MPH? distributions. Consequently the
efforts shifted towards a more specific approach by focusing on the Kibble
distribution.

The main contribution in regard to the Kibble distribution is the gener-
alization of the EM algorithm, well known for parameter estimation for
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univariate PH distributions, and applying it to a family of MPH? distri-
butions. Our results are a first step towards general parameter estimation
methods for the whole class of MPH? distributions. Aside from applying
the EM algorithm to a family of MPH? distributions, we have developed
a new method for parameter estimation for the Kibble distribution. The
method exploits the fact that under certain conditions the Kibble distribu-
tion is contained in the class of MPH? distributions. Our approach enables
us to derive expressions for the Fisher information matrix and with that al-
lows for statistical inference. Our results are presented in Chapter 4 and in
the paper in Appendix A. Prior estimation methods always assumed equal
shape parameters, whereas our method overcomes this restriction.

Although our results bring better understanding of a family of MPH? dis-
tributions they are far from being generalizable towards the whole class of
MPH? distributions. In order to obtain more general estimation methods,
it is essential to derive general formulas for the probability density function
for distributions contained in the class of MPH? distributions, or at least
some of its subclasses. Furthermore, the EM algorithm and its implemen-
tations are often criticized for its computation times. Our approach is no
exception of it, especially when compared to the other estimation methods
at hand. Here, further work can be done, e.g. by optimizing the numerical
implementation of our EM algorithm or using different parameters when
initiating the EM algorithm.

Many continuous multivariate distributions are known. Several of them
are multivariate PH distributions. However, this fact is often not exploited
when using them in mathematical modeling. The Successive Principle, pre-
sented in Chapter 5, is quite unique with its assumption that the duration or
cost of a subtask is Erlang distributed. When modeling the cost or duration
of an entire project, this fact is neglected. We suggested a new modeling
approach, based on the fact that the Erlang distribution belongs to the
class of PH distributions, introduced in Chapter 2. The result is a model
that describes the total duration of a project as one PH distribution. In
order for the model to remain in the class of PH distributions, we defined
an alternative lead time. Alternative lead times model the relation between
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a subtask and its predecessor based on the completion of the predecessor.
In our opinion alternative lead times are a more intuitive way of modeling
the start of a subtask prior to the completion of its predecessor. Having
a univariate PH model for the duration we extended the model to capture
the correlation between duration and cost of a project. Our model is an
example of an application and the versatility of MPH? distributions. The
results are presented in Chapter 5 and Appendix B. Especially when mod-
eling durations and costs of projects, both values restricted to be positive,
it is an improvement over models based on the normal distribution.

We changed the modeling steps underlying the Successive Principle and ap-
plied our method to a rather simple project and already here the state space
of the underlying Markov jump process grows fast. In order to make our
method applicable it is essential to develop a tool that takes the structure
of a project and translates it directly into a sub generator matrix for the
entire project using only the maximum and the addition of PH distributed
random variables. With the current state of our research we have derived
a mathematical model that more accurately describes the interactions be-
tween the subtasks of a project. From a mathematical point of view this is
a valuable result. From a practical point of view the improvement gained
through our model is rather small compared to the overall uncertainties
when dealing with subjective estimates. However, our modeling approach
is not restricted to using subjective probabilities but only to using PH dis-
tributions. How the parameters of these PH distributions are estimated is
irrelevant. Making our method, especially once a proper tool for deriving
the sub generator matrix is developed, useful for decision makers.

My research in general has shed light on the class of MPH? distributions and
will hopefully inspire further research towards a more general understanding
of this versatile class of distributions.
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ESTIMATION OF THE KIBBLE DISTRIBUTION
USING THE EXPECTATION-MAXIMIZATION

ALGORITHM

MOGENS BLADT, DAVID MEISCH, AND BO FRIIS NIELSEN

Abstract. In this paper we use the expectation-maximisation

(EM) algorithm to estimate the parameters of Kibble’s bivariate

Gamma distribution for the case where the shape parameters are

integer valued. In this case, the Kibble distribution can be inter-

preted as a special case of a multivariate phase–type distribution

allowing us to identify the estimation problem as a case of incom-

plete data. The EM algorithm ensures numerical stability and

provides indirectly the information matrix which may be used for

the calculation of confidence regions.

1. Introduction

Multivariate gamma distributions have widespread applications. Wang

and Gosh (2000) [20] use them for competing risk models and Yue et

al (2001) [21] show several applications in hydrology, for example flows

in different parts of a river. Chatelain et al (2007) [7] use bivariate

Gamma distributions to detect changes in radar images.

1991 Mathematics Subject Classification. Primary .

Key words and phrases.
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The main focus in this paper will be on a specific bivariate Gamma

distribution, namely the Kibble distribution. Kibble (1941) [11] calcu-

lated the joint distribution of the empirical variances in samples from

a bivariate normal distribution. We will focus on the case where the

shape parameters are integer valued. Gamma distributions with integer

valued shape parameters are frequently referred to as Erlang distribu-

tions. The Kibble distribution becomes then a bivariate distribution

where the marginal distributions are Erlang distributions and where

the joint density is

f(y1, y2) =
λ1λ2e

−λ1y1−λ2y2

(q − 1)!
(1− ρ)q

(λ1y1λ2y2)q−1(λ2y2)l

(
√
ρλ1y1λ2y2)q+l−1

·Iq+l−1(2
√
ρλ1y1λ2y2),

where Iq(z) =
∑∞

i=0
1

i!Γ(i+q+1)

(
z
2

)2i+q is the modified Bessel function of

the first kind. Several mathematical models have been developed and

later proven to be special cases of the Kibble distribution. For example

Downton (1970) [9] and Moran (1969) [14] analysed a special case of

the bivariate exponential distribution. Here a successive damage model

for two identical components is used, meaning that both components

fail after having received the same number of geometrically distributed

shocks. The shocks arrive according to two independent Poisson pro-

cesses, one for each component. These special cases, known under
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different names, e.g. as Moran and Downton’s, Jensen’s or Gaver’s

distribution can be found in Kotz, Balakrishnan and Johnson (2000)

[19]. Bladt and Nielsen (2010) [6] show that the Kibble distribution is

contained in the class of multivariate phase-type distribution (MPH)

of the type MPH? introduced by Kulkarni (1989) [12].

The main contribution of our paper is to give a maximum likelihood-

based alternative to previous primarily moment-based estimators for

the Kibble distribution when the shape parameters are integer valued.

By exploiting the probabilistic structure of MPH? we can allow for

different shape parameters for the marginal distribution. The EM al-

gorithm can be used to estimate all parameters as well as the Fisher

information matrix.

Various, primarily moment-based, estimators for the correlation pa-

rameter in the Kibble distribution when the shape parameters are one,

i.e. Kibble’s bivariate exponential distribution, have been introduced.

For details see Kotz, Balakrishnan and Johnson (2000) [19]. Chatelain

et al [7] showed that the first derivative of the log likelihood function

can be reduced to linear combinations of functions related to the con-

fluent hyper geometric function. In order to calculate the root in [0, 1[

a Newton Rhapson procedure initiated by a standard correlation coeffi-

cient estimator is used. A Bayesian approach somewhat related to our
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EM approach was presented in Iliopoulos et al (2005) [10] and modified

to deal with censored data in Lin et al (2013) [13].

The structure of the paper is as follows. In Section 2, we give a

short introduction to phase type (PH) and multivariate phase type

(MPH) distributions. Then we give a review of alternative estimators

when the shape parameters are one. In Section 4, we describe the EM

algorithm for PH distributions and modify it, to be used for the Kibble

distribution, and we present a way to calculate the Fisher information

matrix. In Section 5, we focus on the case where the shape parameters

are one, apply the EM algorithm to simulated data, and compare it to

the estimation methods, introduced in Section 2, specially developed

for Kibble’s bivariate mixture of exponential distributions. The paper

is concluded in Section 6.

2. Background

We will use the interpretation of the Kibble distribution as a multi-

variate phase type distribution of the type MPH? to develop the es-

timation algorithm. We give a brief introduction to phase type distri-

butions referring the reader to Neuts (1975) [16], Neuts (1981) [17], or

Bladt (2005) [4] for further information. Let {X(t)}t≥0 be a Markov

jump process on a discrete state space E = {1, 2, . . . ,m,m+ 1} with
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statem+1 being an absorbing state and the states 1, . . . ,m being tran-

sient. We then define τ = min {t ≥ 0 : X(t) = m+ 1} as the time of

absorption. The distribution of τ is phase-type as termed by Neuts [16].

With T being the sub-intensity matrix of {X(t)}t≥0 corresponding to

the m transient states and α correspondingly being the initial distri-

bution among the transient states, we write τ ∼ PH(α, T ). The pair

(α, T ) is called a representation of the phase type distribution. In gen-

eral a representation for a phase type distribution is not unique.

Kulkarni (1989) [12] introduced MPH distributions using the occu-

pation times (H1, . . . , Hm) of the Markov jump process X(t) in the

states {1, . . . ,m}. The multivariate vector Y = (Y1, . . . , Yn) is defined

using linear combinations of these occupation times

Yj =
m∑

i=1

rij ·Hi =

∫ τ

0

rj (X(t)) dt.

The parameters rj(i) = rij ≥ 0 for j ∈ {1, . . . , n} and i ∈ {1, . . . ,m}

are the weights of the linear combinations alternatively interpreted

as rates for rewards collected in each state visited by the underlying

Markov jump process. The vector Y is said to be multivariate phase-

type,MPH?(α, T,R) distributed, where R = {rij} is called the reward

matrix.
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We will now demonstrate that the Kibble distribution with integer

shape parameter can be expressed by a negative binomial mixture of

gamma distributions with integer shape parameters. In its simplest

form with q = 1 and l = 0 the Kibble distribution reduces to a bivari-

ate exponential distribution. The MPH? representation for Kibble’s

bivariate exponential distribution is (α, T,R) with α =

(
1, 0

)
and

T =



−λ1 λ1

ρλ2 −λ2


 , R =




1 0

0 1


 .

This representation can be depicted graphically by

exp(λ1) exp(λ2)
1− ρ
ρ

r1(1) r2(2)

Y1 Y2 .

The interpretation of the figure is as follows. The system is entered from

the left into the first box marked with exp(λ1). This box represents

a delay or sojourn time governed by an exponential distribution with

intensity λ1. Reward is accumulated continuously with a constant rate

of r1(1) to the variable Y1 during visits to this box. Upon leaving the

box a similar box with exponential intensity λ2 is entered. During visits

to this box reward is accumulated to the variable Y2 with rate r2(2).

After the second box is left the first box is reentered with probability
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ρ or the system is left with probability 1− ρ. In the latter case reward

accumulation is ceased. We can write

Yi = rii

N∑

j=1

Hij,

where N is the geometrically distributed number of visits to each of the

two states and Hij is the duration of the jth visit to state i, i = 1, 2.

The marginal distributions of the Yi’s are thus geometric mixtures of

Erlang distributions well-known to be exponential. The dependence

between the two variables is due to the feedback mechanism param-

eterised by ρ that ensures that Y1 and Y2 have the same number of

exponential terms in the random sums. By serially connecting q iden-

tical copies of the diagram one obtains variables Y1 and Y2 that are

Erlang distributed due to their nature as a sum of a negative binomi-

ally distributed number of exponential random variables. Finally, we

could have additional exponential phases with no feedback mechanism

ascribing reward to either Y1 or Y2. We will add ` phases with expo-

nential rate λ2 ascribing reward to Y2 and none phases of this kind

ascribing reward to Y1. In this case we have an MPH? representation
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with

TE =




T T ? 0 0 · · · 0 0 · · · 0

0 T T ? 0 · · · 0 0 · · · 0

0 0 T T ? · · · 0 0 · · · 0

...
...

...
... . . . ...

... . . . ...

0 0 0 0 . . . T ? 0 · · · 0

0 0 0 0 . . . T t? · · · 0

0 0 0 0 . . . 0 −λ2 · · · 0

...
...

...
...

...
...
...

...
... . . . ...

0 0 0 0 . . . 0 0 · · · −λ2




, RE =




R

R

R

...

R

R

R2

...

R2




.

with

T ? =




0 0

(1− ρ)λ2 0


 , t? =




0

(1− ρ)λ2


 and R2 =

(
0 1

)
.

Using the probabilistic structure given through the MPH? represen-

tation we can derive the density for Kibble’s bivariate Gamma distribu-

tion. Let us assume there are q blocks with sub generator matrix T and

an additional ` states where the sojourn times are exp(λ2) distributed.

The underlying jump process visits the states {1, . . . , 2q, . . . , 2q + `}

before it is being absorbed. Let Ni be the number of times state i

is visited. The occupation time in state i conditioned on the number

of visits is then Erlang distributed. If we define the random variable



TENTATIVE 9

N =
∑q

i=1N2i−1, as the number of times the states where the sojourn

time is given by the parameter λ1 are visited, then N follows a nega-

tive binomial distribution with failure probability 1− ρ and q failures.

Conditioned on N , the accumulated occupation times in the states pa-

rameterised with λ1 and λ2 are independent and Erlang distributed

with intensity λ1 and λ2 respectively. The density function can be

written as

f(y1, y2) =

∞∑

n=q

P (N = n)f(y1, y2|N = n)

=

∞∑

n=q

(
n− 1

q − 1

)
ρn−q(1− ρ)qλ1

(λ1y1)
n−1

(n− 1)!
e−λ1y1λ2

(λ2y2)
n+`−1

(n+ `− 1)!
e−λ2y2

= λ1λ2e
−λ1y1−λ2y2(1− ρ)q

∞∑

n=q

(n− 1)!

(q − 1)!(n− q)!ρ
n−q (λ1y1)

n−1

(n− 1)!

(λ2y2)
n+`−1

(n+ `− 1)!

=
λ1λ2e

−λ1y1−λ2y2

(q − 1)!
(1− ρ)q

∞∑

k=0

1

k!
ρk

(λ1y1)
k+q−1(λ2y2)

k+`+q−1

(k + `+ q − 1)!

=
λ1λ2e

−λ1y1−λ2y2

(q − 1)!
(1− ρ)q (λ1y1λ2y2)

q−1(λ2y2)
`

(
√
ρλ1y1λ2y2)q+`−1

∞∑

k=0

(
√
ρλ1y1λ2y2)

2k+`+q−1

k!(k + `+ q − 1)!

=
λ1λ2e

−λ1y1−λ2y2

(q − 1)!
(1− ρ)q (λ1y1λ2y2)

q−1(λ2y2)
`

(
√
ρλ1y1λ2y2)q+`−1

Iq+`−1(2
√
ρλ1y1λ2y2)

where Iq(z) =
∑∞

i=0
1

i!Γ(i+q+1)

(
z
2

)2i+q is the modified Bessel function of

the first kind.
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3. Moment based estimators for q = 1 and l = 0

When q = 1 and l = 0 Y1 and Y2 are exponentially distributed.

Several estimators for ρ have been derived for this case. Let us consider

w different sets of observations Y (j) = (Y
(j)

1 , Y
(j)

2 ) for j ∈ {1, . . . , w},

where Y (j)
1 is the accumulated time spent in states with sojourn time

distribution exp(λ1) and Y
(j)

2 is the accumulated time spent in the

states with sojourn time distribution being exp(λ2) respectively. We

define the average of our observed times:

Ȳi =
1

w

w∑

j=1

Y
(j)
i , i ∈ {1, 2}

as well as the sample correlation coefficient

ρ̃0 =

∑w
j=1(Y

(j)
1 − Ȳ1)(Y

(j)
2 − Ȳ2)

√∑w
j=1(Y

(j)
1 − Ȳ1)2 ·∑w

j=1(Y
(j)

2 − Ȳ2)2

.

Furthermore we need

ρ̃ =

∑w
j=1(Y

(j)
1 − Ȳ1)(Y

(j)
2 − Ȳ2)

wȲ1Ȳ2

.

With this the estimators obtained from Kotz, Balakrishnan and John-

son [19] are
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1. ρ̃1 =





0

ρ̃

1

if ρ̃ ≤ 0

if 0 < ρ̃ ≤ 1,

if ρ̃ > 1.

2. ρ̃2 = ρ̃
(
1 + 3

w

)
− 1

w
ρ̃2

3. ρ̃3 =





0

ρ̃0

if − 1 ≤ ρ̃0 ≤ 0,

if 0 < ρ̃0 ≤ 1.

4. ρ̃4 =





0

ρ̃0(1 + 2
w

)− 1
w

(ρ̃2
0 + ρ̃3

0)

1

if ρ̃0(1 + 2
w

)− 1
w

(ρ̃2
0 + ρ̃3

0) ≤ 0

if 0 < ρ̃0(1 + 2
w

)− 1
w

(ρ̃2
0 + ρ̃3

0) ≤ 1,

if ρ̃0(1 + 2
w

)− 1
w

(ρ̃2
0 + ρ̃3

0) > 1.

5. ρ̃5 =





0

−(w−3)+
√

(w−3)2+4wρ̃

2

1

if −(w−3)+
√

(w−3)2+4wρ̃

2
≤ 0

if 0 <
−(w−3)+

√
(w−3)2+4wρ̃

2
≤ 1,

if −(w−3)+
√

(w−3)2+4wρ̃

2
> 1.

6. ρ̃5J =





0

wρ̃5 − (w − 1)ρ̃5(·)

1

if wρ̃5 − (w − 1)ρ̃5(·) ≤ 0

if 0 < wρ̃5 − (w − 1)ρ̃5(·) ≤ 1,

if wρ̃5 − (w − 1)ρ̃5(·) > 1.

where ρ̃5(·) = 1
w

∑w
i=1 ρ̃5(i).

7. ρ̃6 =





0

ρ̂?

1

if ρ̂? ≤ 0

if 0 < ρ̂? ≤ 1,

if ρ̂? > 1.

where ρ̃? = C +D − 1
3
,

C =

(
−B

2
+
√

A3

27
+ B2

4

) 1
3

,

D =

(
−B

2
−
√

A3

27
+ B2

4

) 1
3

,

A = w − 7
3
,

B = 20
27
− w

(
ρ̃0 + 1

3

)
.

8. ρ̃6J =





0

wρ̃6 − (w − 1)ρ̃6(·)

1

if wρ̃6 − (w − 1)ρ̃6(·) ≤ 0

if 0 < wρ̃6 − (w − 1)ρ̃6(·) ≤ 1,

if wρ̃6 − (w − 1)ρ̃6(·) > 1.

where ρ̃g(·) = 1
w

∑w
i=1 ρ̃g(i).
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The estimators ρ̃5(i) and ρ̃6(i) are determined using ρ̃5 and ρ̃6 leaving

out the i-th observation. Al-Saadi and Young (1980) [1] modified the

moment-based estimator ρ̃, originally proposed by Nagao and Kadayo

(1971) [15] to ρ̃1. Their estimator can be used to test for ρ = 0.

For large w, Al-Saadi and Young proposed ρ̃2 in order to reduce bias.

Furthermore they proposed ρ̃3 as a sample coefficient-based estimator

and improved it to ρ̃4. They compared the estimators and concluded

that ρ̃2 and ρ̃4 have for small samples a much smaller bias then ρ̃1 as

well as ρ̃3, with an exception for cases where ρ is of small value.

The estimator ρ̃5 was suggested by Balakrishnan and Ng (2001) [3],

and ρ̃5J is simply the jack knife version of ρ̃5. They showed that ρ̃5J

reduces the bias substantially. They also introduced ρ̃6 and state " . . .

in terms of MSE, we find that ρ̃6 to be the best among all the estimators

considered . . . "’. Based on these remarks one would expect ρ̃5J and ρ̃6

to be best performing among the moment estimators.

4. The EM algorithm

The EM algorithm was formulated by Dempster et al (1977) [8] and

since then it has become a standard method for dealing with incomplete

data. The algorithm is an iterative method for calculating maximum
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likelihood estimates in cases with missing data or where a direct evalua-

tion of the observed data likelihood function is difficult. The algorithm

consists of two main steps. In the E (expectation) step the expectation

of the log likelihood of the unobserved data given the current estimate

of the parameters as well as the observed data is calculated. In the M

(maximisation) step the expected log likelihood function is maximised

to derive new parameters.

For distributions belonging to the exponential family one can replace

unobserved data with their sufficient statistic. A fully observed Markov

jump process belongs to the exponential family of distributions. Given

incomplete data, for PH distributions the absorption time, we calcu-

late the expectation of the sufficient statistics of the unobserved data

and use the expected sufficient statistics as if they were obtained from

observed data. Asmussen et al (1996) [2] applied the EM algorithm to

phase-type (PH) distributions. We now describe their approach. The

sufficient statistics consist of the number of realizations starting in the

different states, the number of jumps between the states as well as the

total occupation time in each state.

Observing the complete Markov jump process of a PH distribution

is equivalent to observing the embedded Markov chain, i.e. the states

the Markov jump process is in after each jump I0, · · · , It−1, It = m+ 1
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and the sojourn times S0, · · · , St−1, St = ∞ in these states, where t is

the number of jumps until absorption. This enables us to describe the

complete information as x = (i0, · · · , it−1, s0, · · · , st−1) with s0 + s1 +

· · ·+ st−1 = τ .

If we consider a PH distribution with sub-generator matrix T and

initial distribution α the complete data likelihood for one observation

can be written as

f(x; α, T ) =
m∏

i=1

αBi
i

m∏

i=1

etiiZi

m∏

i=1

m+1∏

j=1,j 6=i
t
Nij

ij ,

with Bi being one if {X(t)}t≥0 started in i and zero otherwise, Zi

being the total time spent in state i, and Nij the total number of jumps

from i to j. If more than one observation is available the complete data

likelihood can be used unchanged, except Bi now being the number of

observations starting in i instead of being an indicator function. The

advantage of the EM algorithm for the univariate case is that all cal-

culations in the E step can be done using matrix analytic methods.

When dealing with MPH? distributions this property vanishes. There

exists no general explicit formulation for the density of MPH? distri-

butions, this makes it impossible to derive similar general results as in

the univariate case.



TENTATIVE 15

Let us consider an MPH? distribution where the reward matrix R is

a diagonal matrix, i.e. the only non zero entries are on the diagonal of

the matrix. For this special case the two representations MPH?(α, T,R)

and MPH?(α,R−1T, I) relate to the same distribution. The likelihood

function becomes

f(x; α, T, R) =
m∏

i=1

αBi
i

m∏

i=1

e
tii

yi
rii

m∏

i=1

m∏

j=0,j 6=i

(
tij
rii

)Nij

.

The complete data likelihood function is similar to the univariate case

and the maximum likelihood estimates can easily be calculated. Fur-

thermore we can assume R = I for any model with diagonal reward

matrix. If we consider a reward matrix with non diagonal structure,

the likelihood function can become more complex but the maximisa-

tion will always be possible whereas it might become impossible to get

an analytic solution for the conditional expectations.

We now describe how to derive the formulas needed in the expecta-

tion step in order to use the EM algorithm to estimate the parameters

for the Kibble distribution. The variables Y1 and Y2 directly give the

accumulated occupation times of the underlying jump process in the

states with sojourn time distribution being exp(λ1) and exp(λ2).

A complete observation would also contain B1, B2, N with N =

∑q
i N2i−1 where Ni is the number of visits to the states with sojourn
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time distribution exp(λ1). Due to the structure of the underlying

Markov jump process the only information missing is N .

The complete likelihood for one observation can be written as

f(x;T ) = 1 · e−λ1·y1 · e−λ2·y2λN1 · (pλ2)N−q · ((1− p)λ2)q · λ`2.

We have immediately that the maximum likelihood estimates based on

the complete sample x are

λ̂1 =
N

y1

, λ̂2 =
N + `

y2

, ρ̂ =
N − q
N

.

We consider a set of observations
{
y(1), · · · , y(w)

}
with y(v) =

(
y

(v)
1 , y

(v)
2

)
,

and let N (v) be the number of times the underlying Markov jump pro-

cess visits the states with sojourn time distribution parameterised with

λ1. The likelihood function can be written as

f(x, T ) = e−λ1·(
∑w

v=1 y
(v)
1 ) · e−λ2·(

∑w
v=1 y

(v)
2 )

· λ
∑w

v=1N
(v)

1 · (pλ2)
∑w

v=1(N(v)−r) · ((1− p)λ2)w·r · λw·`2

and the estimates for the set of observations
{
y(1), · · · , y(w)

}
are

λ̄1 =

∑w
v=1N

(v)

∑w
v=1 y

(v)
1

,
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λ̄2 =

∑w
v=1

(
N (v) + `

)
∑w

v=1 y
(v)
2

,

ρ̄ =

∑w
v=1

(
N (v) − r

)
∑w

v=1 E[N (v)|y(v)]
.

In order to apply the EM algorithm we are left with calculating

E[N |y].

Eα,T,R[N |y] =

∑∞
n=q n

(
n−1
q−1

)
ρn−q(1− ρ)qλ1

(λ1y1)n−1

(n−1)!
e−λ1y1λ2

(λ2y2)n+`−1

(n+`−1)!
e−λ2y2

∑∞
n=q

(
n−1
q−1

)
ρn−q(1− ρ)qλ1

(λ1y1)n−1

(n−1)!
e−λ1y1λ2

(λ2y2)n+`−1

(n+`−1)!
e−λ2y2

=

∑∞
n=q n

(
n−1
q−1

)
ρn−q(1− ρ)q (λ1y1)n−1

(n−1)!
(λ2y2)n+`−1

(n+`−1)!∑∞
n=q

(
n−1
q−1

)
ρn−q(1− ρ)q (λ1y1)n−1

(n−1)!
(λ2y2)n+`−1

(n+`−1)!

=

1
(q−1)!

∑∞
k=0

k+q
k!
· (ρλ1λ2y1y2)k+q−1

(k+`+q−1)!

1
(q−1)!

∑∞
k=0

1
k!
· (ρλ1λ2y1y2)k+q−1

(k+`+q−1)!

=

∑∞
k=0

k
k!
· (ρλ1λ2y1y2)k+q−1

(k+`+q−1)!
+ q

∑∞
k=0

1
k!
· (ρλ1λ2y1y2)k+q−1

(k+`+q−1)!∑∞
k=0

1
k!
· (ρλ1λ2y1y2)k+q−1

(k+`+q−1)!

=

∑∞
k=1

1
(k−1)!

· (ρλ1λ2y1y2)k

(k+`+q−1)!∑∞
k=0

1
k!
· (ρλ1λ2y1y2)k

(k+`+q−1)!

+ q

=

√
ρλ1λ2y1y2

∑∞
k=0

1
k!
· (
√
ρλ1λ2y1y2)2k+`+q

(k+`+q)!∑∞
k=0

1
k!
· (
√
ρλ1λ2y1y2)2k+`+q−1

(k+`+q−1)!

+ q

=
√
ρλ1λ2y1y2 ·

I`+q(2
√
ρλ1λ2y1y2)

I`+q−1(2
√
ρλ1λ2y1y2)

+ q,

with Iq(z) =
∑∞

i=0
1

i!Γ(i+q+1)

(
z
2

)2i+q being the modified Bessel function

of the first kind.
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4.1. Fisher Information Matrix. The Fisher information matrix is

well known for estimating the inverse of the variance covariance matrix.

Having the variance covariance matrix we can give confidence intervals

for our estimates. There are several ways to calculate the Fisher in-

formation matrix. For example Oakes (1999) [18] shows how to obtain

the Fisher information matrix directly from the EM algorithm while

Bladt, Esparza and Nielsen (2011) [5] derive explicit formulas for the

EM algorithm applied to univariate PH distributions. For the param-

eter vector Ψ the observed Fisher information matrix of the estimates

I(Ψ̂, y) can be calculated as the second derivative of the observed log

likelihood function evaluated using the estimated parameters. Often

second derivatives are difficult to evaluate, and alternatively the Fisher

information matrix can be written as

I(Ψ̂, y) = Ic(Ψ̂, y)− [EΨ

{
Sc(Y ; Ψ)STc (Y ; Ψ)

}
|y]Ψ=Ψ̂

with Ic(Ψ̂, y) being the negative expectation of the second derivative

of the complete data log likelihood function and Sc(Y ; Ψ) being the

complete data score statistic, the first derivative of the complete data

log likelihood. In our example the complete data log likelihood is

log f(x, T ) = −λ1y1 − λ2y2 +N log(λ1)

+ (N + `) log(λ2) + (N − q) log(ρ) + q log(1− ρ).
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And with that the Fisher information matrix can be written as

I(λ̂1, λ̂2, ρ̂, y) = Eα,T,R







N
λ21

0 0

0 N+`
λ22

0

0 0 N−q
ρ2

+ q
(1−ρ)2




∣∣∣∣∣∣∣∣∣∣∣

y




+ Eα,T,R







−y1 + N
λ1

−y2 + N+`
λ2

N−q
ρ
− q

(1−ρ)



·
(
−y1 + N

λ1
−y2 + N+`

λ2

N−q
ρ
− q

(1−ρ)

)

∣∣∣∣∣∣∣∣∣∣∣

y



.

The only random variables in this equation are N and N2. We get

Eα,T,R[N |y] directly from the expectation step in our algorithm. This

leaves us with deriving

Eα,T,R[N
2|y] =

∑∞
n=q n

2
(
n−1
q−1

)
ρn−q(1− ρ)qλ1

(λ1y1)n−1

(n−1)! e−λ1y1λ2
(λ2y2)n+`−1

(n+`−1)! e−λ2y2
∑∞

n=q

(
n−1
q−1

)
ρn−q(1− ρ)qλ1

(λ1y1)n−1

(n−1)! e−λ1y1λ2
(λ2y2)n+`−1

(n+`−1)! e−λ2y2

=

1
(q−1)!

∑∞
k=0

(k+q)2

k! · (ρλ1λ2y1y2)k+`+q−1

(k+`+q−1)!

1
(q−1)!

∑∞
k=0

1
k! ·

(ρλ1λ2y1y2)k+`+q−1

(k+`+q−1)!

=

∑∞
k=0

k2

k! ·
(ρλ1λ2y1y2)k+`+q−1

(k+`+q−1)!
∑∞

k=0
1
k! ·

(ρλ1λ2y1y2)k+`+q−1

(k+`+q−1)!

+ 2q (Eα,T,R[N |y]) + q2

=

∑∞
k=0

k2

k! ·
(ρλ1λ2y1y2)k

(k+`+q−1)!
∑∞

k=0
1
k! ·

(ρλ1λ2y1y2)k

(k+`+q−1)!

+ 2q (Eα,T,R[N |y]) + q2

=

∑∞
k=0

k
(k−1)! ·

(ρλ1λ2y1y2)k

(k+`+r−1)!
∑∞

k=0
1
k! ·

(ρλ1λ2y1y2)k

(k+`+q−1)!

+ 2q (Eα,T,R[N |y]) + q2

=

∑∞
k=1

k
(k−1)! ·

(ρλ1λ2y1y2)k

(k+`+q−1)!
∑∞

k=0
1
k! ·

(ρλ1λ2y1y2)k

(k+`+q−1)!

+ 2q (Eα,T,R[N |y]) + q2
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=

∑∞
s=0

s+1
s! ·

(ρλ1λ2y1y2)s+1

(s+`+q)!
∑∞

k=0
1
k! ·

(ρλ1λ2y1y2)k

(k+`+q−1)!

+ 2q (Eα,T,R[N |y]) + q2

=

∑∞
`=0

`
s! ·

(ρλ1λ2y1y2)s+1

(s+`+q)!
∑∞

k=0
1
k! ·

(ρλ1λ2y1y2)k

(k+`+q−1)!

+ (Eα,T,R[N |y]− q)

+ 2q (Eα,T,R[N |y]) + q2

=

∑∞
`=0

1
s! ·

(ρλ1λ2y1y2)s+2

(s+`+q+1)!
∑∞

k=0
1
k! ·

(ρλ1λ2y1y2)k

(k+`+q−1)!

+ (Eα,T,R[N |y]− q)

+ 2q (Eα,T,R[N |y]) + q2

= ρλ1λ2y1y2 ·
Iq+`+1(2

√
ρλ1λ2y1y2)

Iq+`−1(2z)

+ (Eα,T,R[N |y]− q) + 2q (Eα,T,R[N |y]) + q2

5. Examples - Mixtures of exponential distributions

For the special case of a bivariate exponential distribution we will

compare our result to the selection of estimates listed in Johnson, Bal-

akrishnan and Kotz (2001) [19] introduced in Section 3. We verify the

accuracy of our estimates using the method suggested by Chatelain

et al (2007) [7]. To compare the EM algorithm to the parameter es-

timators for ρ introduced in Section 2 we simulate bivariate data by

first drawing w geometrically distributed random numbers G1, . . . , Gw

and afterwards, drawing Erlang-Gi random numbers with parameter λ1

and λ2, respectively for i = 1, . . . , w. We investigate the cases where
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the intensities are approximately equal and where they are quite dif-

ferent, along with different values for 0 < ρ < 1. We produced data

sets by simulating with ρ1 = 0.2, ρ2 = 0.4, ρ3 = 0.6, and ρ4 = 0.8

for (λ1, λ2) = (0.7, 1.3) and for (λ1, λ2) = (1, 10) to represent the sce-

nario where the intensities are approximately the same and the scenario

where the intensities are clearly different. We created data sets with

50, 250, and 1000 data points.

The marginal distributions are exponential by construction. To give

an impression of the bivariate distribution and our data we have com-

pared bivariate histograms of our data sets with 1000 data points to

contour lines from the pdf for the Kibble distribution. For each data

set, we have scaled the data by ρ to make the graphical comparison

easier. We consider the case λ1 ≈ λ2. Figure 1 shows the data together

with contour plots of the Kibble distribution. We get a similar picture

when we look at the case λ1 << λ2.
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Figure 1. Contour lines of the pdf and bivariate his-

togram of the simulated data for λ1 = 0.7 and λ2 = 1.3

Tables 1-6 present our results.

Table 1. 50 data points, λ1 = 0.7, λ2 = 1.3

ρreal ρEM ρCh ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ5J ρ6J

0.2 0.1529 0.1529 0.2879 0.3035 0.1959 0.2028 0.3043 0.2030 0.2957 0.1845

0.4 0.4692 0.4692 0.1516 0.1603 0.2399 0.2480 0.1608 0.2483 0.1529 0.2426

0.6 0.6898 0.6898 0.4532 0.4763 0.5978 0.6103 0.4773 0.6102 0.4547 0.5919

0.8 0.8416 0.8416 1.0000 1.0000 0.8675 0.8741 1.0000 0.8739 1.0000 0.8901
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Table 2. 250 data points, λ1 = 0.7, λ2 = 1.3

ρreal ρEM ρCh ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ5J ρ6J

0.2 0.1832 0.1832 0.1583 0.1601 0.1652 0.1663 0.1601 0.1664 0.1592 0.1638

0.4 0.5039 0.5036 0.3899 0.3940 0.4255 0.4279 0.3940 0.4279 0.3922 0.4242

0.6 0.5859 0.5859 0.7689 0.7758 0.6476 0.6500 0.7758 0.6500 0.7829 0.6610

0.8 0.8085 0.8085 0.8358 0.8430 0.8245 0.8262 0.8430 0.8261 0.8453 0.8284

Table 3. 1000 data points, λ1 = 0.7, λ2 = 1.3

ρreal ρEM ρCh ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ5J ρ6J

0.2 0.2209 0.2209 0.2151 0.2157 0.2188 0.2192 0.2157 0.2192 0.2156 0.2188

0.4 0.4446 0.4446 0.3593 0.3603 0.3880 0.3885 0.3603 0.3886 0.3599 0.3878

0.6 0.5769 0.5769 0.6497 0.6512 0.6201 0.6207 0.6512 0.6207 0.6516 0.6213

0.8 0.7744 0.7744 0.7775 0.7792 0.7905 0.7910 0.7792 0.7910 0.7795 0.7913

Table 4. 50 data points, λ1 = 1, λ2 = 10

ρreal ρEM ρCh ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ5J ρ6J

0.2 0.0735 0.0735 0.1263 0.1336 0.1404 0.1455 0.1340 0.1457 0.1214 0.1470

0.4 0.4974 0.4974 0.3125 0.3293 0.3556 0.3664 0.3302 0.3666 0.3255 0.3433

0.6 0.6417 0.6417 1.0000 1.2558 0.7967 0.8058 1.0000 0.8055 1.0000 0.8197

0.8 0.8095 0.8095 1.0000 1.0000 0.8989 0.9042 1.0000 0.9039 1.0000 0.9156

As expected, in general the estimates come closer to the true param-

eter value the more observations are available. In general, we can say

that the estimates for ρ by the EM algorithm are at least as good as
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Table 5. 250 data points, λ1 = 1, λ2 = 10

ρreal ρEM ρCh ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ5J ρ6J

0.2 0.1809 0.1809 0.1439 0.1456 0.1692 0.1704 0.1456 0.1704 0.1453 0.1703

0.4 0.3953 0.3953 0.3204 0.3238 0.3340 0.3361 0.3238 0.3361 0.3227 0.3348

0.6 0.6430 0.6430 0.7283 0.7350 0.6966 0.6988 0.7350 0.6988 0.7352 0.6990

0.8 0.8017 0.8017 0.7636 0.7704 0.8052 0.8070 0.7705 0.8070 0.7687 0.8072

Table 6. 1000 data points, λ1 = 1, λ2 = 10

ρreal ρEM ρCh ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ5J ρ6J

0.2 0.1827 0.1827 0.1779 0.1784 0.1811 0.1814 0.1784 0.1814 0.1785 0.1821

0.4 0.3828 0.3828 0.3439 0.3448 0.3532 0.3537 0.3448 0.3537 0.3445 0.3532

0.6 0.6113 0.6113 0.5821 0.5835 0.6049 0.6055 0.5835 0.6055 0.5833 0.6050

0.8 0.8088 0.8088 0.7729 0.7747 0.8083 0.8087 0.7747 0.8087 0.7745 0.8090

the other estimates, and it seems that the EM algorithm handles the

case where λ1 = 1 << λ2 = 10 better than the other methods. The

calculation time is, at least for small data samples, reasonable.

5.1. Precision of estimates. A weakness of MPH? distributions is

that most distributions do not have a unique MPH? representation.

This makes it difficult to compare parameters directly and makes it

insensible to calculate precision estimates like confidence intervals. We

now show that any estimator describing the correlation in Kibble’s

bivariate exponential distribution for a given reward matrix R is unique



TENTATIVE 25

except for permutations. Let ∼ describe the identity in distribution of

two MPH? distributions and assume

α = (1, 0), T =



−λ1 λ1

ρ2 · λ2 −λ2


 ,

β = (β1, β2), U =



−µ1 r1 · µ1

r2 · λ̂2 −µ2


 , R = I.

In order to prove the uniqueness, we will compare the Laplace transform

of the two representations:

MPH?(β, U,R) ∼MPH?(α, T,R)

⇔ ∀ s Lβ,U (s) = Lα,T (s)

⇐⇒ λ1λ2(1− ρ2)
s1s2 + s2λ1 + s1λ2 + λ1λ2(1− ρ2)

=
βα1s2µ1(1− r1)µ2 + β2s1µ1µ2(1− r2) + µ1µ2(1− r1r2)

s1s2 + s2µ1 + s1µ2 + µ1µ2(1− r1r2)

⇐⇒ β1µ1µ2(1− r1)s1s22 + β2µ1µ2(1− r2)s21s2

+ λ1β1µ1µ2(1− r1)s22 + λ2β2µ1µ2(1− r2)s21

+ (λ1β2µ1µ2(1− r2) + µ1µ2(1− r1r2) + β1λ2µ1µ2(1− r1)− λ1λ2(1− ρ2)) s1s2

+ (λ1µ1µ2(1− r1r2) + β1λ1λ2(1− ρ2)µ1µ2(1− r1)− µ1λ1λ2(1− ρ2)) s2

+ (λ2µ1µ2(1− r1r2) + β2λ1λ2(1− ρ2)µ1µ2(1− r2)− µ2λ1λ2(1− ρ2)) s1 = 0

=⇒ {β1 = 0 ∨ r1 = 1} ∧ {β2 = 0 ∨ r2 = 1}

=⇒ µ1 = λ1, µ2 = λ2, {β1 = 1, β2 = 0, r1 = 1, r2 = ρ2}
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∨ {β1 = 0, β2 = 1, r1 = ρ2, r2 = ρ1} .

With the uniqueness of representation we know it is safe to compare

the estimated correlation parameter with the one used to generate the

data and to give confidence intervals for the estimates.

For the estimates obtained using the EM algorithm we calculated

the Fisher information matrix. Since ρ is the critical parameter, we

will state the estimated standard deviation σρ for ρ. In Tables 7 and 8

we show the results for the examples with 1000 data points.

Table 7. 1000 data points, λ1 = 0.7, λ2 = 1.3

ρ 0.2 0.4 0.6 0.8

ρEM 0.2209 0.4446 0.5769 0.7744

σρ 0.0070 0.0092 0.0087 0.0059

Table 8. 1000 data points, λ1 = 1, λ2 = 10

p 0.2 0.4 0.6 0.8

pEM 0.1827 0.3828 0.6113 0.8088

σρ 0.0061 0.0090 0.0084 0.0051

The correlation between ρ and the intensity parameters is negative

as expected. An increase of ρ correlates to more jumps before absorp-

tion of the underlying Markov jump process. The number of visits to
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the states with different sojourn time distributions directly influences

the random variables Y1 and Y2 to counter this effect the intensity

parameters λ1 and λ2 would have to be decreased.

6. Discussion

We have adapted the EM algorithm to be used to estimate parame-

ters for a bivariate mixture of Erlang distributions also known as the

Kibble distribution. Our focus has been on the estimation in the Kibble

distribution taking advantage of the interpretation as an MPH? distri-

bution. For this reason we have focused on integer shape parameters.

The EM algorithm is, however, also applicable in the general case only

the interpretation as a bivariate phase type distribution is lost. With

the results from Section 4.1 it is possible to give confidence intervals

for the estimates.

For the special case where the shape parameters are one we have ap-

plied the EM algorithm to simulated data and compared it to a selection

of moment based estimators specially developed for Kibble’s bivariate

mixture of exponential distributions as well as a direct maximum like-

lihood approach. The EM algorithm calculates a maximum likelihood

estimate and is compared to the moment based estimators more robust
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towards variations in the parameters as well as data size. We have val-

idated our experimental results by implementing a standard Newton

Raphson method like the one used by Chatelain et al [7]. Comparing

the EM algorithm to the direct approach used by Chatelain (2007) [7]

the direct approach seems to somewhat outperform the EM algorithm

with respect to speed, while the EM algorithm guarantees convergence

and give a closed form expression for the Fisher information matrix.

In order to apply our method in situations where the computation

time is crucial it would be useful to investigate the option to speed up

the EM algorithm. Right now it is initiated with random parameters.

It is possible that choosing the sample correlation coefficient for ρ as

an initial value would increase the convergence speed. In cases with

identical shape parameters, this can be taken so far as to use the direct

approach by Chatelain (2007) [7] and use our results only to calculate

the Fisher information matrix. Another interesting problem for further

investigation would be to analytically calculate the convergence rate of

our EM algorithm.

There exist no general applicable method to obtain maximum likeli-

hood estimators for multivariate phase-type distributions. This paper

is a first step in estimating for this class of distributions. Future work

should investigate the possibility to generalise our results, ideally to
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produce similar general results as for univariate phase type distribu-

tions. This might be more challenging than expected. First steps can

definitely be done by extending our results to more general mixtures

of Erlang distributions.
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Abstract 

The "Successive Principle" is an analysis method that has been widely applied in 

Scandinavia particularly for many transport and other infrastructure projects. We 

demonstrate how the calculations performed in the "Successive Principle" fit into the broad 

class of phase type distributions such that any value related to the distribution can be 

calculated. Particularly, one can calculate the standard deviation and upper quantiles 

exactly. 

 Our method can deal with lead times to compensate for the early start of sub-projects. Due 

to the phase type formulation we are able to calculate distribution properties simultaneously 

for durations and costs. We demonstrate our methodology by a case study that has previously 

been analysed in the Successive Principle framework. As the Successive Principle is based on 

Erlang 7 distributions we use these distributions in the example. However, any phase type 

distribution would be suitable. We also provide a small constructed example to illustrate the 

potential of simultaneous analysis of cost and duration.  

Keywords: cost estimation, duration estimation, group analysis, phase type distribution, 

multivariate phase-type distribution, Successive Principle 
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1. Introduction 

Forecasts for the duration and cost of infrastructure projects have been constantly and 

remarkably inaccurate as stated by Kahneman and Lovallo (Kahneman & Lovallo, 2003) and 

Wachs (Wachs, 1990). The suggested reasons are, e.g. optimism bias, anchoring (Kahneman 

& Lovallo, 2003) and political misrepresentation (Wachs, 1990). Throughout time this has 

been a repeating pattern. Flyvbjerg (Flyvbjerg, 2006) mentions and discards several reasons 

for this unchanging pattern in recent decades. As it is a well-known fact that forecasts are 

often inaccurate, it is a pressing research problem to develop tools for project management 

that can deliver accurate estimations for cost, demand, duration, and other variables. 

Flyvbjerg (Flyvbjerg, 2006) suggests "Reference Class Forecasting" to avoid not only 

optimism bias but also political misrepresentation. The idea is to analyse projects based on 

similar, already conducted, projects. This is only applicable in cases where a reference 

already exists. Another solution is to consider group analysis which includes the experience 

of the group members and is not necessarily a strictly quantitative analysis. Hill (Hill, 1982) 

quotes several authors saying "group processes could lead to process gain". The idea of group 

analysis is to increase precision by knowledge sharing. It might be problematic to find 

appropriate specialists for the analysis or to prevent them from influencing each other. 

Another approach for obtaining project forecasts is to determine the uncertainties and then 

focus on the ones with major impact. Humphreys (Humphreys, 2005) associates the number 

of subtasks in a project that affect the overall outcome by a relevant percentage to Pareto's 

Principle (also known as the 80-20 rule) indicating that the majority of the overall uncertainty 

comes from very few items. Hillson (Hillson, 2003) uses a Risk Breakdown Structure to 

obtain a ranked list that identifies the most uncertain events and defines it as "A source-

oriented grouping of project risks that organises and defines the total risk exposure of the 



project". The Successive Principle (SP) (Lichtenberg, 2000) combines many of these ideas. 

The SP is a group analysis method that is widely used throughout Scandinavia. It divides 

projects in several subtasks. It is assumed that durations and costs of subtasks are Erlang 

distributed, more specifically Erlang 7 distributed. The method can be used for project cost, 

cost-benefit analysis and duration-related estimates. The goal is to avoid several pitfalls of a 

traditional analysis by using an inhomogeneous group of people guided by a professional. 

The Successive Principle has been of use internationally with most cases in Scandinavia for 

several decades and has been constantly improved by researchers and its users.  

The main contribution of this paper is to apply the phase type methodology to the SP in order 

to obtain distributional properties beyond the mean. Being able to calculate the probability of 

delays is very important when assessing the risk of a project. The assumption of the SP that 

the duration of a subtask follows an Erlang distribution can be generalised to the assumption 

that durations follow general phase type (PH) distributions. The PH assumption allows for 

very general distributions enhancing the applicability of the SP particularly one can perform 

sensitivity analysis to see consequence of different distributional assumptions. 

The phase type interpretation allows for the complete calculation of all distributional 

properties. In addition, we suggest a different approach for dealing with lead times in order to 

stay in the class of PH distributions. We use our approach to examine a real case that has 

previously been analysed with the SP. In order to make this comparison we use the same 

distribution used in the SP, the Erlang 7 distribution. Finally, we show how to use 

multivariate PH (MPH) distributions to model the dependence between cost and duration of a 

project. 

 



2. PH and MPH distributions 

 
The Erlang distributions used in the SP belong to the broader class of phase-type (PH) 

distributions.  

PH distributions can be used to approximate any given distribution and are defined as the 

distribution of time until absorption in an absorbing continuous time Markov chain (Pinsky & 

Karlin, 2011) also known as a Markov jump process. To be more precise, let 𝑋(𝑡) be a 

Markov jump process on a discrete state space 𝐸 = {1,2, … ,𝑚,𝑚 + 1} with m + 1 being an 

absorbing state and the states {1, … , m} being transient states. We then define τ = min{t ≥

 0:  X(t) = m + 1} as the time of absorption. The distribution of τ is of phase type as termed 

by Neuts (Neuts, 1975). With T being the sub-intensity matrix of X(t) corresponding to the 𝑚 

transient states and α correspondingly being the initial distribution vector among the transient 

states, we write 𝜏 ∼  PH(𝛼,𝑇). We call (𝛼,𝑇) a representation for the PH distribution. The 

sub intensity matrix T is of dimension m × m and α is of dimension m. Closed form 

solutions for the density, the cumulative distribution, as well as all moments exist. 

In this paper we will present only fundamental results concerning PH distributions that are 

used in our modelling approach. For more results on PH distributions the reader is referred to 

(Neuts M. F., 1981) or (He, 2014). 

 Define 𝟏 a column vector with ones in every entry, and 𝑇0 = (−𝑇𝟏)  then the probability 

density function f(x) as well as the cumulative distribution F(x) and the expectation of 𝜏 can 

be written as

 



Erlang distributions are defined through two different parameters. The shape parameter k and 

the intensity parameter λ. Their probability density function as well as their cumulative 

distribution is well known 

 
Furthermore, let a random variable 𝑋 be Erlang distributed with shape parameter 𝑘 and 

intensity parameter λ, we then write X ∼  Er(k, λ)  and the PH(α,𝑇)  representation can be 

given by

 

and α = e1 = (1,0, … ,0). The dimension of T is 𝑘 × 𝑘 and the dimension of 𝛼 is k. PH 

distributions are closed under order statistics. Let X ∼ PH(αX ,𝑇X)  and Y ∼  PH(α𝑌 ,𝑇𝑌)  then 

max(X, Y) ∼  PH(αmax(X,Y), Tmax(X,Y)) with 

 

Here ⊗ is the Kronecker product (Neuts, 1975) and 𝐼j is an identity matrix of proper 

dimension. 

Assaf and Levikson (Assaf & Levikson, 1982) showed that the class of PH distributions is 

closed under the three basic operations finite mixtures, finite convolutions, and formation of 

coherent systems of independent components. A coherent system is a system that fails once a 



certain number of components are not functional. They also showed that the subclass of PH 

distributions with an upper triangular sub generator matrix is closed under these operations. 

This means as long as the subtasks are Erlang distributed, we can always model the entire 

project as a PH distribution with an upper triangular sub-generator matrix. This has certain 

advantages, for example the certainty of a bounded number of states being visited as well as 

some numerical advantages when inverting the sub-generator matrix 𝑇. When analysing the 

dependence between duration and cost of a project we are dealing with a bivariate variable. 

Bivariate variables can be modelled using MPH distributions. Kulkarni (Kulkarni, 1989) 

defines MPH distributions based on univariate PH distributions. Kulkarni denotes the 

occupation times in the states {1, … , m} of the absorbing Markov jump process X(t) as 

( H1, … , Hm). He then constructs the multivariate vector Y = (Y1, … , Yn) by using linear 

combinations of the occupation times. To be more precise Yi = ∑{j=1}
m r{ji} ⋅ Hj =

∫ ri (X(t))dt𝜏
0 , with ri(j) = rij  ≥  0 for i ∈ { 1, … , n} and j = {1, … , m}  being the weights of 

the linear combinations, in other words the reward collected in each state visited by the 

underlying Markov jump process. The vector Y is then said to be multivariate phase type*, 

MPH⋆(α, T, R) distributed, where R = (rji) is called the reward matrix. 

3. Modelling project subtasks using PH distributions 

We will focus on the duration assessment as this methodologically is more demanding due to 

the effects of lead time and merge event bias (MEB). The term lead time refers to a subtask 

starting prior to the completion of its predecessor. The MEB is a correction term to 

compensate for the fact that the task with shortest expected duration will actually be the 

longest when one models the duration of two parallel subtasks by one single task. We will 



show how to use given parameters for the duration of each subtask to model the entire 

duration of a project using PH distributions. By using calculations for general PH 

distributions we completely eliminate the need for MEB as we model the projects evolvement 

explicitly. For the lead times we suggest an approach that keeps the model for the total 

duration in the class of PH distributions. 

3.1 Modelling different structures arising in projects 

A common way of representing the subtasks of a project and their interrelationship is using a 

state diagram like the one below. 

 

Each box represents a subtask and one is particularly interested in the duration of these. 

Similarly, one can graphically describe PH distributions using state diagrams now with the 

requirement that the occupation time in each block is exponentially distributed. However, by 

grouping a number of exponential blocks together we can model the duration of a subtask 

using general PH distributions. 

 

The PH distribution depicted above could for example model the duration of a subtask in the 

state diagram. Due to the coherent system property, assuming durations of subtasks to be PH 

distributed will immediately imply that the total duration of the project is also PH distributed.  



The assumption in the SP is that the duration Di of a subtask i is Er(7, λ𝑖) distributed. We will 

represent a PH distribution with its representation (αi,𝑇𝑖) . For an Er(7, λ𝑖) the representation 

can be given with αi = (1,0, … ,0) of dimension 7 and 

 

This can graphically be depicted as: 

We will use these building blocks (𝛼𝑖,𝑇𝑖) to create a model for D the total duration of the 

project. 

Let us consider a simple project consisting of two subtasks running successively 

 

Obviously, 𝐷 = 𝐷1 + 𝐷2 and with that D ∼ PH(e1, TD)  whith 𝑒1 = (1,0 … ,0) of appropriate 

dimension and 

 

We can calculate the expected duration of the whole project as the sum of the expectations of 

the subtasks E[D] = αD(−𝑇)−1𝟏 = E[D1] + E[D2] = α1(−𝑇1)−1𝟏 + α2(−𝑇2)−1𝟏 . 



In general αD(−𝑇)−1𝟏 will not simplify similarly. If we consider a project where subtask 2 

can only start once subtasks 1 and 3 are completed 

 

i.e. after the maximum of two random variables, calculating the expected duration of the 

project is not as straight forward. This is due to the variability of the durations, making it 

possible that the subtask with the shorter expected duration takes longer time to complete. 

Different analysis methods, e.g. SP introduces a merge event bias MEB. The PERT approach 

does not directly account for the MEB, it can be approached by using simulation (Douglas & 

Cox, 1978) or numerical algorithms (Pontrandolfo, 2000). Kulkarni and Adlakha (Kulkarni & 

Adlakha, Markov and Marko-Regenerative Pert Networks, 1986) solve the problem by 

assuming exponentially distributed duration for subtasks and by constructing a Markov jump 

process. 

This approach can be extended by allowing for general PH distributions and with that 

D ∼ PH(e1, TD)  where 

 

The matrix T1 ⊗ I3 + I1 ⊗ T3 represents the distribution of time until one of the subtasks 1 

or 3 is completed. The entries I1 ⊗ T30 and T10 ⊗ I3 are the exit rates and ensure the 

continuing subtask will continue in the right state. Finally T10α2 and T30α2 ensure the proper 

start of subtask 2. 



The expected time of the project E[D] is not simply the sum of the expected times of the 

subtasks as  

 

The inequality 𝐸[max{𝐷1,𝐷3}] ≠ max {𝐸[𝐷1],𝐸[𝐷3]} is what creates the need for the MEB 

in the SP. One advantage of modelling the entire project duration as a PH distribution  is that 

no correction term is necessary. 

We can extend the complexity by assuming task 2 can only start when tasks 1 and 3 are 

completed, but task 4 can start immediately when task 3 is completed 

 

Clearly E[D] = E[max{D3 + D4 , max{D1, D3} + D2}] The sub generator matrix can be given 

as 

Cases where a subtask has more than two predecessors can be modelled using the well-

known fact max{X1, X2, X3} = max{X1, max{X2, X3}}. 

An example for the structure of such a project is 



 

We can model the project using the sub generator matrix 

 

and e1 as the initial probability distribution vector.  

3.2 Modelling lead times 

As mentioned earlier, it is not uncommon to assume that a subtask can start before the 

predecessor is completed. The event that subtask 𝑗 can start before subtask 𝑖 is completed is 

denoted with 𝐿𝑖𝑗 and the duration of this event is given with 𝐿𝑖𝑗. This time can be either 

deterministic or random. In the SP it is assumed that this time random. A graphical 

representation can be found below. 

. 

 



One obvious way of modelling the total duration would be by D = D1 − L12 + D2. However, 

in this case D can potentially be negative, as 𝐿12 can attain any positive real value. As we are 

considering the duration of a project it is desirable to have P(D > 0) = 1. As L12 reduces the 

contribution of D2 to the total duration of the project an alternative way of modelling D is 

D = D1 + D2 − min{D2, L12} and with that P(D > 0) = 1. This way L12 cannot reduce the 

total duration by more than the duration of subtask 2, however with 𝐿12 and D1 being random 

variables it is still possible that D1 < L12 < D2 which can be interpreted as subtask 2 

beginning before subtask 1 has started. This is an unrealistic event that can be avoided by 

modelling the total duration as D = D1 + D2 − min{D1, D3, L12}. In this case D is again PH 

distributed as shown by Ahn and Ramaswami (Soohan & Ramaswami, Bilateral phase type 

distributions, 2005). However, the sub-generator will not be of upper triangular form.  

If we have two predecessors to a subtask and both allow for lead times as in the following 

diagram 

 

calculating the total duration is rather difficult. Examples can be found in (Lichtenberg, 2000) 

or in (Gong & Hugsted, 1993). Following the argument as before the total duration of the 

project is  

 



Clearly the two terms we are taking the maximum of are not independent and therefore we 

are not able to state a general PH representation for D. It is not even clear if allowing more 

general PH distributions than Erlang distributions for the duration of subtasks that the 

maximum will stay in the class of PH distributions. In order to obtain more general results,  

we decided not to follow this path further but to suggest a different approach which will fit 

better to the simplicity that makes the SP appealing and will ensure an upper triangular sub 

generator matrix for the total duration of the project when the subtasks follow PH 

distributions generated by an upper triangular matrix.  

If we go back to the model  

 

we can reformulate the lead time 𝐿12 from being the time subtask 2 can start before 

completion of subtask 1, to  𝐿�12 being the time subtask 1 has to run after the start of subtask 

2. Furthermore we have to define the time 𝐷�𝑖 until the first successor of subtask i can start. If 

subtask i has no successor it is the time until completion of the subtask. It is assumed that 

subtasks prior to a certain subtask without a lead time connection have to be completed 

before it can begin. With that we can model the total duration 𝐷� and calculate 

 

In this case we have 𝐸[𝐷] = 𝐸[𝐷]� and 𝐷�𝑖 can either be directly estimated by the analysis 

group responsible for the parameter choices of the SP or by the values traditionally obtained 

through the SP. One further advantage is that this way of modelling reproduces the actual 



behaviour of a project more accurately. In reality it is not possible to wait until the 

completion of a subtask, and from there derive how many time units ago the successor could 

have been initiated. Contrary a subtask will run and after a certain level of completion is 

reached the successor can start, while the predecessor still has to be completed and might face 

further delays.  

4. Case Study: Modelling a project using PH distributions  

In 2000 Lichtenberg & Partners produced a schedule analysis for a large international IT 

development project using the SP. The group analysis identified the uncertainties of the 

project and concluded the following diagram represents the critical paths and near critical 

paths of the project 

. 

Every subtask except for subtask nine represents a physical part of the project. Subtask nine 

represents motivation or any other general conditions influencing the projects duration. Using 

this structure we have that the 𝐿𝑖𝑗’s contribute with a negative value to the total duration of 

the project. More specifically the group came up with the following values 

 



In order to only have subtasks that contributed with positive time to the duration of the 

project we will restructure the model to 

 

with  

  

To comply with the analysis performed by Lichtenberg & Partner  we choose the specific PH 

distribution of the subtasks to be Erlang 7 distributed and calculate the intensity parameters 

based on the expectations of the original subtask. This will cause a slight loss of information 

and for further analysis we suggest to directly estimate the parameters for 𝐷�𝑖 and 𝐿�𝑖𝑗  during 

the process of the group analysis. 

To simplify the sub generator 𝑇𝐷 matrix we combine the subtask 3 and the lead time 14 to the 

task 143 with sub generator matrix 



Even for this simple project, when modelling the total duration of the project using the 

methods presented in this paper, the sub generator matrix will consist of 28 different 

combinations of the sub generator matrices for the independent subtask. The state space for 

the entire project contains 3353 states. It is not a problem to handle this numerically, however 

we decided not to state the sub generator matrix 𝑇𝐷. 

Numerically we can immediately get  

 

as well all other moments, quantiles, and probabilities. The mean value obtained in the 

original analysis was 25.5 month. Our result is slightly higher; this can be explained by 

avoiding approximations of the MEB. 

5. Correlation between cost and time 

Frequently there is some dependence between the cost and the duration of a project. It even 

goes so far that the cost of construction projects has been used to estimate the necessary time 

for the project (Lichtenberg S. , 1974). Several methods accounting for the dependence in 

terms of cost and time have been reviewed by Ogunsemi and Jagboro (Ogunsemi & Jagboro, 

2006). Let us again consider a simple project  



 

each subtask generates cost due to the duration of the subtask, e.g. man hours and use of 

equipment, this allows us to model part of the projects cost related to the duration of each 

subtask. 

We define the time dependent cost of subtask i as Ki = ci ⋅  Di, a constant multiplied with the 

duration of the subtask. Then the total time dependent cost C of the project is 𝐶 = ∑ Kii  . The 

scalars ci can be derived through several methods. One obvious choice is to estimate them 

during the group analysis session of the SP. 

The total duration depending cost of the project with 3 subtasks is simply C = K1 + K2 + K3. 

The interest now is in the duration as well as the time dependent cost. This leaves us with 

modelling the project as an MPH* distribution, with 𝛼 = e1 and     

 

 

With other words Ri1  = 1. Ri2 is the sum of the time dependent cost parameters 𝑐𝑗 of the 

subtasks running simultaneous at this stage. 

This extension can easily be applied to our remodelled project 

 



 

The main work is already done, as it is to derive the sub generator matrix 𝑇𝐷. Adapting the 

reward matrix is straight forward. Having an MPH* model does not allow us to evaluate the 

density directly but only by numerical approximation. Nevertheless, we can calculate all 

moments as well as cross moments directly as shown by Bladt and Nielsen (Bladt & Nielsen, 

2010). Furthermore simulation is straight forward and the marginal distributions are also PH 

distributions. 

Small analytic example for analysing the dependence between cost and time 

In order to further illustrate the approach we will consider an analytical example. Let us 

consider a small infrastructure project where a pedestrian bridge over a river is to be build. 

We are interested in the expected duration and cost of the project. Only material available 

without cost is being used. Therefore the only cost under consideration is working hours. The 

construction of the bridge consists of three parts, accruing the material, building the 

foundation and finishing of the bridge. Furthermore we assume these task have to be 

completed successively by different craftsmen with different wages, 𝑐1, 𝑐2, 𝑐3. The durations 

undergo stochastic variation and for simplicity we assume they are exponentially distributed 

with intensities 𝜆1, 𝜆2 and 𝜆3. Therefore the MPH* representation can be given with 

𝛼 = (1,0,0), 𝑇 = �
−𝜆1 𝜆1 0

0 −𝜆2 𝜆2
0 0 −𝜆3

� ,𝑅 = �
1 𝑐1
1 𝑐2
1 𝑐3

� 



Let X be the duration of the project and Y the cost, the cross moment is then  

𝐸[𝑋,𝑌] = 𝛼(−𝑇)−1Δ(𝑅1)(−𝑇)−1𝑅2 + 𝛼(−𝑇)−1Δ(𝑅2)(−𝑇)−1𝑅1

=
2𝑐1
𝜆12

+
2𝑐2
𝜆22

+
2𝑐3
𝜆32

+
𝑐1 + 𝑐2
𝜆1𝜆2

+
𝑐1 + 𝑐3
𝜆1𝜆3

+  
𝑐2 + 𝑐3
𝜆2𝜆3

 

Where Δ(𝑅𝑖) is a diagonal matrix with the i-th column of R on the diagonal.  

From the cross moment we can derive the covariance and the correlation.  

  

6. Discussion 

The SP consists of two separate parts; a data generating part and an analysis part. It is the 

analysis part we address in this paper. We have focused on data obtained from the SP, 

however, data could just as well have been obtained from other sources. In reality quality 

data on infrastructure projects is scarce and due to the nature no replications are at hand. See 

the UNITE publication by Nicolaisen (Nicolaisen, 2012) for a thorough discussion of the 

problems associated with data gathering. 

In case one has data at hand the parameters of phase type distributions can be estimated using 

the Expectation-Maximisation method see Asmussen et al. (Asmussen, Nerman, & Olsson, 

1996). As mentioned above data might not be available, however, the approach of 

(Asmussen, Nerman, & Olsson, 1996) can still be applied if one is able to suggest an initial 

distribution, which can then be fitted by minimising the so-called Kulback-Leibler distance 

expressing the degree of similarity between distributions The phase-type base approach can 

be used to improve sensitivity analyses and hence the accuracy of cost-benefit calculations 

which have been brought forward through Salling and Banister (Salling & Banister, 2009). 



An important aspect of projects that with today’s methods is hard to quantify is the 

environmental impact in correlation to construction time and cost. Furthermore the trend in 

society is that environmental impact is considered increasingly important. Properly quantified 

one should be able to include environmental impact in the multivariate phase type model. 

However, it is doubtful that the duration of all subtasks can be described by the same 

distribution like the Erlang 7 distribution. It is a clear advantage to model an entire project as 

a PH distribution, as it allows for more general PH distributions for the durations of subtasks 

without any major changes. The only significant disadvantage of our modelling approach is 

the increased cost of modelling. The complexity of our model asks for a tool which takes the 

structure of a project and translates it into a transition matrix. This will be a necessity to make 

our modelling approach an everyday tool. In our opinion the cost of developing a tool is 

minor compared to the benefits project management can gain from it. 

We have extended our model to the bivariate case, correlating duration and cost of a project.  

If it is assumed that the duration and the cost of subtasks follow Erlang distributions it is 

possible to estimate the intensity parameters as well as the dependence between cost and 

duration using the expectation-maximization algorithm (Meisch, 2014). 

So far analysing the depends between the cost and duration of a project has only been done 

theoretically and still has to prove its worth in real life.  

One direction for further research is to implement the bivariate analysis of duration and cost 

and try it in several group analyses. The data obtained from these group analyses can then be 

used to revise our modelling approach.  



7. Conclusion 

We have generalised the assumption of the SP that the duration of a subtask in a project 

follows an Erlang distribution to model the total duration of a project using a PH distribution. 

This allows us to evaluate the density, quantiles as well as all moments of the duration of a 

project. In order to stay in the class of PH distributions, we have suggested a new way of 

dealing with lead times, which might be seen as more natural. As expected, compared to the 

classical approach of the SP, our model results in a higher expected total duration of a 

project. In turn we avoid the need for estimating the merge event bias and can calculate the 

distribution of the duration of the project directly. Furthermore, we have shown how to use a 

bivariate PH distribution to model the dependence between the cost of a project and the 

duration of its subtasks. We believe that our approach is a step towards making project 

forecasts more reliable. 
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