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t-tests, non-parametric tests, and large
studies—a paradox of statistical practice?
Morten W Fagerland

Abstract

Background: During the last 30 years, the median sample size of research studies published in high-impact medical
journals has increased manyfold, while the use of non-parametric tests has increased at the expense of t-tests. This
paper explores this paradoxical practice and illustrates its consequences.

Methods: A simulation study is used to compare the rejection rates of the Wilcoxon-Mann-Whitney (WMW) test and
the two-sample t-test for increasing sample size. Samples are drawn from skewed distributions with equal means and
medians but with a small difference in spread. A hypothetical case study is used for illustration and motivation.

Results: The WMW test produces, on average, smaller p-values than the t-test. This discrepancy increases with
increasing sample size, skewness, and difference in spread. For heavily skewed data, the proportion of p < 0.05 with
the WMW test can be greater than 90% if the standard deviations differ by 10% and the number of observations is
1000 in each group. The high rejection rates of the WMW test should be interpreted as the power to detect that the
probability that a random sample from one of the distributions is less than a random sample from the other
distribution is greater than 50%.

Conclusions: Non-parametric tests are most useful for small studies. Using non-parametric tests in large studies may
provide answers to the wrong question, thus confusing readers. For studies with a large sample size, t-tests and their
corresponding confidence intervals can and should be used even for heavily skewed data.
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Background
In an article published in the New England Journal of
Medicine (NEJM) in 2005, Horton and Switzer review the
use of statistical methods in three volumes of the NEJM
in 2004 and 2005 [1]. They divide the methods into 25
categories—sorted according to increasing complexity—
and list the frequencies in each category. Also included
are the results from previous surveys of articles published
in the same journal in 1978–1979 and in 1989. Table 1
presents the proportions of articles that contained t-tests
and non-parametric tests. At all three time points, t-tests
or non-parametric tests or both were used in more than
half of the articles. In 1978–1979, four t-tests were used
for every non-parametric test. In 2004–2005, t-tests and
non-parametric tests were used with equal frequency.
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Let us compare this trend in the use of simple statis-
tical methods with another development. Martin Bland
[3] considers the median sample size of research reports
published in the Lancet and the BMJ that used individual
subject data. In September 1972, the median sample sizes
were 33 and 37, and in September 2007, they were 3116
and 3104. Thus, during a similar time span as in Table 1,
the sample size increased almost 100 fold.
If we assume that the NEJM is similar to the

Lancet and the BMJ as regards statistical methods and
sample size, research authors that publish in these high-
impact medical journals have increase their use of non-
parametric tests at the expense of t-tests as their studies
have increased in size.
This, to me, is counterintuitive.
t-tests are parametric tests, which assume that the

underlying distribution of the variable of interest is nor-
mally distributed. Consider the two-sample t-test. It is
fairly robust to deviations from normality [4], and—by the
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Table 1 Trends in the use of t-tests and non-parametric
tests in the NEJM

Statistical procedure 1978–1979 1989 2004–2005

t-tests∗ 44% 39% 26%

Non-parametric tests† 11% 21% 27%

∗one-sample, two-sample, and matched-pair [2].
†Wilcoxon-Mann-Whitney, sign, and Wilcoxon signed rank sum [2].

central limit theorem—increasingly so when the sample
size increases. When the sample size of a study is 200, the
t-test is robust even to heavily skewed distributions [5].
Non-parametric tests, as defined in Table 1, have,

broadly speaking, two applications. First, as simple meth-
ods to analyze ordinal data, such as degree of pain clas-
sified as none, mild, moderate, or severe. Second, as
alternatives to parametric tests, most often used when
there is evidence of non-normality. This latter practice is
advocated in many basic textbooks, such as Refs. [6-9].
In their capacity as alternatives to t-tests, non-

parametric tests are thereby most useful when the sample
size is small. One would, then, expect to observe an
increase in the ratio of t-tests to non-parametric tests as
studies grow in size. Instead, the opposite has occurred.
The purpose of this paper is to illustrate the conse-
quences of uncritical use of non-parametric tests for large
studies and to discuss some possible explanations for this
practice.

Methods
Suppose that we want to compare the means or medians
of a continuous variable in two independent groups. Two
tests are often used for this problem: the (two-sample) t-
test and theWilcoxon-Mann-Whitney (WMW) rank sum
test. The t-test is a test for the hypothesis of equal means,
whereas the WMW test is less specific. If the underly-
ing distributions of the variable in the two groups differ
only in location, i.e. in means and medians, the WMW
test is a test for the hypothesis of equal medians. For all
other situations, the null hypothesis of the WMW test

is Prob(X < Y ) = 0.5, where X and Y are random sam-
ples from the two distributions. Interpretation of a small
p-value in this case is not always straightforward.
A difference in means or medians is usually accompa-

nied by a difference in spread [10,11]. The WMW test is
sensitive to distribution differences besides location [11]
and may give a small p-value based on differences in
spread even when the means and medians are equal.
A simulation study was carried out to compare the rejec-

tion rates of the t- and WMW tests for increasing sample
size. Due to its superior properties [5], the t-test adjusted
for unequal variances—hereafter simply referred to as the
t-test, though it is often called the Welch U test—was
used. The Brunner-Munzel test, a non-parametric test
that adjusts for unequal variances, may be used as an
alternative to the WMW test. It is not widely available in
software packages, performs similarly to the WMW test
[11], and is not included in the simulation study. The data
were drawn at random from skewed gamma and lognor-
mal distributions. The amount of skewness varied, in four
steps, from small (coefficient of skewness = 1.0) to con-
siderable (skewness = 4.0) and was always equal in both
distributions, as were the means and medians. The only
difference between the two distributions was in standard
deviations, which differed, in eight steps, from 5% (ratio of
1.05) to 50% (ratio of 1.50). The nominal significance level
was 5% and 10 000 replications were used.
Table 2 gives the true Prob(X < Y ) for each scenario

in the simulation study. Since the null hypothesis of the
WMW test is Prob(X < Y ) = 0.5, we expect the rejection
rates of theWMW test to exceed the nominal significance
level whenever Prob(X < Y ) > 0.5. That is, the rejection
rates of the WMW test represent the power to detect
Prob(X < Y ) �= 0.5.

Results
Case study
Consider Figure 1, which is a plot of the probability density
functions of two gamma (left panel) and two lognormal

Table 2 The true Prob(X < Y) for each scenario in the simulation study

Gamma distributions Lognormal distributions

Skewness Skewness

Std.ratio 1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0

1.05 0.50 0.51 0.54 0.58 0.50 0.51 0.51 0.51

1.10 0.51 0.52 0.56 0.61 0.51 0.51 0.52 0.52

1.15 0.51 0.53 0.57 0.62 0.51 0.52 0.53 0.53

1.20 0.52 0.54 0.58 0.64 0.52 0.53 0.53 0.54

1.25 0.52 0.54 0.59 0.64 0.52 0.53 0.54 0.56

1.30 0.52 0.55 0.60 0.66 0.52 0.53 0.55 0.55

1.40 0.53 0.56 0.61 0.67 0.52 0.54 0.56 0.57

1.50 0.53 0.57 0.62 0.68 0.53 0.55 0.56 0.58
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Figure 1 Probability density functions (pdf) of two gamma (left panel) and two lognormal (right panel) distributions. The two distributions
in each panel are equal, except that the standard deviation of X is 10% greater than that of Y .

(right panel) distributions. The coefficient of skewness is
3.0 for all distributions, and the means and the medians of
the two distributions in each panel are equal. The standard
deviation of the distributions corresponding to the solid
lines (X) are 10% greater than that of the distributions
corresponding to the dotted lines (Y ). That difference is
almost imperceptible for the two gamma distributions.
Suppose that we draw, at random, 1000 values from

each of these four distributions. The results might look
like that of Figure 2. Since we, in an actual study, obviously
do not know the exact distributions from which the
observed data originate, it is histograms such as these
that give us a clue about the underlying distributions of
the data. The data in Figure 2 are markedly skewed to
the right, and we may be tempted to use the WMW test
instead of the t-test to compare the locations of X and Y.
If we repeatedly draw samples of size 1000 from the dis-

tributions in Figure 1, we can apply the t- andWMW tests

to the samples each time and record the results. After
10 000 replications, the 5% rejection rates (the propor-
tion of times p < 0.05) were 5.1% (gamma distributions)
and 4.9% (lognormal distributions) for the t-test. The
expected rejection rate for an unbiased test of means or
medians is 5.0%, that is, a one in 20 chance of a signif-
icant result when the means (and medians) are known
to be equal. The t-test thus performs quite well. The
rejection rates for the WMW test are 99% (gamma distri-
butions) and 28% (lognormal distributions). The WMW
test indicates a significant difference between the groups
more often than the expected 5%. The explanation is that
the two distributions are slightly different: their means
and medians are equal but their standard deviations dif-
fer by 10%. The WMW test is sensitive to this difference
and produces a small p-value. But, if we are interested in
comparing the means or the medians—as is customary—
the WMW test most likely gives us an answer to the
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Figure 2 Histograms of random samples of size 1000 drawn from the four distributions in Figure 1.
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wrong question. The correct question for the WMW test
can be formulated as: Is a random sample from one of
the distributions likely to be less than a random sample
from the other distribution? The skewness and standard
deviation ratio of the two distributions in Figure 1 are
3.0 and 1.10, respectively. We thereby obtain the actual
probability of Prob(X < Y ) from Table 2, which is 56%
for the gamma distributions and 52% for the lognor-
mal distributions. The high rejection rates of the WMW
test (99% and 28%) represent the power of the WMW
test to detect that those probabilities are unequal to
50%.
If we repeat the above exercise for a range of sample size

values, we can plot the rejection rate against the number
of subjects in each group (Figure 3). The rejection rates
of the WMW test increase as the sample size increases,
whereas the rejection rates of the t-test are stable at about
5%.

Overall results from the simulation study
The patterns of rejections rates in Figure 3 persist for
all combinations of skewness and standard deviation
ratios considered in this study. The rejection rates of

the t-test are always close to 5%, whereas the rejection
rates of the WMW test increases with increasing sam-
ple size. As expected, the rejection rates of the WMW
test increases when the difference in standard devia-
tions increases, because it is this difference that the
WMW test picks up. Interestingly, the rejection rates
of the WMW test also increases when the amount of
skewness increases. The problem is thus greater for sit-
uations in which one would more readily abandon the
t-test (considerably skewed data) than for situations where
the amount of skewness may be considered manageable
(slightly skewed data). An example of the increasing rejec-
tion rates of theWMW test for increasing standard devia-
tion ratios and increasing amount of skewness can be seen
in Table 3.
Detailed results for each of the 448 situations considered

in the simulation study are given in Additional file 1.
Tables 4 and 5 present summaries of the results. In Table 4,
the average per cent rejection rates of the t- and WMW
tests are given stratified by study size. Each value in the
table is the mean of the rejection rates for each of the
32 combinations of amount of skewness and standard
deviation ratios.
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Figure 3 Rejection rates (p < 0.05) of the WMW and t-tests based on samples from the distributions in Figure 1.

Table 3 Rejection rates (%) of the t- andWMW tests for data drawn from gamma distributions using 1000 subjects in each
group

WMW test t-test

Skewness Skewness

Std.ratio 1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0

1.05 5.8 14.4 78.6 100 4.8 4.4 4.9 4.8

1.10 8.6 39.1 98.8 100 4.8 5.0 5.1 4.9

1.15 13.6 65.7 100 100 5.5 4.8 5.1 5.2

1.20 19.6 83.7 100 100 5.0 4.7 5.2 5.2

1.25 26.1 93.8 100 100 5.7 4.7 5.0 5.1

1.30 33.9 97.7 100 100 4.9 5.0 4.4 5.1

1.40 48.9 99.8 100 100 4.9 5.0 5.0 4.8

1.50 61.7 100 100 100 4.7 5.0 4.9 5.3
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Table 4 Mean rejection rates (%) of the t- andWMW tests, averaged over 32 combinations of amount of skewness and
standard deviation ratios

Number of subjects in each group

10 25 50 100 250 500 1000

Gamma distributions

t-test 4.01 4.71 4.91 4.98 4.95 4.99 4.97

WMW test 9.47 18.0 28.9 41.6 56.9 66.3 74.7

Lognormal distributions

t-test 4.20 4.69 4.83 4.89 4.95 4.92 4.98

WMW test 5.21 6.99 9.63 14.4 26.5 39.7 54.3

Table 5 Estimated probabilities (%) that the p-value of theWMW test is smaller than that of the t-test, averaged over 32
combinations of amount of skewness and standard deviation ratios

Number of subjects in each group

10 25 50 100 250 500 1000

Gamma distributions 54.1 63.3 69.8 75.8 82.6 86.8 90.3

Lognormal distributions 45.6 52.1 56.9 62.3 70.1 76.3 82.5

Table 5 presents the estimated probability that the p-
value of the WMW test is smaller than that of the t-test.
For large studies with data distributed as in this simula-
tion study, theWMW test almost always produces smaller
p-values than the t-test.

Discussion
The concurrent increases—since the Seventies—in sam-
ple size and use of non-parametric tests over t-tests have
a paradoxical quality. The usefulness of non-parametric
tests as alternatives to t-tests for non-normally distributed
data is most pronounced for small studies. When the
sample size increases, so does the robustness of the t-
tests to deviations from normality. The non-parametric
WMW test, on the other hand, increases its sensitiv-
ity to distribution differences other than between means
and medians, and it may detect (i.e. produce a small p-
value) slight differences in spread. When the difference
in spread increases, the probability that a random sam-
ple from one of the distributions is less than a random
sample from the other distribution also increases. With
a large sample size, the WMW test has great power to
detect that that probability is not 50%. If the purpose of
the study is to detect any distributional difference, using a
non-parametric test is probably useful.Most studies, how-
ever, are carried out to investigate differences in means
or medians, and as such, the ratio of non-parametric
tests to t-tests ought to decrease when studies grow in
size.
Why then has the use of non-parametric tests

increased? We may propose several explanations. Per-
haps, non-parametric tests were underused earlier, and

that the present ratio of t-tests to non-parametric tests
represents the “correct” one. If so, only the smallest of
contemporary studies ought to use non-parametric tests.
However, in the NEJM in 2004–2005, 27% of the studies
used non-parametric tests [1], and the 25th percentile of
the sample size in September 2007 in the Lancet and the
BMJ were 1236 and 236 [3]. The smallest quartile of stud-
ies actually contains many quite large studies. Thus, the
use of non-parametric tests is not confined to appropri-
ately small studies. Another explanation might be that
most studies do not use non-parametric tests as an alter-
native to t-tests but rather to analyze ordinal variables,
which is a highly reasonable practice. We do not have
any systematic evidence to support or reject that hypoth-
esis, although a cursory review of articles published in the
NEJM, Lancet, JAMA, and BMJ from September through
November 2011 revealed several large studies that used
non-parametric tests as alternatives to t-tests; for exam-
ple, n=1721 [12], n=429 [13], n=107018 [14], n=44350
[15], n=1789 [16], and n=12745 [17]. The use of non-
parametric tests as alternatives to t-tests may be more
common in high-impact journals [18]. The NEJM, for
instance, in their instructions for authors, recommend
that “nonparametric methods should be used to com-
pare groups when the distribution of the dependent vari-
able is not normal” (http://www.nejm.org, accessed
March 19, 2012). That recommendation does not take
into account the sample size and may force authors of
large studies to use non-parametric methods needlessly.
Four more explanations can be hypothesized. First, med-
ical research authors may use a test for normality to
decide whether to use a t-test or a non-parametric test.

http://www.nejm.org
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We strongly advise against that practice. In large studies,
tests for normality are very sensitive to deviations from
normality and thereby unsuitable as tools to choose the
most appropriate test. Second, regardless of the size of
their studies, authors may rely on recommendations and
advice intended solely for the analysis of smaller studies.
There might be a lack of critical thinking about recom-
mendations and a poor understanding of the practical
implications of the central limit theorem. Third, authors
may simply prefer small p-values, and might go shopping
for the statistical method that gives them the smallest p.
In the simulation study in this paper, the WMW test pro-
duced smaller p-values that the t-test more than 70% of
the times when the number of subjects in each group
was 250. For 1000 subjects in each group, that propor-
tion increased to more than 80%. Last, we have publi-
cation bias. A study with a significant p-value from the
WMW test may be more readily accepted for publica-
tion than a study with a non-significant p-value from the
t-test.
Is the WMW test a bad test? No, but it is not always

an appropriate alternative to the t-test. The WMW test is
most useful for the analysis of ordinal data andmay also be
used in smaller studies, under certain conditions, to com-
pare means or medians [5,11]. Furthermore, if the results
from the WMW test are interpreted strictly according to
the test’s null hypothesis, Prob(X < Y ) = 0.5, the WMW
test is an efficient and useful test. For large studies, how-
ever, where the purpose is to compare the means of
continuous variables, the choice of test is easy: the t-test
is robust even to severely skewed data and should be used
almost exclusively.
One further benefit of using the t-test is that it facili-

tates interval estimation. The t-test and its corresponding
confidence interval are based on the same standard error
estimate; when the t-test is robust, so is the confidence
interval. Combined with linear regression analysis, the t-
test and its confidence interval form a simple and unified
approach for analyzing and presenting continuous out-
come data, which, for large studies, is sufficient for most
practical purposes.
This study has only considered smooth, skewed distri-

butions. Medical variables do not always have a smooth
distribution and may include outliers. The problem with
outliers is not that the t-test fails as a test of equality of
means in their presence, but that the mean itself may be
a poor representation of the typical value of the distribu-
tion. One solution is to use another measure of location,
for instance, the trimmed mean, which may be compared
in two groups with the Yuen-Welch test [5]. The prob-
lem that the mean does not reflect the central tendency
of a distribution is most pronounced in small studies,
where the impact of outliers is usually greater than in
large studies.

Conclusions
The use of non-parametric tests in high-impact medical
journals has increased at the expense of t-tests, while the
sample size of research studies has increased manyfold.
Recent examples of large studies that use non-parametric
tests as alternatives to t-tests are abundant.
Non-parametric tests are most useful for small studies.

Research authors that use non-parametric tests in large
studies may provide answers to the wrong question, thus
confusing readers. For large studies, t-tests and their cor-
responding confidence intervals can and should be used
even for heavily skewed data.

Additional file

Additional file 1: Supplementary materials. Detailed results from the
simulation study.
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