
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Epistemic and Doxastic Planning

Jensen, Martin Holm; Bolander, Thomas

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Jensen, M. H., & Bolander, T. (2014). Epistemic and Doxastic Planning. Kgs. Lyngby: Technical University of
Denmark (DTU).  (DTU Compute PHD-2014; No. 316).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/19504584?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/epistemic-and-doxastic-planning(43462516-5927-4b2c-9514-35595318c88a).html


Epistemic and Doxastic Planning

Martin Holm Jensen

Kongens Lyngby 2014
PhD-2014-316



Technical University of Denmark
Department of Applied Mathematics and Computer Science
Matematiktorvet, Building 303 B, DK-2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

PhD-2014-316



Abstract

This thesis is concerned with planning and logic, both of which are core areas
of Artificial Intelligence (AI). A wide range of research disciplines deal with
AI, including philosophy, economy, psychology, neuroscience, mathematics and
computer science. The approach of this thesis is based on mathematics and
computer science. Planning is the mental capacity that allows us to predict the
outcome of our actions, thereby enabling us to exhibit goal-directed behaviour.
We often make use of planning when facing new situations, where we cannot
rely on entrenched habits, and the capacity to plan is therefore closely related
to the reflective system of humans. Logic is the study of reasoning. From certain
fixed principles logic enables us to make sound and rational inferences, and as
such the discpline is virtually impossible to get around when working with AI.

The basis of automated planning, the term for planning in computer science,
is essentially that of propositional logic, one of the most basic logical systems
used in formal logic. Our approach is to expand this basis so that it is based on
richer and and more expressive logical systems. To this end we work with logics
for describing knowledge, beliefs and dynamics, that is, systems that allow us
to formally reason about these aspects. By letting these elements be used in a
planning context, we obtain a system that extends the degree to which goal-
directed behaviour can, at present, be captured by automated planning.

In this thesis we concretely apply dynamic epistemic logic to capture knowledge,
and dynamic doxastic logic for capturing belief. We highlight two results of
this thesis. The first pertains to how dynamic epistemic logic can be used to
describe the (lack of) knowledge of an agent in the midst of planning. This
perspective is already incorporated in automated planning, and seen in isolation
this result appears mainly as an alternative to existing theory. Our second result
underscores the strength of the first. Here we show how the kinship between the
aforementioned logics enable us to extend automated planning with doxastic
elements. An upshot of expanding the basis of automated planning is therefore
that it allows for a modularity, which facilitates the introduction of new aspects
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into automated planning.

We round things off by describing what we consider to be the absolutely most
fascinating perspective of this work, namely situations involving multiple agents.
Reasoning about the knowledge and beliefs of others are essential to act ratio-
nally. It enables cooperation, and additionally forms the basis for engaging in
a social context. Both logics mentioned above are formalized to deal with mul-
tiple agents, and the first steps have been taken towards extending automated
planning with this aspect. Unfortunately, the first results in this line of research
have shown that planning with multiple agents is computationally intractable,
and additional work is therefore necessary in order to identify meaningful and
tractable fragments.



Resumé

Denne afhandling beskæftiger sig med planlægning og logik, der begge er kerne-
områder inden for Kunstig Intelligens (KI). En bred vifte af forskningsdiscipliner
behandler KI, herunder bl.a. filosofi, økonomi, psykologi, neurologi, matematik
og datalogi. Tilgangen i denne afhandling er funderet i matematikken og data-
logien. Planlægning er den mentale evne, som tillader os at forudsige udfaldet af
vores handlinger, og herigennem gør os i stand til at udvise målbevidst adfærd.
Vi benytter os ofte af planlægning i nye situationer, hvor vi ikke kan forlade os
på indgroede vaner, og evnen til at planlægge er derfor knyttet til menneskets
refleksive system. Logik er læren om at ræsonnere. Ud fra visse kerneprincipper
gør logik os i stand til at lave korrekte og rationelle slutninger, og derfor er
disciplinen stort set umulig at komme uden om i arbejdet med KI.

Grundteorien i automatiseret planlægning, den datalogiske betegnelse for plan-
lægning, er essentielt bygget på udsagnslogik, hvilket er et af de simpleste syste-
mer, der benyttes i den formelle logik. Vores fremgangsmåde er at udvide denne
grundteori, så den baseres på stærkere og mere udtryksfulde logiske systemer.
Vi beskæftiger os i den forbindelse med logikker der beskriver viden, overbe-
visning og dynamik, dvs. systemer der gør os i stand til formelt at ræsonnere
om disse aspekter. Ved at lade disse elementer indgå i en planlægningssammen-
hæng opnås en udvidelse af dén målbevidste adfærd, der i dag kan beskrives i
automatiseret planlægning.

Konkret benytter vi i afhandlingen dynamisk epistemisk logik til at beskrive
viden, samt dynamisk doksastisk logik til at beskrive overbevisning. Vi fremhæ-
ver to resultater fra afhandlingen. Det første drejer sig om, hvordan dynamisk
epistemisk logik kan benyttes til at beskrive en aktørs (manglende) viden mens
denne er i gang med planlægge. Dette perspektiv findes allerede inkorporeret i
planlægning, og isoleret set fremstår dette resultat hovedsageligt som et alter-
nativ til eksisterende teori. Vores andet resultat fremhæver dog styrken af det
første. Her viser vi, hvordan slægtskabet mellem de to føromtalte logikker gør os
i stand til at udvide planlægning med doksatiske elementer. En af styrkerne ved
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at løfte grundteorien i planlægning er altså en modularitet, som langt lettere
tillader indfasning af nye aspekter i automatiseret planlægning.

Vi runder af med at beskrive, hvad vi betragter som det absolut mest fasci-
nerende fremtidsperspektiv for dette arbejde, nemlig situationer der omfatter
flere aktører. At kunne ræsonnere om andre aktørers viden og overbevisning er
essentielt for at kunne agere rationelt. Det er muliggør samarbejde, og danner
derudover grundlaget for at kunne indgå i sociale sammenhænge. Begge logik-
ker nævnt ovenfor er formaliseret til at udtale sig om flere aktører, og de første
spadestik er taget til udvidelse af planlægning med dette aspekt. Uheldigvis
har de første resultater på dette punkt vist, at planlægning med adskillige ak-
tører er beregningsmæssigt fuldstændig uhåndterbart, og yderligere arbejde er
nødvendigt for at kunne isolere meningsfyldte fragmenter.
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Chapter 1

Introduction

Artificial intelligence (AI) is a line of research that brings together a vast num-
ber of research topics. Indeed, subfields of AI include diverse areas such as
philosophy, mathematics, economics, neuroscience, psychology, linguistics and
computer science. The ideas and techniques found within this motley crew of
disciplines have laid the foundation of AI, and, to this day, still contributes to its
further development. We can equate the term “artificial” with something that
is man-made, that is, something which is conceived and/or crafted by humans.
Pinning down what constitutes “intelligence” is on the other hand a daunting
and controversial task, one which we will not undertake here. Instead we will
posit that formal reasoning plays a crucial role in designing and building intelli-
gent systems, and that we must require a generality of the reasoning process to
such an extent that it can be applied to many different types of problems. This
sentiment is our principal motivation for the work conducted in this thesis.

Pertaining more generally to the development of AI, we support the view of
Marvin Minksy that we shouldn’t look for a “magic bullet” for solving all kinds
of problems [Bicks, 2010]. In accordance with this stance we make no claim
that the methods presented here are universally best for all tasks. Nevertheless
we find that these methods capture relevant and useful aspects of reasoning, as
is also evident from studies in cognitive science (see theory of mind in Section
1.5).

We bring up two virtually ubiquitous notions in AI. The first is that of an agent.
To us an agent constitutes some entity that is present, and possibly acts, in an
environment. An agent can represent e.g. a human or a robot acting in the
world, but in general an agent need not have a physical representation and so
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can equally well be a piece of software operating in some environment. We
also mention environments in which multiple agents are present, each of which
are then taken to represent an individual entity. The second notion is that of
rational agency, which is admittedly more elusive than the first. Following [van
Benthem, 2011] we take rational agency to mean that agents must have some
form of rationale behind the choices they make, and that this rationale is based
on an agent’s knowledge, goals and preferences.

In the remainder of this chapter we paint a picture of the topics of AI we treat
in this thesis, and along the way point out relationships with results contained
in this thesis. We start out with automated planning in Section 1.1, where we
explicate the basic formalism underlying this research discipline. Section 1.2
is a brief account of dynamic epistemic logic, a topic we revisit many times
over in later chapters. Following this, Section 1.3 describes what we’ll refer to
as epistemic planning, where the theory of the two aforementioned areas come
together. In Section 1.4 we motivate research into the area of epistemic planning
and further discuss a few applications, before we touch upon related formalisms
in Section 1.5. We wrap this chapter up in Section 1.6 by outlining the contents
and contributions of subsequent chapters.

1.1 Automated Planning

When planning we want to organize our actions so that in a certain situation,
our goal, is brought about. This organization of actions can be represented
as a plan for how we should act. By predicting the outcome of the actions at
our disposal, we have a method for generating plans that lead us to our goal.
In the textbook [Ghallab et al., 2004] planning is called the “reasoning side of
acting”, meaning that it constitutes a process of careful deliberation about the
capabilities we’re endowed with. The following presentation is mainly based
on [Ghallab et al., 2004], though we fill in some blanks using the thorough
exposition of planning due to [Rintanen, 2005]. Our aim is to give the reader a
feel for the theory underlying automated planning, while keeping notation and
long-winded digressions to a minimum.

Our point of departure is what constitutes the simplest form of planning prob-
lem. In this case we consider three components: An initial state, a set of actions
(an action library) and a goal, with each of these being represented using simple
notions from set theory. In this set-theoretic formulation we take a finite set of
symbols P . A state is taken to be a subset of P , and we let actions manipulate
states by removing and/or adding symbols. A goal is a collection of states (a
subset of the powerset of P ). The intuition is that a symbol p ∈ P is true in a
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Figure 1.1: Example of the initial state of a sliding puzzle problem.

state s iff p ∈ s. Furthermore, a set of symbols are assigned as the precondition
of an action. If each symbol is contained in a state s, the action is applicable
meaning that its execution is allowed. A solution to a planning problem is a
sequence of actions, each of which is applicable, and which transforms the initial
state into one of the goal states.

Example 1.1. To warm up we consider the sliding puzzle problem; see Figure
1.1. The goal here is to have each piece arranged so that the sequence 1, 2, 3, . . .
is formed (horizontally, starting from the top left corner). This problem can
be formulated as a planning problem, with the location of each numbered piece
making up a state; and the initial state is then the location of pieces as in the
illustration. There is a single goal state, namely the state in which each piece
is arranged correctly. An action is to move a single piece in some direction
(up, left, down, right). In this instance we prevent an action such as “Move
piece 1 up” from being executed by utilizing applicability. With this a sliding
puzzle problem always has between two and four applicable actions, depending
on which location is unoccupied. In Example 1.4 we show how this problem can
be formulated in a specification language.

The sliding puzzle problem is an example of what can be formulated as a plan-
ning problem. Other examples include the blocks-world problem, truly an ev-
ergreen, where blocks must be moved around on a table so that a particular
arrangement of the blocks is obtained, as well as more exotic problems such as
operating a number of satellites that take pictures of cosmological phenomena.
The point here is that by working with a generic formulation, automated plan-
ning can be applied to a wide range of scenarios, and this generality is what
we’re after in AI.

There are other formulations than the set-theoretic one given above. One is
to consider states to be conjunctions of atoms, and effects (of actions) to be
conjunctions of literals with negative literals being removed and positive liter-
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als being added. In this formulation we can immediately see a connection to
propositional logic, though often the relationship between logic and automated
planning is much less evident. The seminal [Fikes and Nilsson, 1971], which
introduced the generic problem solver “STRIPS” (STanford Research Institute
Problem Solver), used a much more expressive formulation of planning, includ-
ing the ability to use arbitrary formulas of first-order logic as effects. As it
turned out to be hard to give well-defined semantics for this formulation, the
compromise based on propositional logic was adopted [Ghallab et al., 2004].

Underlying our presentation in the above are several assumptions about the
environment. It is fully observable as a symbol is known to be either true or
false; it is deterministic as the execution of an action brings the environment to a
single other state; and it is static as only the planning agent brings about change
to the environment. The reasoning (or, planning) process is offline meaning that
only when the agent acts is the environment modified, and so there is no need
for interleaving of planning and execution. The type of planning that falls under
these restrictions is often referred to as as classical planning.

Already present in classical planning is the important distinction between plan-
time and run-time. The former is when the planning agent is deliberating about
what course of action it must take to achieve its goal, and the latter is when
a plan is actually executed. This distinction becomes crucial as we now turn
to environments with partial observability and nondeterminism, by relaxing
some of the assumptions of classical planning. The general formulation in au-
tomated planning is based on Partially Observable Markov Decision Processes
(POMDPs), meaning that both observations and actions are assigned probabil-
ity distributions and so this leads to an inherently stochastic environment. As
a consequence of this choice of modelling, when treating environments that are
nondeterministic and partially observable yet not stochastic, automated plan-
ning employs a non-probabilistic form of POMDPs.

Partial observability leads to the notion of a belief state (a set of states; i.e.
subset of 2P ), which signifies that what is known is only that one state in a
belief state is, or will be, the actual situation.1 There are various approaches

1There is actually an important remark about our use of the future continuous form will
be here. We use it to underscore that we’re in the midst of a reasoning process (plan-time),
and so it seems to indicate a future situation that just hasn’t happened yet. However, exactly
because we’re in a deliberation phase, this particular future can only come about should the
agent choose to act in a particular way. Even still, due to the nondeterministic nature of
the environment it may not be possible for the agent to determine (at plan-time), whether
this future situation is going to be realized at all. On top of this, the agent may also be
ignorant about certain facts, and so what we’re trying to convey here contains several layers
of intricacy. Rather than canvassing for a grammatically more accurate statement, we’ll stick
with the future continuous form and let the precise meaning be deduced from the mathematical
framework in question.
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to how belief states are induced, that is, when two states are considered indis-
tinguishable to the agent. One method is to use a set of observation variables
V ⊆ P , denoting exactly the propositions whose truth value can be observed at
run-time. These variables are automatically observed after each action, while
the truth value of variables in P \V can never be determined by the agent. Non-
determinism is handled by allowing actions to manipulate states in more than
one way, so, for instance, an action may or may not add a proposition symbol
to a state. One result from this choice of modelling is that observability and
nondeterminism are completely detached from one another; actions still manip-
ulate states (not belief states) and observation variables are statically given and
independent of actions. We should note that [Rintanen, 2005, Section 4.1.1]
shows how this representation is able to express observing the truth of arbitrary
propositional formulas over P upon the execution of a particular action (referred
to as sensing actions).

Example 1.2. Consider an agent having two dice cups and two coins (named 1
and 2) both of which have a white side and red side. She can shuffle a coin using
a dice cup thereby leaving which side comes up top concealed, and she can lift
a cup and observe the top facing color of a concealed coin. In this scenario we
take a state to be the top facing color of both coins. Further, her action library
consists of the actions that represent shuffling the coins and lifting the cups.
Say now that in the initial state the two coins are showing their white side, and
that neither are hidden by a cup. If the agent shuffles coin 1, the result is that
she’ll still know that coin 2 is showing its white side, but not whether it is the
white or red side of coin 1 that is up. If she subsequently shuffles coin 2, the
result is that both coins are concealed by a cup and she is ignorant about which
side is up on either coin. This is illustrated on the left in Figure 1.2, where we
use arrows to indicate actions and rectangles to indicate belief states.

Here the agent is able to fully predict what will happen, at least from her own
perspective, where she will become ignorant about which sides of the coins are
up. Of course, and this is a fair point, there is some actual configuration of the
coins, but in planning we take on the role of a non-omniscient agent and model
things from this perspective.

When working with belief states, we need to rephrase the notion of applicability.
Given a belief state, an action is applicable if its precondition is satisfied in
every state in the belief state. This is motivated by the sentiment, that if the
precondition of an action is not satisfied in some state, then the agent has no
way of predicting what happens, hence this is disallowed. Arguably, we can
interpret this as modicum of rational agency, because it reflects the disinterest
of the agent to act in a manner that makes her knowledge inconsistent.

Example 1.3. We continue the cups and coins scenario where we left off, and
now consider the case of lifting the dice cup concealing coin 1. At plan-time the
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Figure 1.2: An illustration of the coin scenario.

agent can predict that she will come to observe whether the white or red side of
the coin is up, but that is all. Nonetheless, she can continue her line of reasoning
from both possibilities, and conclude that if she subsequently lifts the other cup,
then the exact configuration of the two coins will be known. This is illustrated
on the right in Figure 1.2. That actions can lead to different possibilities is
indicated by letting a state have two outgoing arrows with identical label.

Abstractly, we can consider a planning problem to represent a succinct labelled
state-transition system T , in which the states of T correspond to (belief) states
in a planning problem, and transitions are induced by the set of actions and
labelled accordingly. Figure 1.2 represents parts of the transition system induced
by the cups and coins scenario. When we consider partial observability, states of
T are belief states, meaning that T contains a subset of 22P

; i.e. the collection of
all belief states on P . When dealing with nondeterminism where the execution
of an action in a state leads to multiple states, then T contains a transition
for each possible outcome, for instance as in the case for lift1 in Example
1.3.2 This brings us to another important fact about automated planning. The
input that is dealt with is that of a planning problem not its induced transition
system. If we want to provide a genuine alternative to the formalisms that are
used in automated planning, bringing only a more involved transition system to
the table is a nonstarter.

We have not mentioned what constitutes a solution as we made our move away
from classical planning, the reason being that a host of solution concepts exist.
For instance, a weak solution is one in which the course of action may lead to a
goal, and the more robust strong solution is one that guarantees that the goal is
reached. The third concept we mention is that of a strong cyclic solution, which

2This classification may seem terminologically off since, after all, it is the shuffle in the dice
cup that (if anything) constitutes the nondeterministic part of this problem. We’ll quietly
accept this anomaly and continue our exposition, though in Chapter 3 we opt to conform with
the nomenclature of [Rintanen, 2005].
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is guaranteed to eventually lead to the goal. In Chapter 6 we propose a solution
concept based on qualitative plausibilities, which positions itself somewhere in
between weak and strong solutions.

With this we hope to have left the reader with some semblance of what auto-
mated planning is all about. Next we complement what we presented above by
describing briefly the empiric basis of automated planning, which is a side to
automated planning that shouldn’t be overlooked.

1.1.1 Automated Planning in Practice

There are many implementations of planning systems in existence, and competi-
tions are held in tandem with the International Conference on Automated Plan-
ning and Scheduling (ICAPS), where these systems can be empirically evaluated
on a wide range of planning problems. Problems are not formulated as presented
here, but rather using the Planning Domain Definition Language (PDDL) orig-
inating with [Ghallab et al., 1998]. PDDL is a lifted representation of planning
problems, based on a typed first-order language with a finite number of predi-
cates and constants, and without functions. By grounding this language we can
obtain a planning problem in the set-theoretic formulation given above. The
full details are beyond our scope, but the following example serves to illustrate
the connection.

Example 1.4. In Figure 1.3 we show how the sliding puzzle problem in Example
1.1 can be specified using PDDL. A planning problem is formulated from a
domain specification and a problem specification. The domain specification sets
the rules for the planning problem, and the problem instance determines where
to start from and where to go.

We start out with the domain specification at the top of Figure 1.3. Here the
:constants represent locations and pieces, and each constant is assigned a type,
which can be seen as an implicit unary predicate. In :predicates we specify
the predicates for giving meaning to constants. Writing ?x indicates a free
variable that is eligible for substitution with a constant. We use At to indicate
the location of a piece, Clear to specify the location which is unoccupied, and
Neighbor for encoding the geometry of the puzzle. Before discussing actions,
we turn to the the problem specification.

At the bottom of Figure 1.3 is the problem specification. Here :init specifies
the initial state of the planning problem by listing a number of ground predicates
such as (At 8 l11). Taking each ground predicate to be a symbol in P (as used
in the set-theoretic formulation), we can see :init as specifying the symbols



8 Introduction

that are true in the initial state. In fact, a naive translation of this specification
would take P to contain one symbol for each possible way in which we can
ground a predicate, that is, replace a free variable with a constant. In this
case we have 8 · 9 + 9 + 9 · 9 = 162 symbols after taking types into account
(to represent negative literals in preconditions and goals, we actually need to
double this number — we omit the details here). The other part of the problem
specification is :goal, stating the ground predicates (or, symbols) that a goal
state must satisfy.

The last part of the domain specification is :action Move, which signifies an
action schema. Similar to how we transformed ground predicates into sym-
bols, action schemas are transformed into actions in the set-theoretic sense by
grounding free variables. The naive translation would in this case give rise to
8 · 9 · 9 = 648 actions (again, additional actions are required as we here have
negative literals in preconditions). We forego the details and end our description
of the PDDL specification of sliding puzzle problem here.

The above example shows that the input a planning system receives is a high-
level description whose translation into the set-theoretic representation incurs
significant overhead. On these grounds one might reject the set-theoretic repre-
sentation as irrelevant (or the other way round), but that would be a hazardous
conclusion to draw. In fact, the very popular Fast Downward Planning Sys-
tem [Helmert, 2006], upon which many competitive planners are implemented,
performs such a translation (albeit in a much more clever manner). A sepa-
rate point about the use of a high-level specification language is that it reveals
structural properties of planning problems, which allows for the extraction of
domain-independent heuristics. Such heuristics are key if we’re interested in
constructing generic solvers that scale with the size of the problem instance.

There are two points we’d like to make as we wrap up our exposition. The first
is that automated planning deals most prominently with the interplay between
states and actions, and this allows us to model the behaviour of a goal-directed
(and rational) agent. The second point is that the incorporation of partial
observability and nondeterminism into automated planning has been done on
the basis of POMDPs, and consequently planning problems have taken on the
role as compact representations of POMDPs. The result is that the notions of
observability and nondetermism are completely detached, though some form of
interdependency can be achieved as mentioned. In Chapter 2 and Chapter 3 we
investigate the planning framework that results from using dynamic epistemic
logic to capture partial observability and nondeterminism without compromising
the basic principles of automated planning.
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(define (domain SP-3-3)
(:requirements :strips)
(:types LOCATION PIECE)
(:constants l11 l12 l13 l21 l22 l23 l31 l32 l33 - LOCATION 1 2 3 4 5 6 7 8

- PIECE )
(:predicates (At ?x - PIECE ?y - LOCATION ) (Clear ?x - LOCATION)

(Neighbor ?x ?y - LOCATION) )
(:action Move
:parameters (?p - PIECE ?from ?to - LOCATION)
:precondition (and (At ?p ?from) (Clear ?to) (Neighbor ?from ?to))
:effect (and

(not (At ?p ?from) ) (not (Clear ?to) ) (At ?p ?to) (Clear ?from)
)

))

(define (problem SP-A)
(:domain SP-3-3)
(:init (Neighbor l11 l12) (Neighbor l11 l21)

(Neighbor l12 l11) (Neighbor l12 l13) (Neighbor l12 l22)
(Neighbor l13 l12) (Neighbor l13 l23)
(Neighbor l21 l11) (Neighbor l21 l22) (Neighbor l21 l31)
(Neighbor l22 l12) (Neighbor l22 l21) (Neighbor l22 l23) (Neighbor l22 l32)
(Neighbor l23 l13) (Neighbor l23 l22) (Neighbor l23 l33)
(Neighbor l31 l21) (Neighbor l31 l32)
(Neighbor l32 l31) (Neighbor l32 l22) (Neighbor l32 l33)
(Neighbor l33 l32) (Neighbor l33 l23)
(At 8 l11) (Clear l12) (At 4 l13)
(At 1 l21) (At 7 l22) (At 3 l23)
(At 6 l31) (At 5 l32) (At 2 l33))

(:goal (and (At 1 l11) (At 2 l12) (At 3 l13) (At 4 l21)
(At 5 l22) (At 6 l23) (At 7 l31) (At 8 l32) ) ) )

Figure 1.3: PDDL specification of the sliding puzzle problem.

1.2 Dynamic Epistemic Logic

The study of knowledge dates all the way back to antiquity, and has been a
major branch of philosophy ever since. Epistemic logic is a proposal for for-
mally dealing with knowledge, and was given its first book-length treatment in
[Hintikka, 1962]. To have knowledge of something means for this to be true in
every possible world, and to be uncertain means that this “something” is true
in some worlds and false in others. In an epistemic language we can talk about
knowledge (using an epistemic formula) of simple propositional facts such as
agent a knows that p is true, but we can also form sentences for talking about
higher-order (or meta-) knowledge e.g. agent a knows that agent b doesn’t know
whether p is true. Representing higher-order knowledge is endearing, for many



10 Introduction

of our every-day inferences are related to the knowledge of others (we discuss
the notion of a theory of mind in Section 1.5).

The notion of knowledge can be formally given with regards to a relational
structure, consisting of a set of possible worlds along with a set of accessibility
relations (one for each agent) on this set of possible worlds. We add to this
a valuation, assigning to each world the basic propositional symbols (such as
p) that are true, and we call the result an epistemic model. Statements about
knowledge, such as those given above, are then interpreted on epistemic mod-
els, with basic facts such as p being determined from the valuation in a world,
and (higher-order) knowledge being determined from the interplay between the
accessibility relations and the valuation. As epistemic models are formally pre-
sented already in Chapter 2 we refrain from providing further details at this
point.

Example 1.5. We now return to the coin scenario, and discuss how the belief
states in automated planning are related to single-agent epistemic models. We
can think of each state in a belief state as representing a possible world. If we
further assume that the accessibility relation of an epistemic model is univer-
sal, then what is known in a belief state coincides with the interpretation of
knowledge as truth in every possible world. Belief states therefore capture a
certain, idealized, version of knowledge in the single-agent case. Taking on this
view, each rectangle illustrated in Figure 1.2 represents a single-agent epistemic
model, and so this establishes the first simple connection between automated
planning and epistemic logic.

What is missing is how to capture the actions in automated planning is a dy-
namic component. Fortunately, the idea of extending epistemic logic with dy-
namic aspects has been investigated to a great extent over the past several
decades. In [Fagin et al., 1995] (the culmination of a series of publications by
the respective authors) it is shown how the analysis of complex multi-agent sys-
tems benefits from ascribing knowledge to agents, with an emphasis on its use
in computer science. That epistemic logic, based on questions posed in ancient
times, would come into the limelight of computer science demonstrates just how
all-pervasive the notion of knowledge is.

One extension of epistemic logic that deals with dynamics of information is [Bal-
tag et al., 1998], often referred to as the “BMS” framework. What is so appealing
about this framework is that it can represent a plethora of diverse dynamics,
such as obtaining hard evidence, being misinformed, or secretly coming to know
something other agents do not. As such the framework is inherently multi-agent,
though for the most part we consider the single-agent version. The presentation
we give in Chapter 2 is due to [van Ditmarsch and Kooi, 2008] which allows for
factual (or ontic) change. We’ll refer to this as dynamic epistemic logic (DEL),
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even though several logics not based on the BMS framework adhere to this
designation. The dynamic component of DEL is introduced via event models,
sometimes called actions models or update models. The dynamics is by virtue
of the product update operation, in which event models are “multiplied” with
epistemic models by taking a restricted Cartesian product of the two structures
to form a new epistemic model. On the basis of Example 1.5 we can see event
models as a method for transforming one belief state into another — exactly the
purpose of actions in automated planning as discussed above. This relationship
between event models and actions of automated planning was pointed out in
[Löwe et al., 2011, Bolander and Andersen, 2011].

We can assure the reader that we will be dealing both with DEL and related
topics in the ensuing chapters, and so we close our discussion after a digression
concerning modal logic. The purpose of modal logic (or, modal languages) is to
talk about relational structures, namely by its use of Kripke semantics. Kripke
semantics coincides with truth in every possible world which we use to ascribe
knowledge to an agent, but it can also be used to describe modalities of belief (a
weaker form of knowledge), time or morality [Blackburn et al., 2001]. Epistemic
logic is therefore a subfield of modal logic, and there is a cross-fertilization of
ideas between the two areas, and in many cases results from modal logic carry
over directly to epistemic logic. The first point is evident from the investigation
of dynamic modal logic in the 1980s which later played a role in development
of DEL. The second point is evident as results from modal model theory, for
instance those concerning the notion of bisimulation, also plays a fundamental
role in the model theory of epistemic models [van Ditmarsch et al., 2007].

1.3 Epistemic Planning

One of the points in Section 1.1 is that automated planning problems are given
as an initial state, a number of actions and a goal. In our investigation of
planning we take this to be our starting point. What we’re after are approaches
that extend the foundation of automated planning, in particular by making use
of richer logics; e.g. modal logics. Epistemic planning is one such approach and
here the richer logic is DEL, which was seminally, and independently, taken in
[Löwe et al., 2011, Bolander and Andersen, 2011]. Later works include [Andersen
et al., 2012] (the extended version of which constitutes Chapter 2), as well as
[Yu et al., 2013, Aucher and Bolander, 2013].

In epistemic planning the initial state is an epistemic model, actions are a num-
ber of event models and a goal is an epistemic formula. In [Bolander and Ander-
sen, 2011] the solution to a problem is to find a sequence of event models which,
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using the product update operation, produces an epistemic model satisfying the
goal formula. The authors show this problem to be decidable for single-agent
DEL, but undecidable for multi-agent DEL. In [Löwe et al., 2011] some tractable
cases of multi-agent epistemic planning are provided. While their approach does
not consider factual change, their notion of a solution does coincide with [Bolan-
der and Andersen, 2011] to the extent that both consider plans as sequences of
event models. Recently [Aucher and Bolander, 2013] showed that multi-agent
epistemic planning is also undecidable without factual change, while [Yu et al.,
2013] identified a fragment of multi-agent epistemic planning that is decidable.

Automated planning deals with a single agent environment (depending on whether
we interpret nature as an agent), and in this sense each of the aforementioned
approaches appear to be immediate generalizations. Here we must make certain
reservations. First, with the exception of [Bolander and Andersen, 2011] none
of these approaches cater to applicability as described previously. As such, the
modicum of rational agency we interpreted from an agent’s interest in having
consistent knowledge is absent in these presentations. The interpretation in [Yu
et al., 2013] is in this sense more appropriate, since it phrases the problem as
explanatory diagnosis, meaning that the sequence of event models produced rep-
resent an explanation of how events may have unfolded, when the “knowledge
state” of the system satisfies some epistemic formula (called an observation).
We also treat this point in Chapter 2 as the question of an internal versus ex-
ternal perspective. Second, while the formalisms deal with the knowledge of
multiple agents, individual autonomous behaviour is not considered. Obviously,
automated planning does not provide a solution to these multi-agent aspects,
but we do consider it to embody autonomous behaviour of a single agent, and so
believe multi-agent planning should deal with each agent exhibiting autonomous
behaviour. Third, as solutions are sequences of plans, formalizing notions such
as a weak solution or a strong solution are difficult, because they require the
agent to make choices as the outcome of actions unfold; e.g. on the basis of what
is observed as the coin is lifted in Example 1.3.3 Chapter 2 extends single-agent
epistemic planning with a plan language to tackle this third point.

We point out two references that, in spite of their endearing titles, do not
conform to what we take to constitute epistemic planning. The first is “DEL-
sequents for regression and epistemic planning” [Aucher, 2012]. Slightly simpli-
fied, the problem of epistemic planning is here formulated as finding a single
event model (with certain constraints) that produces, from a given epistemic
model (initial state), an epistemic model satisfying an epistemic formula (goal).
Missing here is that this single event model, while built from atomic events,
does not necessarily represent any single action (or sequence of actions) of the

3[Bolander and Andersen, 2011] proposes to internalize branching in the event models,
implying an extensive modification of the action library. Capturing both weak and strong
solution concepts using this approach appears difficult.
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action library. The second is “Tractable Multiagent Planning for Epistemic
Goals” [van der Hoek and Wooldridge, 2002]. Here the problem that is solved is
not finding a solution when given an initial state, an action library and a goal;
rather it is finding a solution when given the underlying transition system of
such a planning problem. While the promises of tractability are intriguing, it
is important to note that this is in terms of the size of the transition system.
Furthermore, the transition system is assumed finite which we generally cannot
assume in our reading of epistemic planning. In both cases the problems treated
are shown to be decidable, which is not compatible with the results of [Bolander
and Andersen, 2011].

1.4 Related Work

At the end of each chapter, we discuss work related to the topics that are
covered. Our aim now is to provide a broader perspective on things by discussing
related approaches for dealing with actions, knowledge, autonomous behaviour
and rational agency.

One profound investigation of multi-agent planning is [Brenner and Nebel, 2009],
which situates multiple autonomous agents in a dynamic environment. In this
setting agents have incomplete knowledge and restricted perceptive capabilities,
and to this end each agent is ascribed a belief state. These belief states are based
on multi-valued state-variables, which allows for a more sophisticated version
of belief state than that discussed in Section 1.1. In a slightly ad-hoc manner,
agents can reason about the belief states of other agents. For instance inferring
that another agent has come to know the value of a state-variable due to an
observation, or by forming mutual belief in the value of a state-variable using
speech acts. The authors apply their formalism experimentally, modelling a
number of agents operating autonomously in a grid world scenario. We would
like to see what could be modelled in this framework when introducing epistemic
models as the foundation of each agent’s belief state.

We already mentioned the approach of [van der Hoek and Wooldridge, 2002],
which more generally pertains to the planning as model checking paradigm.
Other cognates are [Cimatti et al., 2003, Bertoli et al., 2001], where symbolic
model checking techniques are employed, which allows for compactly represent-
ing the state-transition system. Indeed, in some cases the representation of a
belief state as a propositional formula is exponentially more succinct. Moreover,
it is possible to compute the effects of multiple actions in a single step. As such,
this line of research, also used for much richer logics, may prove key to the
implementation of efficient planners for planning with more expressive logics.
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On the topic of expressive logics, we bring up formalisms that deal with the
behaviour of agents over time. Two such logical systems are epistemic temporal
logic (ETL) [Parikh and Ramanujam, 2003] and the interpreted systems (IS)
of [Fagin et al., 1995], which in [Pacuit, 2007] are shown to be modally equiva-
lent for a language with knowledge, next and until modalities. Under scrutiny
in ETL/IS are structures that represent interactive situations involving multi-
agents, and may be regarded as a tool for the analysis of social situations, albeit
similar to how computation is described using machine code [Pacuit, 2007]. ETL
uses the notion of local and global histories. A global history represents a se-
quence of events that may take place, and local histories result from projecting
global histories to the vantage point of individual agents, subject to what events
agents are aware of.

[van Benthem et al., 2007] investigates a connection between ETL and DEL,
interpreting a sequence of public announcements (a special case of event models)
as the temporal evolution of a given initial epistemic model. These sequences of
public announcements are constrained so that they conform to a given protocol.
The main result is the characterization of the ETL models that are generated
by some protocol. Imagining protocols that allow for a more general form of
event model and that further capture applicability, we would to a great extent
be within the framing of epistemic planning, and one step nearer to mapping
out a concrete relationship between the two approaches.

There are even richer logics for reasoning about agents and their group capabil-
ities, such as Coalition Logic [Pauly, 2002], ATL [Alur et al., 2002] and ATEL
[van der Hoek and Wooldridge, 2002]. An extensive comparison of all three is
[Goranko and Jamroga, 2004], which also presents methods for transforming be-
tween the various types of models and languages involved, and further notes the
close relationship between lock-step synchronous alternating transition systems
and interpreted systems. A characterization of these structures in terms of (se-
quences of) event models is an interesting yet, to our knowledge, unprobed area.
Related is also the concept of “Seeing-to-it-that” (STIT) [Belnap et al., 2001],
emanating as a formal theory for clarifying questions in the philosophy of action
and the philosophy of norms. Over the past decade most work on STIT theory
has been within the field of computer science, for instance by providing results
on embedding fragments of STIT logic into formalisms akin to those mentioned
in this paragraph [Bentzen, 2010, Broersen et al., 2006a]. A non-exhautive list
is [Schwarzentruber and Herzig, 2008, Herzig and Lorini, 2010, Broersen et al.,
2006b]. As pointed out in [Benthem and Pacuit, 2013], research into logics of
agency has seen a shift from being a “Battle of the Sects” to an emphasis on
similarities and relative advantages of the various paradigms. Getting epistemic
planning aboard this train might be a pathway towards a multi-agent planning
framework dealing with both individual and collective agency.
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The work in [Herzig et al., 2003] is close to single-agent epistemic planning.
Their complex knowledge states are given syntactically, and represent a set
of S5 Kripke models. They introduce ontic actions and epistemic actions as
separate notions. The ontic action language is assumed to be given in the
situation calculus tradition, so that actions must specify what becomes true at
time t + 1 based on what is true at time t. An epistemic action is given as
a set of possible outcomes; each possible outcome is a propositional formula
that represents what the agent comes to know should the particular observation
occur. Progression of actions (or, the projection of possible outcomes), and
subsequently plans, is given by syntactic manipulation of complex knowledge
states. As recently shown in [Lang and Zanuttini, 2013], this approach allows
for an exponentially more compact representation of plans; the cost comes at
execution time where the evaluation of branching formulas is not constant-time.
We recently showed how progression of both epistemic actions and ontic actions
can be expressed as event models [Jensen, 2013b], providing insight into the
relationship between this approach and single-agent epistemic planning. There
seems to be no perspicuous method for extending progression in this framework
to a multi-agent setting. Because of this we find DEL and its product update
operation to be much more enticing.

An extension of the approach mentioned in the previous paragraph is [Laverny
and Lang, 2004] and [Laverny and Lang, 2005]. Here the purely epistemic
approach is extended with graded beliefs, that is, belief in some formula to a
certain degree. Belief states (as they are, in this context, confusingly called)
are introduced via the ordinal conditional functions (or, kappa functions) due
to [Spohn, 1988]. What this allows for is modeling scenarios in which an agent
reasons about its current beliefs, but more importantly, its future beliefs subject
to the actions it can execute. This is similar to our work in Chapter 6, though
there are some conceptual differences, with one being (again) that the action
language used has no immediate multi-agent counterpart. Another is that in
their approach, plans dealing with the same contingency many times over (e.g.
a plan that replaces a light bulb, and, in case the replacement is broken, replaces
it again — cf. Example 6.1) have a higher chance of success than plans that do
not, something which our approach does not naturally handle. There are other
non-trivial connections between our approach and that of Laverny and Lang,
and further investigation seems prudent.4

We end this section by mentioning the “Planning with Knowledge and Sensing
planning system” (PKS) due to [Petrick and Bacchus, 2002, Petrick and Bac-
chus, 2004]. PKS is an implementation of a single-agent planning system using
the approach of explicitly modeling the agent’s knowledge. The argument is, as

4I thank Jérôme Lang for bringing these frameworks to my attention, as well as making a
diligent comparison to the work in Chapter 6.
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is also stressed in [Bolander and Andersen, 2011], that this is a more natural
and general approach to partial observability than variants using e.g. observa-
tion variables. An agent’s knowledge is compromised of four databases, each of
which can be translated to a collection of formulas in epistemic logic (with some
first-order extensions), and actions are modelled by modifying these databases
separately. They concede that certain configurations of epistemic models cannot
be captured, one effect being that their planning algorithm is incomplete. Their
argument is pragmatic and PKS was capable of solving then contemporary plan-
ning problems. What PKS represents is the bottom-up approach to epistemic
planning, taking a fragment of epistemic logic as the basis for extending classical
planning to handle partial observability.

1.5 Motivation and Application

The goal of the Joint Action for Multimodal Embodied Social Systems (JAMES)
project is to develop an artificial embodied agent that supports socially appro-
priate, multi-party, multimodal interaction [JAMES, 2014]. As such it combines
many different disciplines belonging to AI, including planning with incomplete
information. Concretely, the project considers a robot bartender (agent) that
must be able to interact socially intelligent with patrons. Actions available in-
clude asking for a drink order and serving it, which requires the generation of
plans for obtaining information. This is done in an extension of the PKS frame-
work we described above, which replans when knowledge is not obtained (e.g.
the patron mumbles when ordering) or when knowledge is obtained earlier than
expected (eg. the patron orders prior to being asked). The social component is
in the ability to understand phrases such as “I’ll have the same as that guy” or
“I’ll have another one”, which requires a model of each patron. Moreover, the
robot bartender must be able to comprehend social norms, for instance when a
person asks for five drinks and four bystanders are ignoring it, then it should
place the drinks in front of each individual.5

While the robot bartender gets by with considering each patron separately, not
all social situations are as lenient. We find evidence for this within cognitive
science, more specifically in the concept of a theory of mind [Premack and
Woodruff, 1978]. Theory of mind refers to a mechanism which underlies a crucial
aspect of social skills, namely that of being able to conceive of mental states,
including what other people know, want, feel or believe. [Baron-Cohen et al.,
1985] subjected 61 children to a false-belief task, where each child observed a
pretend play involving two doll protagonists Sally and Anne. The scenario is
that Sally places a marble in a basket, leaves the scene, after which Anne tranfers

5These remarks are based on personal communication with Ron Petrick.
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the marble to a box. As Sally returns to the scene, the child is asked where
Sally will look for her marble (a belief question), and additionally where the
marble really is (a reality question). The children were divided into three groups,
namely as either being clinically normal, affected by Down’s syndrome or autistic
(as determined by a previous test). The passing rate for the belief question
(whose correct answer is the basket) for both clinically normal and Down’s
syndrome children was respectively 85% and 86%, whereas the failure rate for
the autistic group was 80%. At the same time, every single child correctly
answered the reality question.

While the use of false-belief tasks to establish whether a subject has a theory
of mind has been subject to criticism [Bloom and German, 2000], this does not
entail that the theory of mind mechanism is absent in humans. What it does
suggest is that there is more to having a theory of mind than solving false-belief
tasks. As epistemic logics, and more generally modal logics, deal with exactly
the concepts a human must demonstrate in order to have a theory of mind, it
is certainly conceivable that the formalization of this mechanism could be done
within these frameworks. The perspectives are both a very general model for
studying human and social interaction, as well as artificial agents that are able
to function naturally in social contexts.

Admittedly, we’re quite a ways off from reaching this point of formalization
of social situations, and it may even be utopian to think we’ll ever get there.
Nonetheless, even small progress in this area may lead to a better formalization
of the intricate behaviour of humans. In turn, this allows for enhancing systems
that are to interact with humans, including those that are already in commercial
existence, which motivates our research from the perspective of application.

1.6 Outline of Thesis

We’ve now set the tone for for what this thesis deals with. Our first objective
is to investigate conditional epistemic planning, where we remove the distinct
Markovian mark imprinted on automated planning under partial observability
and nondeterminism, replacing it with notions from dynamic epistemic logic.
This is the theme in Chapter 2 and Chapter 3. We then turn to the model the-
oretic aspects of epistemic-plausibility models, and additionally provide results
on the relative expressive power of various doxastic languages. This work is
conducted in Chapter 4 and Chapter 5, and the results we provide are essential
to formulating planning based on beliefs. In Chapter 6 we present a framework
that extends the framework of conditional epistemic planning to additionally
model doxastic components. This allows us to not only express doxastic goals,



18 Introduction

but additionally leads to solution concepts where an agent is only required to
find a plan for the outcomes of actions it expects at run-time. The overarching
theme is the incorporation of logics for knowledge and belief in planning. The
long term perspective of our work is the extension of these formalisms to the
multi-agent case, and we end this thesis in Chapter 7 with a brief conclusion
and some methodological considerations.

We now summarize the results provided in each chapter of this thesis.

• Chapter 2 is the extended version of [Andersen et al., 2012], appearing
here with a few minor corrections. Here we introduce single-agent con-
ditional epistemic planning, based on epistemic models as states, event
models as actions and epistemic formulas as goals. We show how a lan-
guage of conditional plans can be translated into DEL, which entails that
plan verification of both weak and strong solutions can be achieved via
model checking. Additionally, we present terminating, sound and com-
plete algorithms the synthesis of both weak and strong solutions.

• Chapter 3 delves further into the area of single-agent epistemic planning.
We focus on the decision problem of whether a strong solution exists for
a planning problem. To this end we consider four types of single-agent
epistemic planning problem, separated by the level of observability and
whether actions are branching (nondeterministic). We present sound and
complete decision procedures for answering the solution existence prob-
lem associated with each type. Following this, we show how to construct
single-agent epistemic planning problems that simulate Turing machines
of various resource bounds. The results show that the solution existence
problem associated with the four types of planning problems range in
complexity from PSPACE to 2EXP. This coincides with results from au-
tomated planning, showing that we’re no worse off (asymptotically) using
the framework of conditional epistemic planning.

• Chapter 4 is a replicate of [Andersen et al., 2013] (again with a few mi-
nor corrections), which plunges deeper into modal territory by looking at
single-agent epistemic-plausibility models, that is, epistemic models with
the addition of a plausibility relation. Here we take conditional belief as
the primitive modality. This leads us to formalize bisimulation for single-
agent epistemic-plausibility models in terms of what we name the normal
plausibility relation. We show that this notion of bisimulation corresponds
with modal equivalence in the typical sense. We then define the semantics
of safe belief in terms of conditional belief, more precisely, something is
safely believed if the agent continues to believe it no matter what true
information it is given. This definition distinguishes itself from other pro-
posals of safe belief in that it is conditional to modally definable subsets,
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rather than arbitrary subsets. Additionally, we present a quantitative dox-
astic modality based on degrees of belief, whose semantics is given with
respect to the aforementioned normal plausibility relation.

• Chapter 5 presents additional technical results concerning the framework
in Chapter 4. In the first part we show that the notion of bisimulation is
also appropriate for the language that extends the epistemic language with
only the quantitative doxastic modality, that is, the notion of bisimulation
and modal equivalence corresponds on the class of image-finite models.
Consequently, modal equivalence for the language with the conditional
belief is equivalent to modal equivalence for the language with degrees of
belief. In the second part we show that in spite of this, these two languages
are expressively incomparable over an infinite set of propositional symbols.
What is more, we also show that addition of safe belief to the language
with conditional belief yields a more expressive language. The results in
this second part (specifically Section 5.2) represent joint work between
Mikkel Birkegaard Andersen, Thomas Bolander, Hans van Ditmarsch and
this author. This work was conducted during a research visit in Nancy,
October 2013, and constitutes part of a joint journal publication not yet
finalized. The presentation of these results in this thesis is solely the work
of this author.

• Chapter 6 is a replicate of [Andersen et al., 2014]. It adds to the work
of Chapter 2 by extending the framework to deal with beliefs and plausi-
bilites. This extension is done on the basis of the logic of doxastic actions
[Baltag and Smets, 2008], which extends DEL with a doxastic compo-
nent. We use this to define the notion of a strong plausibility solution and
a weak plausibility solution. These capture solution concepts where an
agent needs only to plan for the most plausible outcomes of her actions
(as they appear to her at plan-time). Colloquially stated, she doesn’t need
to plan for the unexpected. As in Chapter 2 we present terminating, sound
and complete algorithms for synthesizing solutions.

Chapters 2, 4 and 6 are publications which are coauthored by the author of this
thesis. Chapter 3 and Chapter 5 (with the exception of Section 5.2; see above)
represents work conducted solely by this author. In Chapter 3 and Chapter 5,
we explicitly attribute any definition, construction or proposition to the source
from which it is taken and/or adapted. When no such statement is made, the
work is due to the author of this thesis.
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Chapter 2

Conditional Epistemic
Planning

This chapter is the extended version of [Andersen et al., 2012] which appears in
the proceedings of the 13th European Conference on Logics in Artificial Intelli-
gence (JELIA), 2012, in Toulouse, France. In the following presentation a few
minor corrections have been made.
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Conditional Epistemic Planning

Mikkel Birkegaard Andersen Thomas Bolander
Martin Holm Jensen

DTU Compute, Technical University of Denmark

Abstract

Recent work has shown that Dynamic Epistemic Logic (DEL) offers
a solid foundation for automated planning under partial observabil-
ity and non-determinism. Under such circumstances, a plan must
branch if it is to guarantee achieving the goal under all contingen-
cies (strong planning). Without branching, plans can offer only the
possibility of achieving the goal (weak planning). We show how to
formulate planning in uncertain domains using DEL and give a lan-
guage of conditional plans. Translating this language to standard
DEL gives verification of both strong and weak plans via model
checking. In addition to plan verification, we provide a tableau-
inspired algorithm for synthesising plans, and show this algorithm
to be terminating, sound and complete.

2.1 Introduction

Whenever an agent deliberates about the future with the purpose of achieving
a goal, she is engaging in the act of planning. When planning, the agent has a
view of the environment and knowledge of how her actions affect the environ-
ment. Automated Planning is a widely studied area of AI, in which problems
are expressed along these lines. Many different variants of planning, with differ-
ent assumptions and restrictions, have been studied. In this paper we consider
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M0: w1:vlrd w2:vlrd

Figure 2.1: The initial situation. The thief is uncertain about whether r holds.

planning under uncertainty (nondeterminism and partial observability), where
exact states of affairs and outcomes of actions need not be known by the agent.
We formulate such scenarios in an epistemic setting, where states, actions and
goals are infused with the notions of knowledge from Dynamic Epistemic Logic
(DEL). Throughout this exposition, our running example, starting with Exam-
ple 2.1, follows the schemings of a thief wanting to steal a precious diamond.

Example 2.1. After following carefully laid plans, a thief has almost made
it to her target: The vault containing the invaluable Pink Panther diamond.
Standing outside the vault (¬v), she now deliberates on how to get her hands
on the diamond (d). She knows the light inside the vault is off (¬l), and that the
Pink Panther is on either the right (r) or left (¬r) pedestal inside. Obviously,
the diamond cannot be on both the right and left pedestal, but nonetheless the
agent may be uncertain about its location. This scenario is represented by the
epistemic model in Figure 2.1. The edge between w1 and w2 signifies that these
worlds are indistinguishable to the agent. For visual clarity we omit reflexive
edges (each world is always reachable from itself). We indicate with a string the
valuation at world w, where an underlined proposition p signifies that p does
not hold at w.

The agent’s goal is to obtain the jewel and to be outside the vault. She can
enter and leave the vault, flick the light switch and snatch the contents of either
the right or left pedestal. Her aim is to come up with a, possibly conditional,
plan, such that she achieves her goal.

By applying DEL to scenarios such as the above, we can construct a procedure
for the line of reasoning that is of interest to the thief. In the following section we
recap the version of DEL relevant to our purposes. Section 2.3 formalises notions
from planning in DEL, allowing verification of plans (using model checking) as
either weak or strong solutions. In Section 2.4 we introduce an algorithm for
plan synthesis (i.e. generation of plans). Further we show that the algorithm is
terminating, sound and complete.
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2.2 Dynamic Epistemic Logic

Dynamic epistemic logics describe knowledge and how actions change it. These
changes may be epistemic (changing knowledge), ontic (changing facts) or both.
The work in this paper deals only with the single-agent setting, though we
briefly discuss the multi-agent setting in Section 2.5. As in Example 2.1, agent
knowledge is captured by epistemic models. Changes are encoded using event
models (defined below). The following concise summary of DEL is meant as a
reference for the already familiar reader. The unfamiliar reader may consult [van
Ditmarsch and Kooi, 2008, Ditmarsch et al., 2007] for a thorough treatment.

Definition 2.2 (Epistemic Language). Let a set of propositional symbols P be
given. The language LDEL(P ) is given by the following BNF:

φ ::= > | p | ¬φ | φ ∧ φ | Kφ | [E , e]φ

where p ∈ P , E denotes an event model on LDEL(P ) as (simultaneously) defined
below, and e ∈ D(E). K is the epistemic modality and [E , e] the dynamic
modality. We use the usual abbreviations for the other boolean connectives, as
well as for the dual dynamic modality 〈E , e〉φ := ¬ [E , e]¬φ. The dual of K is
denoted K̃. Kφ reads as "the (planning) agent knows φ" and [E , e]φ as "after
all possible executions of (E , e), φ holds".

Definition 2.3 (Epistemic Models). An epistemic model on LDEL(P ) is a tuple
M = (W,∼, V ), where W is a set of worlds, ∼ is an equivalence relation (the
epistemic relation) on W , and V : P → 2W is a valuation. D(M) = W denotes
the domain ofM. For w ∈W we name (M, w) a pointed epistemic model, and
refer to w as the actual world of (M, w).

To reason about the dynamics of a changing system, we make use of event
models. The formulation of event models we use in this paper is due to van
Ditmarsch and Kooi [van Ditmarsch and Kooi, 2008]. It adds ontic change to
the original formulation of [Baltag et al., 1998] by adding postconditions to
events.

Definition 2.4 (Event Models). An event model on LDEL(P ) is a tuple E =
(E,∼, pre, post), where

– E is a set of (basic) events,
– ∼⊆ E × E is an equivalence relation called the epistemic relation,
– pre : E → LDEL(P ) assigns to each event a precondition,
– post : E → (P → LDEL(P )) assigns to each event a postcondition.
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D(E) = E denotes the domain of E . For e ∈ E we name (E , e) a pointed event
model, and refer to e as the actual event of (E , e).

Definition 2.5 (Product Update). LetM = (W,∼, V ) and E = (E,∼′, pre, post)
be an epistemic model resp. event model on LDEL(P ). The product update of
M with E is the epistemic model denotedM⊗E = (W ′,∼′′, V ′), where

– W ′ = {(w, e) ∈W × E | M, w |= pre(e)},
– ∼′′= {((w, e), (v, f)) ∈W ′ ×W ′ | w ∼ v and e ∼′ f},
– V ′(p) = {(w, e) ∈W ′ | M, w |= post(e)(p)} for each p ∈ P .

Definition 2.6 (Satisfaction Relation). Let a pointed epistemic model (M, w)
on LDEL(P ) be given. The satisfaction relation is given by the usual semantics,
where we only recall the definition of the dynamic modality:

M, w |= [E , e]φ iffM, w |= pre(e) impliesM⊗E , (w, e) |= φ

where φ ∈ LDEL(P ) and (E , e) is a pointed event model. We write M |= φ
to mean M, w |= φ for all w ∈ D(M). Satisfaction of the dynamic modality
for non-pointed event models E is introduced by abbreviation, viz. [E ]φ :=∧
e∈D(E) [E , e]φ. Furthermore, 〈E〉φ := ¬ [E ]¬φ.1

Throughout the rest of this paper, all languages (sets of propositional symbols)
and all models (sets of possible worlds) considered are implicitly assumed to be
finite.

2.3 Conditional Plans in DEL

One way to sum up automated planning is that it deals with the reasoning
side of acting [Ghallab et al., 2004]. When planning under uncertainty, actions
can be nondeterministic and the states of affairs partially observable. In the
following, we present a formalism expressing planning under uncertainty in DEL,
while staying true to the notions of automated planning. We consider a system
similar to that of [Ghallab et al., 2004, sect. 17.4], which motivates the following
exposition. The type of planning detailed here is offline, where planning is
done before acting. All reasoning must therefore be based on the agent’s initial
knowledge.

1Hence, M, w |= 〈E〉φ ⇔ M, w |= ¬ [E]¬φ ⇔ M, w |= ¬(
∧

e∈D(E) [E, e]¬φ) ⇔ M, w |=∨
e∈D(E) ¬ [E, e]¬φ⇔M, w |=

∨
e∈D(E) 〈E, e〉φ.
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M′: u1:vlrd u2:vlrd

Figure 2.2: A model consisting of two information cells

2.3.1 States and Actions: The Internal Perspective

Automated planning is concerned with achieving a certain goal state from a
given initial state through some combination of available actions. In our case,
states are epistemic models. These models represent situations from the perspec-
tive of the planning agent. We call this the internal perspective—the modeller
is modelling itself. The internal perspective is discussed thoroughly in [Aucher,
2010, Bolander and Andersen, 2011].

Generally, an agent using epistemic models to model its own knowledge and
ignorance, will not be able to point out the actual world. Consider the epistemic
model M0 in Figure 2.1, containing two indistinguishable worlds w1 and w2.
Regarding this model to be the planning agent’s own representation of the initial
state of affairs, the agent is of course not able to point out the actual world. It
is thus natural to represent this situation as a non-pointed epistemic model. In
general, when the planning agent wants to model a future (imagined) state of
affairs, she does so by a non-pointed model.

The equivalence classes (wrt. ∼) of a non-pointed epistemic model are called
the information cells of that model (in line with the corresponding concept in
[Baltag and Smets, 2008]). We generally identify any equivalence class [w]∼ of a
modelM with the submodel it induces, that is, we identify [w]∼ withM � [w]∼.
We also use the expression information cell on LDEL(P ) to denote any connected
epistemic model on LDEL(P ), that is, any epistemic model consisting of a single
information cell. All worlds in an information cell satisfy the same K-formulas
(formulas of the formKφ), thus representing the same situation as seen from the
agent’s internal perspective. Each information cell of a (non-pointed) epistemic
model represents a possible state of knowledge of the agent.

Example 2.7. Recall that our jewel thief is at the planning stage, with her
initial information cellM0. She realises that entering the vault and turning on
the light will reveal the location of the Pink Panther. Before actually perform-
ing these actions, she can rightly reason that they will lead her to know the
location of the diamond, though whether that location is left or right cannot be
determined (yet).

Her representation of the possible outcomes of going into the vault and turning
on the light is the model M′ in Figure 2.2. The information cells M′ � {u1}
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g:〈v ∧ ¬d, {d 7→ ¬r}〉

take_left

h:〈v ∧ ¬d, {d 7→ r}〉

take_right

e1:〈r ∧ v, {l 7→ >}〉

e2:〈¬r ∧ v, {l 7→ >}〉
flick

f1:〈v ∨ (¬v ∧ ¬l) , {v 7→ ¬v}〉 f2:〈¬v ∧ l ∧ r, {v 7→ ¬v}〉 f3:〈¬v ∧ l ∧ ¬r, {v 7→ ¬v}〉

move

Figure 2.3: Event models representing the actions of the thief

and M′ � {u2} of M′ are exactly the two distinguishable states of knowledge
the jewel thief considers possible prior turning the light on in the vault.

In the DEL framework, actions are naturally represented as event models. Due
to the internal perspective, these are also taken to be non-pointed. For instance,
in a coin toss action, the agent cannot beforehand point out which side will land
face up.

Example 2.8. Continuing Example 2.7 we now formalize the actions available
to our thieving agent as the event models in Figure 2.3. We use the same
conventions for edges as we did for epistemic models. For a basic event e we
label it 〈pre(e), post(e)〉.2

The agent is endowed with four actions: take_left, resp. take_right, represent
trying to take the diamond from the left, resp. right, pedestal; the diamond
is obtained only if it is on the chosen pedestal. Both actions require the agent
to be inside the vault and not holding the diamond. flick requires the agent to
be inside the vault and turns the light on. Further, it reveals which pedestal
the diamond is on. move represents the agent moving in or out of the vault,
revealing the location of the diamond provided the light is on.

It can be seen that the epistemic modelM′ in Example 2.7 is the result of two
successive product updates, namelyM0 ⊗move⊗ flick.

2.3.2 Applicability, Plans and Solutions

Reasoning about actions from the initial state as in Example 2.8 is exactly
what planning is all about. We have however omitted an important component

2For a proposition p whose truth value does not change in e we assume the identity mapping
post(e)(p) = p, as is also the convention in automated planning.
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in the reasoning process, one which is crucial. The notion of applicability in
automated planning dictates when the outcomes of an action are defined. The
idea translates to DEL by insisting that no world the planning agent considers
possible is eliminated by the product update of an epistemic model with an
event model.

Definition 2.9 (Applicability). An event model E is said to be applicable in
an epistemic modelM ifM |= 〈E〉>.

This concept of applicability is easily shown to be equivalent with the one defined
in [Bolander and Andersen, 2011] when restricting the latter to the single-agent
case. However, for our purposes of describing plans as formulas, we need to
express applicability as formulas as well. The discussion in [de Lima, 2007, sect.
6.6] also notes this aspect, insisting that actions must be meaningful. The same
sentiment is expressed by our notion of applicability.

The situation in Example 2.7 calls for a way to express conditional plans.
Clearly, our agent can only snatch the jewel from the correct pedestal condi-
tioned on how events unfold when she acts. To this end we introduce a language
for conditional plans allowing us to handle such contingencies.

Definition 2.10 (Plan Language). Given a finite set A of event models on
LDEL(P ), the plan language LP(P,A) is given by:

π ::= E | skip | if Kφ then π else π | π;π

where E ∈ A and φ ∈ LDEL(P ). We name members π of this language plans,
and use if Kφ then π as shorthand for if Kφ then π else skip.

The reading of the plan constructs are "do E", "do nothing", "if Kφ then π, else
π′", and "first π then π′" respectively. Note that the condition of the if-then-else
construct is required to be a K-formula. This is to ensure that the planning
agent can only make her choices of actions depend on worlds that are distin-
guishable to her (cf. the discussion of the internal perspective in Section 2.3.1).
The idea is similar to the meaningful plans of [de Lima, 2007], where branching
is only allowed on epistemically interpretable formulas.

An alternative way of specifying conditional plans is policies, where (in our ter-
minology) each information cell maps to an event model [Ghallab et al., 2004,
Sect. 16.2]. There are slight differences between the expressiveness of condi-
tional plans and policies (e.g. policies can finitely represent repetitions); our
main motivation for not using policies is that it would require an enumeration
of each information cell of the planning domain.
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Definition 2.11 (Translation). We define a strong translation J·Ks · and a weak
translation J·Kw · as functions from LP(P,A)× LDEL(P ) into LDEL(P ) by:

JEKs φ := 〈E〉> ∧ [E ]Kφ

JEKw φ := 〈E〉> ∧ K̃ 〈E〉Kφ
JskipK· φ := φ
Jif φ′ then π else π′K· φ := (φ′ → JπK· φ) ∧ (¬φ′ → Jπ′K· φ)
Jπ;π′K· φ := JπK· (Jπ

′K· φ)

Plans describe the manner in which actions are carried out. We interpret plans
π relative to a formula φ and want to answer the question of whether or not
π achieves φ. Using Definition 2.11 we can answer this question by verifying
truth of the DEL formula provided by the translations. This is supported by the
results of Section 2.4. We concisely read JπKs φ as "π achieves φ", and JπKw φ as
"π may achieve φ" (elaborated below). By not specifying separate semantics for
plans our framework is kept as simple as possible. Note that applicability (Def-
inition 2.9) is built into the translations through the occurrence of the conjunct
〈E〉> in both the strong translation JEKs φ and the weak translation JEKw φ.

The difference between the two translations relate to the robustness of plans:
JπKs φ, resp. JπKw φ, means that every step of π is applicable and that following
π always leads, resp. may lead, to a situation where φ is known.

Definition 2.12 (Planning Problems and Solutions). Let P be a finite set of
propositional symbols. A planning problem on P is a triple P = (M0,A, φg)
where

– M0 is an information cell on LDEL(P ) called the initial state.
– A is a finite set of event models on LDEL(P ) called the action library.
– φg ∈ LDEL(P ) is the goal (formula).

We say that a plan π ∈ LP(P,A) is a strong solution to P if M0 |= JπKs φg, a
weak solution ifM0 |= JπKw φg and not a solution otherwise.

Planning problems are defined with the sentiment we’ve propagated in our ex-
amples up until now. The agent is presently inM0 and wishes φg to be the case.
To this end, she reasons about the actions (event models) in her action library
A, creating a conditional plan. Using model checking, she can verify whether
this plan is either a weak or strong solution, since plans translate into formulas
of LDEL(P ). Further, [van Ditmarsch and Kooi, 2008] gives reduction axioms
for DEL-formulas, showing that any formula containing the dynamic modality
can be expressed as a formula in (basic) epistemic logic. Consequently, plan
verification can be seen simply as epistemic reasoning aboutM0.
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Example 2.13. We continue our running example by discussing it formally as
a planning problem and considering the solutions it allows. The initial state
is still M0, and the action library A = {flick,move, take_left, take_right}. We
discuss the plans below and their merit for our thief.

– π1 = flick;move; if Kr then take_right else take_left;move
– π2 = move; take_right;move
– π3 = move; flick; take_right;move
– π4 = move; flick; if Kr then take_right else take_left;move

We consider two planning problems varying only on the goal formula, P1 =
(M0,A, d ∧ ¬v) and P2 = (M0,A, K̃d ∧ ¬v). In P1 her goal is to obtain the
diamond and be outside the vault, whereas in P2 she wishes to be outside the
vault possibly having obtained the diamond.

Let π′1 = move; if Kr then take_right else take_left;move and note that π1 =
flick;π′1. Using the strong translation of π1, we get M0 |= Jπ1Ks φg iff M0 |=
〈flick〉> ∧ [flick] Jπ′1Ks φg. AsM0 |= 〈flick〉> does not hold, π1 is not a solution.
This is expected, since flicking the switch in the initial state is not an applicable
action. Verifying that π2 is a strong solution to P2 amounts to checking if
M0 |= Jπ2Ks K̃d ∧ ¬v which translates to

M0 |= 〈move〉> ∧

[move]K
(
〈take_right〉> ∧ [take_right]K

(
〈move〉> ∧ [move]K

(
K̃d ∧ ¬v

)))
With the same approach we can conclude that π2 is not a solution to P1, π3 is
a weak solution to P1 and P2, and π4 is a strong solution to P1 and P2.

2.4 Plan Synthesis

We now show how to synthesise conditional plans for solving planning prob-
lems. To synthesise plans, we need a mechanism for coming up with formulas
characterising information cells for if-then-else constructs to branch on. Inspired
by [Barwise and Moss, 1996, van Benthem, 1998], these are developed in the
following. Proofs are omitted, as they are straightforward and similar to proofs
in the aforementioned references.

Definition 2.14 (Characterising Formulas). Let M = (W,∼, V ) denote an
information cell on LDEL(P ). We define for all w ∈ W a formula φw by: φw =∧
p∈V (w) p ∧

∧
p∈P−V (w) ¬p. We define the characterising formula for M, δM,

as follows: δM = K(
∧
w∈W K̃φw ∧K

∨
w∈W φw).
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Lemma 2.15. Let M be an information cell on LDEL(P ). Then for all epis-
temic models M′ = (W ′,∼′, V ′) and all w′ ∈ W ′ we have that (M′, w′) |= δM
if and only if there exists a w ∈ D(M) such that (M, w) - (M′, w′).3

For purposes of synthesis, we use the product update solely on non-pointed
epistemic and event models. Lemma 2.16 shows that satisfaction of the dynamic
modality for non-pointed event models in non-pointed epistemic models relates
to the product update in the obvious way.

Lemma 2.16. Let M be an epistemic model and E an event model. Then
M |= [E ]φ iffM⊗E |= φ.

Proof. M |= [E ]φ ⇔ for all w ∈ D(M) :M, w |= [E ]φ ⇔
for all w ∈ D(M) :M, w |=

∧
e∈D(E)[E , e]φ ⇔

for all (w, e) ∈ D(M)×D(E) :M, w |= [E , e]φ ⇔
for all (w, e) ∈ D(M)×D(E) :M, w |= pre(e) impliesM⊗E , (w, e) |= φ ⇔
for all (w, e) ∈ D(M⊗E) :M⊗E , (w, e) |= φ ⇔ M⊗ E |= φ.

2.4.1 Planning Trees

When synthesising plans, we explicitly construct the search space of the problem
as a labelled and-or tree, a familiar model for planning under uncertainty
[Ghallab et al., 2004]. Our and-or trees are called planning trees.

Definition 2.17. A planning tree is a finite, labelled and-or tree in which each
node n is labelled by an epistemic model M(n), and each edge (n,m) leaving
an or-node is labelled by an event model E(n,m).

Planning trees for planning problems P = (M0,A, φg) are constructed as fol-
lows. Let the initial planning tree T0 consist of just one or-node root(T0) with
M(root(T0)) =M0 (the root labels the initial state). A planning tree for P is
then any tree that can be constructed from T0 by repeated applications of the
following non-deterministic tree expansion rule.

Definition 2.18 (Tree Expansion Rule). Let T be a planning tree for a planning
problem P = (M0,A, φg). The tree expansion rule is defined as follows. Pick an
or-node n in T and an event model E ∈ A applicable inM(n) with the proviso
that E does not label any existing outgoing edges from n. Then:

3Here (M, w) - (M′, w) denotes that (M, w) and (M′, w) are bisimilar according to the
standard notion of bisimulation on pointed epistemic models.
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Figure 2.4: Planning tree for a variant of the Pink Panther problem.

1. Add a new node m to T withM(m) =M(n)⊗E , and add an edge (n,m)
with E(n,m) = E .

2. For each information cellM′ inM(m), add an or-nodem′ withM(m′) =
M′ and add the edge (m,m′).

The tree expansion rule is similar in structure to—and inspired by—the expan-
sion rules used in tableau calculi, e.g. for modal and description logics [Horrocks
et al., 2006]. Note that the expansion rule applies only to or-nodes, and that
an applicable event model can only be used once at each node.

Considering single-agent planning a two-player game, a useful analogy for plan-
ning trees are game trees. At an or-node n, the agent gets to pick any applicable
action E it pleases, winning if it ever reaches an epistemic model in which the
goal formula holds (see the definition of solved nodes further below). At an
and-node m, the environment responds by picking one of the information cells
of M(m)—which of the distinguishable outcomes is realised when performing
the action.

Example 2.19. In Fig. 2.4 is a planning tree for a variant of the Pink Panther
planning problem, this one where the thief is already inside the vault. The
root is n0. Three applications of the tree expansion rule have been made, the
labels on edges indicating the chosen action. n0, nl and nr are or-nodes. n′0, n′l
and n′r are and-nodes. The child nodes of the latter two and-nodes have been
omitted, as their information cell is the same as that of their parent nodes.
Pay particular attention to how flick reveals the location of the diamond. In the
initial state,M(n0) |= ¬Kr∧¬K¬r, whileM(n′0) |= Kr∨K¬r,M(nl) |= K¬r
andM(nr) |= Kr.

Without restrictions on the tree expansion rule, even very simple planning prob-
lems might be infinitely expanded. Finiteness of trees (and therefore termina-
tion) is ensured by the following blocking condition.
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B1 The tree expansion rule may not be applied to a node n for which there
exists an ancestor node m withM(m) -M(n).4

A planning tree for a planning problem P is called B1-saturated if no more
expansions are possible satisfying condition B1.

Lemma 2.20 (Termination). Any procedure that builds a B1-saturated planning
tree for a planning problem P by repeated application of the tree expansion rule
terminates.

Proof. Planning trees built by repeated application of the tree expansion rule
are finitely branching: the action library is finite, and every epistemic model has
only finitely many information cells. Furthermore, condition B1 ensures that no
branch has infinite length: there only exists finitely many mutually non-bisimilar
epistemic models over any given finite set of propositional symbols [Bolander
and Andersen, 2011]. König’s Lemma now implies finiteness of the planning
tree.

Definition 2.21 (Solved Nodes). Let T be any (not necessarily saturated)
planning tree for a planning problem P = (M0,A, φg). By recursive definition,
a node n in T is called solved if one of the following holds:

• M(n) |= φg (the node satisfies the goal formula).
• n is an or-node having at least one solved child.
• n is an and-node having all its children solved.

Continuing the game tree analogy, we see that a solved node corresponds to
one for which there exists a winning strategy. Regardless of the environment’s
choice, the agent can achieve its goal. Let T and P be as above. Below we show
that when a node n is solved, it is possible to construct a (strong) solution to
the planning problem (M(n),A, φg). In particular, if the root node is solved, a
strong solution to P can be constructed. As it is never necessary to expand a
solved node, nor any of its descendants, we can augment the blocking condition
B1 in the following way.

B2 The tree expansion rule may not be applied to a node n if one of the following
holds: 1) n is solved; 2) n has a solved ancestor; 3) n has an ancestor node
m withM(m) -M(n).

4HereM(m) -M(n) denotes thatM(m) andM(n) are bisimilar according to the stan-
dard notion of bisimulation between non-pointed epistemic models.
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In the following, we will assume that all planning trees have been built according
to B2. One consequence is that a solved or-node has exactly one solved child.
We make use of this in the following definition.

Definition 2.22 (Plans for Solved Nodes). Let T be any planning tree for
P = (M0,A, φg). For each solved node n in T , a plan π(n) is defined recursively
by:
• ifM(n) |= φg, then π(n) = skip.
• if n is an or-node and m its solved child, then π(n) = E(n,m);π(m).
• if n is an and-node with children m1, . . . ,mk, then π(n) =

if δM(m1) then π(m1) else if δM(m2) then π(m2) else · · · if δM(mk) then π(mk)

Example 2.23. For the goal of achieving the diamond, φg = d, we have that
the root n0 of the planning tree of Figure 2.4 is solved, as both n′l and n

′
r satisfy

the goal formula. Definition 2.22 gives us

π(n0) = flick; if δM(nl) then take_left; skip else if δM(nr)then take_right; skip

This plan can easily be shown to be a strong solution to the planning problem
of achieving d from the initial stateM(n0). In our soundness result below, we
show that plans of solved roots are always strong solutions to their corresponding
planing problems.

Theorem 2.24 (Soundness). Let T be a planning tree for a problem P such
that root(T ) is solved. Then π(root(T )) is a strong solution to P.

Proof. We need to prove that π(root(T )) is a strong solution to P, that is,
M0 |= Jπ(root(T ))Ks φg. SinceM0 is the label of the root, this can be restated as
M(root(T )) |= Jπ(root(T ))Ks φg. To prove this fact, we will prove the following
stronger claim:

• For each solved node n in T ,M(n) |= Jπ(n)Ks φg.

We prove this by induction on the height of n. The base case is when n is a leaf.
Since n is solved, we must have M(n) |= φg. In this case π(n) = skip. From
M(n) |= φg we can conclude M(n) |= JskipKs φg, that is, M(n) |= Jπ(n)Ks φg.
This covers the base case. For the induction step, assume that for all solved
nodes m of height < h,M(m) |= Jπ(m)Ks φg. Let n be an arbitrary solved node
n of height h. We then need to show M(n) |= Jπ(n)Ks φg. We have two cases
to consider, depending on whether n is an and- or an or-node.

Case 1: n is an and-node. Let m1, . . . ,mk be the children of n. By definition,
all of these are solved. We have π(n) = if δM(m1) then π(m1) else if δM(m2) then
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π(m2) else · · · if δM(mk) then π(mk) else skip. The induction hypothesis gives
usM(mi) |= Jπ(mi)Ks φg for all i = 1, . . . , k.

Claim 1. M(n) |= δM(mi) → Jπ(mi)Ks φg, for all i = 1, . . . , k.

Proof of claim. Let w ∈ D(M(n)) be chosen arbitrarily. We then need to prove
that ifM(n), w |= δM(mi) thenM(n), w |= Jπ(mi)Ks φg. AssumingM(n), w |=
δM(mi), we get from Lemma 2.15 that there must be a w′ ∈ D(M(mi)) such
thatM(mi), w

′ -M(n), w. SinceM(mi) |= Jπ(mi)Ks φg, in particular we get
M(mi), w

′ |= Jπ(mi)Ks φg, and thusM(n), w |= Jπ(mi)Ks φg.

Claim 2. M(n) |=
∨

i=1,...,k

δM(mi).

Proof of claim. Let w ∈ D(M(n)) be chosen arbitrarily. We then need to prove
that M(n), w |= ∨i=1,...,kδM(mi). Since w ∈ D(M(n)) it must belong to one
of the information cells of M(n), that is, w ∈ D(M(mj)) for some j. Thus
M(n), w -M(mj), w. From Lemma 2.15 we then getM(n), w |= δM(mj), and
thusM(n), w |= ∨i=1,...,kδM(mi).

From (1) and (2), we now get:

M(n) |=
∧

i=1,...,k

(δM(mi) → Jπ(mi)Ks φg) ∧
∨

i=1,...,k

δM(mi) ⇒

M(n) |=
∧

i=1,...,k

(
δM(mi) ∧

∧
j=1,...,i−1

¬δM(mj) → Jπ(mi)Ks φg

)
∧
( ∧
i=1,...,k

¬δM(mi) → JskipKs φg

)
⇒

M(n) |= (δM(m1) → Jπ(m1)Ks φg) ∧ (¬δM(m1) →
(δM(m2) → Jπ(m2)Ks φg) ∧ (¬δM(m2) →
· · ·
(δM(mk) → Jπ(mk)Ks φg) ∧ (¬δM(mk) →

JskipKs φg) · · · )⇒
M(n) |= Jif δM(m1) then π(m1) else

if δM(m2) then π(m2) else

· · ·
if δM(mk) then π(mk) else

skipK φg ⇒
M(n) |= Jπ(n)Ks φg.

Case 2: n is an or-node. Here we have π(n) = E(n,m);π(m) for the solved
child m of n. The induction hypothesis gives M(m) |= Jπ(m)Ks φg, and hence
M(m) |= K Jπ(m)Ks φg. We now showM(n) |= Jπ(n)Ks φg. Since, by definition,
M(m) =M(n)⊗E(n,m), we getM(n)⊗E(n,m) |= K Jπ(m)Ks φg. We can now
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apply Lemma 2.16 to concludeM(n) |= [E(n,m)]K Jπ(m)Ks φg. By definition,
E(n,m) must be applicable inM(n), that is,M(n) |= 〈E(n,m)〉>. Thus we now
have M(n) |= 〈E(n,m)〉> ∧ [E(n,m)]K Jπ(m)Ks φg. Using Definition 2.11, we
can rewrite this asM(n) |= JE(n,m)Ks Jπ(m)Ks φg. Using Definition 2.11 again,
we get M(n) |= JE(n,m);π(m)Ks φg, and thus finally M(n) |= Jπ(n)Ks φg, as
required.

Theorem 2.25 (Completeness). If there is a strong solution to the planning
problem P = (M0,A, φg), then a planning tree T for P can be constructed, such
that root(T ) is solved.

Proof. We first prove the following claim.

Claim 1. If (if φ then π1 else π2) is a strong solution to P = (M0,A, φg), then
so is π1 or π2.

Proof of claim. Assume (if φ then π1 else π2) is a strong solution to (M0,A, φg),
that is, M0 |= Jif φ then π1 else π2Ks φg. Then, by definition, M0 |= (φ →
Jπ1Ks φg) ∧ (¬φ → Jπ2Ks φg). Since M0 is an information cell, and φ is a K-
formula, we must have either M0 |= φ or M0 |= ¬φ. Thus we get that either
M0 |= Jπ1Ks φg orM0 |= Jπ2Ks φg, as required.

Note that we have Jskip;πKs φg = JskipKs (JπKs φg) = JπKs φg. Thus, we can
without loss of generality assume that no plan contains a subexpression of the
form skip;π. The length of a plan π, denoted |π|, is defined recursively by:
|skip| = 1; |E| = 1; |if φ then π1 else π2| = |π1|+ |π2|; |π1;π2| = |π1|+ |π2|.

Claim 2. Let π be a strong solution to P = (M0,A, φg) with |π| ≥ 2. Then
there exists a strong solution of the form E ;π′ with |E ;π′| ≤ |π|.

Proof of claim. Proof by induction on |π|. The base case is |π| = 2. We have
two cases, π = if φ then π1 else π2 and π = π1;π2, both with |π1| = |π2| = 1.
If π is the latter, it already has desired the form. If π = if φ then π1 else π2

we have by Claim 1 that either π1 or π2 is a strong solution to P. Thus also
either π1; skip or π2; skip is a strong solution to P, and both of these have
length |π|. This completes the base case. For the induction step, we assume
that if π′, with |π′| < l, is a strong solution to a planning problem P ′, then
there exists is a strong solution of the form (E ;π′′), with |E ;π′′| ≤ |π′|. Now
consider a plan π of length l which is a strong solution to P. We again have
two cases to consider, π = if φ then π1 else π2 and π = π1;π2. If π = π1;π2

is a strong solution to P, then π1 is a strong solution to the planning problem
P ′ = (M0,A, Jπ2Ks φg), asM0 |= Jπ1;π2Ks φg ⇔M0 |= Jπ1Ks Jπ2Ks φg. Clearly
|π1| < l, so the induction hypothesis gives that there is a strong solution (E ;π′1)
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to P ′, with |E ;π′1| ≤ |π1|. Then, E ;π′1;π2 is a strong solution to P and we have
|E ;π′1;π2| = |E ;π′1| + |π2| ≤ |π1| + |π2| = |π|. If π = if φ then π1 else π2 is a
strong solution to P, then we have by Claim 1 that either π1 or π2 is a strong
solution to P. With both |π1| < l and |π2| < l, the induction hypothesis gives
the existence a strong solution E ;π′, with |E ;π′| ≤ |π|. This completes the proof
of the claim.

We now prove the theorem by induction on |π|, where π is a strong solution
to P = (M0,A, φg). We need to prove that there exists a planning tree T
for P in which the root is solved. Let T0 denote the planning tree for P only
consisting of its root node with labelM0. The base case is when |π| = 1. Here,
we have two cases, π = skip and π = E . In the first case, the planning tree
T0 already has its root solved, since M0 |= JskipKs φg ⇔ M0 |= φg. In the
second case π = E . Since π is a strong solution to P, we have M0 |= JEKs φg,
that is, M0 |= 〈E〉> ∧ [E ]Kφg. Thus E is applicable in M0 meaning that we
can apply the tree expansion rule to T0, which will produce an and-node m
with E(root(T0),m) = E and M(m) = M0 ⊗ E . Call the expanded tree T1.
Since we have M0 |= [E ]Kφg, Lemma 2.16 gives us M0 ⊗ E |= Kφg, that is,
M(m) |= Kφg, and hence M(m) |= φg. This implies that M(m) and thus
root(T1) is solved. The base case is hereby completed.

For the induction step, assume that a planning tree with solved root can be
constructed for problems with strong solutions of length < l. Let π be a strong
solution to P with |π| = l. By Claim 2, there exists a strong solution of the form
E ;π′ with |E ;π′| ≤ |π|. As M0 |= JE ;π′Ks φg ⇔ M0 |= JEKs Jπ′Ks φg ⇔ M0 |=
〈E〉> ∧ [E ]K(Jπ′Ks φg), the tree expansion rule can be applied by picking E and
M0. This produces the and-node m with E(n,m) = E andM(m) =M0 ⊗ E .
m1, . . . ,mk are the children of m, and M(mi) = Mi the information cells
in M(m). From M0 |= [E ]K(Jπ′Ks φg) we get M0 ⊗ E |= K Jπ′Ks φg, using
Lemma 2.16. This impliesMi |= K Jπ′Ks φg, and henceMi |= Jπ′Ks φg, for each
information cell Mi of M(m) = M0 ⊗ E . Thus π′ must be a strong solution
to each of the planning problems Pi = (Mi,A, φg). As |π′| < |E ;π′| ≤ l,
the induction hypothesis gives that planning trees Ti with solved roots can be
constructed for each Pi. Let T denote T0 expanded with m,m1, . . . ,mk, and
each Ti be the subtree rooted at mi. Then each of the nodes mi are solved in
T , and in turn both m and root(T ) are solved.

2.4.2 Strong Planning Algorithm

With all the previous in place, we now have an algorithm for synthesising strong
solutions for planning problems P, given as follows.
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StrongPlan(P)
1 Let T be the plan. tree only consisting of root(T ) labelled by the init. state of P.
2 Repeatedly apply the tree expansion rule of P to T until it is B2-saturated.
3 If root(T ) is solved, return π(root(T )), otherwise return fail.

Theorem 2.26. StrongPlan(P) is a terminating, sound and complete algo-
rithm for producing strong solutions to planning problems. Soundness means
that if StrongPlan(P) returns a plan, it is a strong solution to P. Com-
pleteness means that if P has a strong solution, StrongPlan(P) will return
one.

Proof. Termination comes from Lemma 2.20 (with B1 replaced by the stronger
condition B2), soundness from Theorem 2.24 and completeness from Theorem
2.25 (given any two saturated planning trees T1 and T2 for the same planning
problem, the root node of T1 is solved iff the root node of T2 is).

2.4.3 Weak Planning Algorithm

With few changes, the machinery already in place gives an algorithm for syn-
thesising weak solutions. Rather than requiring all children of an and-node be
solved, we require only one. This corresponds to the notion of weak, defined in
Definition 2.11. Only one possible execution need lead to the goal.

Definition 2.27 (Weakly Solved Nodes). A node n is called weakly solved if
eitherM(n) |= φg or n has at least one weakly solved child.

We keep the tree expansion rule, but make use of a new blocking condition B3

using Definition 2.27 rather than Definition 2.21.

Definition 2.28 (Plans for Weakly Solved Nodes). Let T be any planning tree
for P = (M0,A, φg). For each weakly solved node n in T , a plan πw(n) is
defined recursively by:

• ifM(n) |= φg, then πw(n) = skip

• if n is an or-node andm its weakly solved child, then πw(n) = E(n,m);πw(m)

• if n is an and-node and m its weakly solved child, then πw(n) = πw(m)

The algorithm for weak planning is defined as follows.
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WeakPlan(P)
1 Let T be the plan. tree only consisting of root(T ) labelled by the init. state of P.
2 Repeatedly apply the tree expansion rule of P to T until it is B3-saturated.
3 If root(T ) is weakly solved, return πw(root(T )), otherwise return fail.

Theorem 2.29. WeakPlan(P) is a terminating, sound and complete algo-
rithm for producing weak solutions to planning problems.

2.5 Related and Future Work

In this paper, we have presented a syntactic characterisation of weak and strong
solutions to epistemic planning problems, that is, we have characterised solutions
as formulas. [Bolander and Andersen, 2011] takes a semantic approach to strong
solutions for epistemic planning problems. In their work plans are sequences of
actions, requiring conditional choice of actions at different states to be encoded
in the action structure itself. We represent choice explicitly, using a language
of conditional plans. An alternative to our approach of translating conditional
plans into formulas of DEL would be to translate plans directly into (complex)
event models. This is the approach taken in [Baltag and Moss, 2004], where they
have a language of epistemic programs similar to our language of plans (modulo
the omission of ontic actions). Using this approach in a planning setting, one
could translate each possible plan π into the corresponding event model E(π),
check its applicability, and check whetherM0⊗E(π) |= φg (the goal is satisfied
in the product update of the initial state with the event model). However, even
for a finite action library, there are infinitely many distinct plans, and thus
infinitely many induced event models to consider when searching for a solution.
To construct a terminating planning algorithm with this approach, one would
still have to limit the plans considered (e.g. by using characterising formulas),
and also develop a more involved loop-checking mechanism working at the level
of plans. Furthermore, our approach more obviously generalises to algorithms
for replanning, which is current work.

The meaningful plans of [de Lima, 2007, chap. 2] are reminiscent of the work in
this paper. Therein, plan verification is cast as validity of an EDL-consequence
in a given system description. Like us, they consider single-agent scenarios,
conditional plans, applicability and incomplete knowledge in the initial state.
Unlike us, they consider only deterministic actions. In the multi-agent treat-
ment [de Lima, 2007, chap. 4], action laws are translated to a fragment of DEL
with only public announcements and public assignments, making actions single-
ton event models. This means foregoing nondeterminism and therefore sensing
actions.
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Planning problems in [Löwe et al., 2011] are solved by producing a sequence of
pointed event models where an external variant of applicability (called possible
at) is used. Using such a formulation means outcomes of actions are fully
determined, making conditional plans and weak solutions superfluous. As noted
by the authors, and unlike our framework, their approach does not consider
factual change. We stress that [Bolander and Andersen, 2011, Löwe et al.,
2011, de Lima, 2007] all consider the multi-agent setting which we have not
treated here.

In our work so far, we haven’t treated the problem of where domain formula-
tions come from, assuming just that they are given. Standardised description
languages are vital if modal logic-based planning is to gain wide acceptance in
the planning community. Recent work worth noting in this area includes [Baral
et al., 2012], which presents a specification language for the multi-agent belief
case.

As suggested by our construction of planning trees, there are several connec-
tions between our approach and two-player imperfect information games. First,
product updates imply perfect recall [van Benthem, 2001]. Second, when the
game is at a node belonging to an information set, the agent knows a proposi-
tion only if it holds throughout the information set; corresponding to our use of
information cells. Finally, the strong solutions we synthesise are very similar to
mixed strategies. A strong solution caters to any information cell (contingency)
it may bring about, by selecting exactly one sub-plan for each [Aumann and
Hart, 1992].

Our work naturally relates to [Ghallab et al., 2004], where the notions of strong
and weak solutions are found. Their belief states are sets of states which may
be partioned by observation variables. Our partition of epistemic models into
information cells follows straight from the definition of product update. A clear
advantage in our approach is that actions encode both nondetermism and partial
observability. [Rintanen, 2004] shows that for conditional planning (prompted
by nondeterministic actions) in partially observable domains the plan existence
problem is 2-EXP-complete (plans must succeed with probability 1; i.e. be
strong solutions). StrongPlan(P) implicitly answers the same question for
P (it gives a strong solution if one exists). Reductions between the two deci-
sion problem variants would give a complexity measure of our approach, and
also formally link conditional epistemic planning with the approaches used in
automated planning.

We would like to do plan verification and synthesis in the multi-agent set-
tings. We believe that generalising the notions introduced in this paper to
multi-pointed epistemic and event models are key. Plan synthesis in the multi-
agent setting is undecidable [Bolander and Andersen, 2011], but considering
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restricted classes of actions as is done in [Löwe et al., 2011] seems a viable route
for achieving decidable multi-agent planning. Another interesting area is to
consider modalities such as plausibility and preferences. This would allow an
agent to plan for (perhaps only) the most likely outcomes of its own actions and
the preferred actions taken by other agents in the system. This could then be
combined with the possibility of doing replanning, as mentioned above.



Chapter 3

Addendum to Conditional
Epistemic Planning

In this chapter we expand on the results of Chapter 2, putting an emphasis on
the computational complexity of the following decision problem.

Definition 3.1. Let P be a planning problem on P . The solution existence
problem (for P) is the decision problem of whether there exists a strong solution
to P.

Given that our focus is solely on strong solutions, we often omit the qualification
and simply write solution it its place. As in the previous chapter, we consider
only single-agent conditional epistemic planning. The solution existence prob-
lem has been widely studied within the field of automated planning, and we feel
obliged to already point out, that this chapter will only show that things are as
expected when we base planning problems on dynamic epistemic logic. What we
mean by expected is that the types of problems we consider range from being
PSPACE-Complete to 2EXP-Complete, coinciding with results from automated
planning [Bylander, 1994, Littman, 1997, Haslum and Jonsson, 1999, Rintanen,
2004]. At the same time, our exposition proves that we’re no worse off in terms
of computational complexity when using the framework of conditional epistemic
planning. Additionally our method provides insights into how planning can be
lifted to work with (dynamic) modal logics, which becomes valuable to us in
later chapters where we make a slight change of scenery and consider epistemic-
doxastic notions.

We lead out with some technical preliminaries in Section 3.1, and then proceed in
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Section 3.2 to illustrate that the algorithm introduced in the previous chapter for
synthesizing strong plans is suboptimal. As a natural follow-up, we use Section
3.3 to present two alternative procedures that provide better upper bounds.
That there is little hope of improving these procedures in terms of asymptotic
complexity is shown in Section 3.4, where we construct planning problems for
simulating Turing machines of various resource bounds. We conclude upon our
findings in Section 3.5, and further discuss the impact of our results.

3.1 Technical Preliminaries

In what follows we introduce notions used throughout the remainder of this
chapter, as well as later on in Chapter 5. We first present several known re-
sults from the vast literature on dynamic epistemic logic, and add a few simple
findings of our own which prove to be useful. We then talk about the planning
formalism we have presented and spell out the types of planning problems we
will be investigating. We round things off with introducing alternating Turing
machines, which will serve as our prime model of computation, as well as the
complexity classes relevant to our exposition.

3.1.1 Equivalence

We begin by giving very broad definitions of equivalence between formulas resp.
models, as presented in [van Ditmarsch et al., 2007].1

Definition 3.2. Let L1 and L2 be languages interpretable on the same class of
models, and let φ1 ∈ L1 and φ2 ∈ L2. We say that φ1 and φ2 are equivalent, in
symbols φ1 ≡ φ2, if for any pointed model (M, w) of the given class, we have
thatM, w |= φ1 iffM, w |= φ2.

Definition 3.3. Given two modelsM,M′ belonging to the same class of models
and a language L interpreted on this class, for any w ∈ D(M) and w′ ∈ D(M′),
we say that (M, w) and (M′, w′) are modally equivalent for L if:

M, w |= φ ⇔ M′, w′ |= φ for all φ ∈ L

and denote this (M, w) ≡L (M′, w′). Likewise if

M |= φ ⇔ M′ |= φ for all φ ∈ L

then we writeM≡LM′2.
1The broad nature of Definition 3.3 and 3.2 allow us to reuse them in Chapter 5.
2We can overload ≡ without ambiguity since it is clear from context whether we’re referring

to (pointed) models or formulas.
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In the remainder of this chapter we let LEL(P ) denote the static epistemic
sublanguage of LDEL(P ), that is, without the dynamic modality [E , e]φ. Shown
already in the the seminal [Baltag et al., 1998], dynamic epistemic logic can be
translated into static epistemic logic, and this is indeed also the case for the
dialect of DEL we employ here.

Proposition 3.4. There exists an equivalence-preserving translation function
tr : LDEL(P )→ LEL(P ) s.t. φ ≡ tr(φ) for any φ ∈ LDEL(P ).

Proof. We take the translation of action models in [van Ditmarsch et al., 2007,
Sect. 7.6] which handle event models without postconditions. To accommo-
date postconditions we need only modify the cases of [E , e] p (proposition) and
[E , e] [E ′, e′]φ (composition), in accordance with the proof system in [van Dit-
marsch and Kooi, 2008]. From soundness of the proof system it follows that the
translation is equivalence-preserving.

Since LEL(P ) is a sublanguage of LDEL(P ), it follows from Proposition 3.4 that
the two languages are equally expressive, intuitively meaning that LEL(P ) and
LDEL(P ) can distinguish the exact same models (we discuss this notion formally
in Chapter 5). Therefore many results from epistemic logic immediately carry
over to dynamic epistemic logic, and we proceed to give a few such results.

3.1.2 Bisimulation

Recall that the valuation of an epistemic model assigns a set of worlds to each
symbol. An alternative to this is to use a labelling function, assigning instead
a set of symbols to each world in the model. The labelling function L of an
epistemic model M = (W,∼, V ) on P is given by L : W → 2P , such that for
all w ∈ W , L(w) = {p ∈ P | w ∈ V (p)} is the label of w. The two notions are
interdefinable and we will work with whichever of the two suits our needs the
best. As a case in point we use labelling functions for introducing one of the
key tools of the trade to a modal logician, the notion of bisimulation (see for
instance [Blackburn et al., 2001]).3

Definition 3.5. Let epistemic modelsM = (W,∼, V ) andM′ = (W ′,∼′, V ′)
on P be given with labelling functions L, L′. A non-empty relation R ⊆W×W ′
is a bisimulation betweenM andM′ if for all (w,w′) ∈ R:

[atoms] L(w) = L(w′).
3Also, this treatment is more compatible with the presentation in Chapter 4 and 5, where

we downright take the labelling function as primitive in our models.
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[forth] If v ∈W and w ∼ v, there is a v′ ∈W ′ s.t. w′ ∼′ v′ and (v, v′) ∈ R.

[back] If v′ ∈W ′ and w′ ∼′ v′, there is a v ∈W s.t. w ∼ v and (v, v′) ∈ R.

If a bisimulationR betweenM andM′ exists such that (w,w′) ∈ R, we say that
(M, w) and (M′, w′) are bisimilar and write (M, w) - (M′, w′). Similarly, if
a bisimulation R betweenM andM′ exists whose domain is W and codomain
is W ′, we say thatM andM′ are totally bisimilar and writeM -M′. When
there is no risk of confusion we sometimes simply write bisimilar to mean totally
bisimilar.

The result below (observe that we consider finite models) is known to hold for
LEL(P ) (see for instance [Blackburn et al., 2001, Theorem 2.20, 2.24]). We can
readily show the same result for LDEL(P ), using Proposition 3.4 and the fact
that LEL(P ) is a sublanguage of LDEL(P ).

Lemma 3.6. Given finite epistemic modelsM andM′ on P , we have that:

(M, w) - (M′, w′) ⇔ (M, w) ≡LDEL(P ) (M′, w′)
M -M′ ⇔ M≡LDEL(P ) M′

for any w ∈ D(M) and w′ ∈ D(M′).

From Definition 2.9 we see that applicability is invariant under bisimulation.

Corollary 3.7. Given finite epistemic modelsM andM′ on P s.t. M -M′,
and an event model E of LDEL(P ), then E is applicable inM iff E is applicable
inM′.

Bisimulation is also the right fit when we apply the tree expansion rule (as
well as the graph expansion rule defined in Section 3.3), that is, bisimilarity is
preserved by the product update operation. The proof is as in [van Ditmarsch
et al., 2007, Prop. 6.21], with Lemma 3.6 giving us that preconditions and
postconditions assigned to atoms are modally equivalent for any two bisimilar
worlds ofM andM′.

Lemma 3.8. Given finite epistemic models M and M′ on P and an event
model E of LDEL(P ). Consider any w ∈ D(M) and w′ ∈ D(M′) and some
e ∈ D(E) s.t. M, w |= pre(e). If (M, w) - (M′, w′) then (M⊗ E , (w, e)) -
(M′ ⊗ E , (w′, e)). Further, if there is a total bisimulation between M and M′,
and E is applicable inM, then there is a total bisimulation betweenM⊗E and
M′ ⊗ E.
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In this rather simple logic we have a straightforward characterization of bisimi-
larity.

Lemma 3.9. Given an epistemic model M = (W,∼, V ) and w,w′ ∈ W , if
w ∼ w′ then we have that (M, w) - (M, w′) iff L(w) = L(w′).

Proof. Assuming (M, w) - (M, w′) we can immediately use [atoms] and see
that L(w) = L(w′). For the other direction assume that L(w) = L(w′) and
let R = {(v, v) | v ∈ [w]∼} ∪ {(w,w′)}, that is, R is the identity relation on
the ∼-equivalence class of w with the addition of (w,w′). We show that R
is a bisimulation between (M, w) and (M, w′). By Definition 3.5, each pair
(v, v) ∈ R relating a world to itself immediately satisfies the three conditions
of an (auto-)bisimulation, hence we need only consider (w,w′) ∈ R. From
assumption of L(w) = L(w′) we have that (w,w′) satisfies [atoms]. To show
[forth] we consider any u ∈ W s.t. w ∼ u. This means that u ∈ [w]∼ and we
have that:

• If u = w then by symmetry of ∼, we have w′ ∼ w and by construction
(w,w′) ∈ R,

• Otherwise, from w ∼ w′ we have that [w]∼ = [w′]∼, and so w ∼ u implies
that w′ ∼ u and by construction we have (u, u) ∈ R.

[back] is shown symmetrically.

We’ll be interested in models that are not bisimilar to any smaller model (the
minimal representation of a model). Obtaining such a model in the general
case is done via the so-called bisimulation-contraction. To this end we can
consider the maximal bisimulation between a model and itself (a maximal
auto-bisimulation), and then take the quotient of a model wrt. to this auto-
bisimulation [Blackburn et al., 2006]. Following [Ågotnes et al., 2012] we call
such models contraction-minimal. Given a contraction-minimal model M we
have that for any two distinct worlds w,w′ of M, (M, w) and (M, w′) are
not bisimilar. Turning now to some simple combinatorics, we assume that P
contains n propositional symbols for the following three results.

Lemma 3.10. The number of non-totally bisimilar singleton epistemic models
on P is 2n.

Proof. A singleton model contains exactly one world, hence the notion of bisim-
ilarity and total bisimilarity coincides. By Lemma 3.9 we therefore have that
two singleton models are not totally bisimilar iff the labels of their respective
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worlds are different. A label is a subset of P , hence the number of singleton
epistemic models which are non-totally bisimilar is 2n (the size of the power set
of P ).

Lemma 3.11. There are at most 2n worlds in a contraction-minimal informa-
tion cell on P .

Proof. No two worlds are bisimilar in any contraction-minimal information cell
M, and so from ∼ being universal and Lemma 3.9 it follows that no two worlds
inM have the same label. As there are 2n different labels this also bounds the
number of worlds in a contraction-minimal information cell.

Lemma 3.12. The number of non-totally bisimilar information cells on P is
2(2n).

Proof. We can without loss of generality count the number of contraction-
minimal information cells. We can identify each contraction-minimal informa-
tion cell with the set of labels assigned to worlds. With 2n different labels we
therefore have 2(2n) different sets of labels, hence giving the number of informa-
tion cells on P that are not totally bisimilar.

3.1.3 Size of Inputs

To properly analyze the computational complexity it is necessary to clearly state
the size of the inputs given to a particular problem. In our case this means the
size of formulas, epistemic models and event models. We postulate that the
following quantities are all “reasonable” as per [Garey and Johnson, 1979]. The
first quantity reflects that we can encode epistemic models as labelled graphs.

Definition 3.13. Given an epistemic modelM = (W,∼, V ) on P , its size |M|
is given by |W |+ | ∼ |+ |W | · |P |.

The following definition is adapted from [Aucher and Schwarzentruber, 2012] to
also encompass postconditions.

Definition 3.14. Given a formula φ ∈ LDEL(P ) and an event model (E , e) of
LEL(P ) with E = (E,∼, pre, post). Their sizes |φ| and |(E , e)| are given by the
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following simultaneous recursion:

|p| = 1

|¬φ| = 1 + |φ|
|φ ∧ ψ| = 1 + |φ|+ |ψ|
|Kφ| = 1 + |φ|

| [E , e]φ| = |E|+ |φ|

|E| = |E|+ | ∼ |+
∑
e′∈E

(|pre(e′)|+ (
∑
p′∈P

|post(e′)(p′)|))

3.1.4 Model Checking and the Product Update Operation

We now turn our attention to model checking, which is a task necessary to
compute the product update. The input of a model checking problem is a
finite epistemic model M, a world w ∈ D(M) and a formula φ interpretable
on epistemic models. The local formulation of model checking asks whether
M, w |= φ, and the global formulation whether M |= φ. Observe that the
local formulation is used in the definition of product update, and the global
formulation for determining (given an information cell) whether an event model
is applicable and whether the goal formula is satisfied. We can answer the global
formulation using a procedure for the local formulation, simply by doing local
model checking in each world ofM. The overhead (linear in the size ofM) in
computational effort of this generalization is sufficiently small for us to ignore
the difference here.

For formulas in LEL(P ) we have an algorithm for model checking whose run-
ning time is polynomial in the size of the input formula and model [Blackburn
et al., 2006, Section 1.4.1]. Given a formula in φ ∈ LDEL(P ), we can solve the
model checking task by running the algorithm on tr(φ), that is, the translation
from LDEL(P ) to LEL(P ). However, as for instance observed by [Aucher and
Schwarzentruber, 2012], the size of tr(φ) might be exponential in the size of φ.
With this approach the worst case running time of the algorithm is therefore
exponential in the size of φ.

Proposition 3.15. Let a pointed epistemic model (M, w) be given. If φ ∈
LEL(P ) there is an algorithm for deciding M, w |= φ whose running time is
polynomial in |M| and |φ|. If φ ∈ LDEL(P ) there is an algorithm for deciding
M, w |= φ whose running time is polynomial in |M| and 2|φ|.

Using a slightly different dialect of LDEL(P ) than us (in particular omitting post-
conditions), [Aucher and Schwarzentruber, 2012] shows that the model checking
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problem in this case is PSPACE-Complete. In all likelihood this means we could
do better than exponential blowup induced by tr, but we do not investigate this
further here.

In certain cases it becomes relevant to our analysis whether the preconditions
and postconditions of an event model are members of LEL(P ) or LDEL(P ). We
therefore say that E = (E,∼, pre, post) of LDEL(P ) is static if for all e ∈ E, p ∈ P
we have that pre(e) ∈ LEL(P ) and post(e)(p) ∈ LEL(P ). We point out that in
many cases of modelling epistemic planning (indeed every example we provide),
static event models are ample enough to describe the actions available to an
agent.

Proposition 3.16. Given an epistemic modelM = (W,∼, V ) on P and event
model E = (E,∼, pre, post). If E is static there exists an algorithm for computing
M⊗E whose running time is polynomial in |M| · |E|. Otherwise there exists an
algorithm for computingM⊗E whose running time is polynomial in |M| · 2|E|.

Proof. For each (w, e) ∈ W × E we need to determine M, w |= pre(e), and
M, w |= post(e)(p) for all p ∈ P . Recalling that |P | ≤ |M| this requires
deciding no more than |M|2 · |E| model checking problems. If E is static it
follows from Lemma 3.15 that each problem requires time polynomial in |M|
and |E|, as |pre(e)| < |E| and |post(e)(p)| < |E|. Otherwise, we have by Lemma
3.15 that each problem requires time polynomial in |M| and 2|E|. The other
operations for computing M⊗ E require at most time polynomial in |W × E|
when using well-known data structures, hence the result follows.

3.1.5 Types of Planning Problems

Picking up the discussion of nondeterminism and observability that we touched
upon in Chapter 2, we now formalize what these notions mean to us here.
These concepts directly influence the computational complexity of the solution
existence problem, as is shown in the sequel.

Definition 3.17. Let an information cell M and an action E be given s.t. E
is applicable in M. We say that E is non-branching in M, if the bisimula-
tion contraction ofM⊗ E is a single information cell, and that E is branching
otherwise. We say that E is fully observable in M, if every information cell in
the bisimulation contraction of M⊗ E is a singleton, and that E is said to be
partially observable otherwise.

It should be clear that this definition is in accord with our presentation so far,
although for technical reasons we need to consider contraction-minimal mod-
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els. Lifting this to the level of planning problems is intuitively straightforward,
we simply require that every action of a planning problem satisfies the above
definition in any information cell reachable from the initial state.

Definition 3.18. Let a planning problem P = (M0,A, φ) be given. Let S0 =
{M0} and for i > 0 inductively define Si as the set of information cells reachable
using i actions, formally given by⋃

M∈Si−1

{M′ is an info. cell ofM⊗E | E ∈ A is applicable inM}

We say that P is non-branching (fully observable) if for all i ∈ N, each E ∈ A
is non-branching (fully observable) in everyM of Si. Otherwise P is branching
(partially observable). The reachable information cells of P is ∪i∈NSi.

Returning for a brief moment to automated planning, we have that classical
planning studies fully observable and non-branching problems, and that con-
formant planning deals with partially observable and non-branching problems.
Contingency planning, conditional planning and nondeterministic planning are
frequently used in connection with planning problems that are branching, and
to this is typically added the degree of observability assumed in the given envi-
ronment. As such each of the four types of planning problems defined here is
directly inspired by a counterpart in automated planning.

An important remark about Definition 3.18 is that it is given at the global level.
By this we mean that it looks at the interaction between the initial state and
any sequence of actions. It is also possible — and arguably more interesting
— to find restrictions on the local level, where we for instance look at each
action in the action library in isolation.4 We now provide a few such local level
restrictions, denoting by P = (M0,A, φg) some planning problem.

Proposition 3.19. IfM0 is a singleton and each E ∈ A is a singleton, then P
is non-branching and fully observable.

Proof. By the product update operation we have that if M contains a single
world and E a single event s.t. E is applicable in M, then M⊗ E is a single-
ton. With this it is straightforward to show that P satisfies both properties of
Definition 3.18 by induction on the set of information cells reachable using i
actions.

Proposition 3.20. If M0 is a singleton and for each E = (E,∼, pre, post) in
A we have that ∼ is the identity relation on E, then P is fully observable.

4Much research into classical planning is concerned with exactly this. There the aim is to
find relaxations of planning problems that makes them tractable, allowing this relaxed version
to be used for heuristic guidance during e.g. a state-space search.
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Proof. By the product update operation we have that if M is a singleton and
the epistemic relation of E is the identity with E applicable in M, then each
information cell of M⊗ E is a singleton. A proof by induction is readily seen
using this fact.

Proposition 3.21. If for each E = (E,∼, pre, post) in A we have that ∼ is the
universal relation on E, then P is non-branching.

Proof. For an information cellM and action E whose epistemic relation is uni-
versal and which is applicable inM, we have thatM⊗E is an information cell.
A proof by induction is easily formulated using this fact, and recalling that Si
is a set of information cells (M0 is an information cell).

In the general case we have that P is branching and partially observable.

3.1.6 Alternating Turing Machines and Complexity Classes

Alternating Turing machines (ATMs) is a model of computation generalizing
both deterministic and nondeterministic Turing machines, and which are at-
tributed to the authors of [Chandra et al., 1981]. Just like a regular Turing
machine, an ATM is given some input and, according to a given set of rules,
manipulates symbols on a tape that is divided into cells. We call these symbols
letters to avoid confusion with propositional symbols. Here we introduce the
formulation of ATMs found in [Sipser, 2006].

Definition 3.22. We define an alternating Turing machine (ATM) as a tuple
T = (Q,Σ, δ, q0, l), where

• Q is a finite set of internal states,

• Σ is a finite alphabet not containing the blank symbol t,

• δ : Q× (Σ∪ {t})→ 2(Q×(Σ∪{t})×{L,R}) is a transition function, and each
element in the codomain is a transition,

• q0 ∈ Q is an initial state, and

• l : Q→ {acc, rej,∀,∃} is a labelling function.

We say that q ∈ Q is an (accepting/rejecting/universal/existential) state if
l(q) = (acc/rej/∀/∃). A halting state is a state that is either accepting or reject-
ing. If for all q ∈ Q, s ∈ Σ we have that |δ(q, s)| ≤ 1 then T is a deterministic
Turing machine (DTM).
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For a string σ ∈ Σ∗, we let σ(i) denote the i’th letter of σ, and use the convention
that σ(1) is the first letter in the string. The length of σ’s is given by the number
of letters in σ and is denoted |σ|. The empty string ε has length 0.

Definition 3.23. Let an ATM T = (Q,Σ, δ, q0, l) be given. We say that
c = σqσ′ is a configuration of T when q ∈ Q and σ, σ′ ∈ Σ∗. When T is
in the configuration c = σqσ′ it means that T is in state q. Further, σσ′ is
currently on the tape of T , with σ being the string left of the head, σ′(1) be-
ing below the head, and the remaining symbols in σ′ being to the right of the
head (i.e. the substring σ′(2) . . . σ′(|σ′|)) possibly followed by blanks. If q is
a (halting/existential/universal) state then c is a (halting/existential/universal)
configuration. The starting configuration of T on input string σ′′ ∈ Σ∗ is εq0σ

′′,
meaning that σ′′(1) is below the head.

We assume the reader is familiar with how a nondeterministic Turing machine
(NTM) computes, namely that it may proceed according to several possibilities,
determined by its configuration and the transition function. Because an ATM
computes in exactly the same manner we forego the formalities here. If T can go
from configuration c to c′ in one step, we say that c′ is a successor configuration
(of c), or in short that c yields c′. We also make some typical assumptions that
does not incur a loss of generality: A halting configuration has no successor
configurations, there is a left-hand end of the tape (it’s extensible only to the
right), and T never tries to move its head off the left-hand end of the tape. The
following definition is adapted from [Rintanen, 2005] and is suited for the proofs
we give below.

Definition 3.24. Given an ATM T and a configuration c = σqσ′ of T . We
define the following for x, y ∈ N.

• When l(q) = acc we say that c is 0-accepting,

• When l(q) = ∀ we say that c is x-accepting if for every successor configu-
ration c′ there is a y < x s.t. c′ is y-accepting,

• When l(q) = ∃ we say that c is x-accepting if for some successor configu-
ration c′ there is a y < x s.t. c′ is y-accepting, and

• Otherwise c is rejecting.

When there exists an x ∈ N s.t. c is x-accepting, we say that c is an accepting
configuration (of T ). If the starting configuration of T on an input string σ′′ is
accepting, we say that T accepts σ′′.
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It may be rewarding to view the computation of an ATM as a tree. Here the root
of the tree is the starting configuration, leaves correspond to halting configura-
tions, internal nodes correspond to either universal configurations or existential
configurations, and edges indicate possible transitions. This illustrates further
that an ATM without universal states is simply an NTM, and that for DTMs
this tree is a path corresponding to a sequence of configurations.

The set of input strings accepted by a Turing machine T is the language rec-
ognized by T . A decision problem can be seen as a boolean function mapping
inputs (problem instances) to either YES or NO. Given a decision problem, the
corresponding language is the set of inputs for which the answer is YES. A Tur-
ing machine recognizing such a language is said to solve the decision problem.

We will consider Turing machines whose computational resources are bounded,
with the usual suspects being time and space. The time complexity of an ATM
T is the maximum number of steps that T uses on any computation branch;
i.e. from the root to any leaf. The space complexity of an ATM T is the
maximum number of tape cells that T scans on any computation branch. We
let ATIME(f(n)) denote the set of decision problems solvable by an ATM, whose
time complexity is O(f(n)) on any input of length n. Similarly, ASPACE(f(n))
denotes the set of decision problems solvable by an ATM whose space complexity
is O(f(n)) on any input of length n. In the case of DTM’s (where there is a single
computation branch), we use DTIME(f(n)) and DSPACE(f(n)) analogously.
For f(n) ≥ log n we have that ASPACE(f(n)) = DTIME(2O(f(n))) [Sipser,
2006, Theorem 10.21], and with all this in place we can now give the complexity
classes we’re concerned with here.

PSPACE = ∪0≤kDSPACE(nk)

EXP = ∪0≤kDTIME(2n
k

) = ∪0≤kASPACE(nk) = APSPACE

EXPSPACE = ∪0≤kDSPACE(2n
k

)

2EXP = ∪0≤kDTIME(22nk

) = ∪0≤kASPACE(2n
k

) = AEXPSPACE

Consider now C denoting one of the complexity classes above, L a decision
problem in C and T a TM solving L. In Section 3.4 we show how to construct a
planning problem P whose size is polynomial in the size of T and an input string
σ, s.t. T accepts σ iff there exists a solution to P. In other words, to establish
C-Hardness we directly simulate any Turing machine (decision procedure) that
solves problems in C.
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3.2 Suboptimality of StrongPlan(P)

Using the results of Chapter 2, we can easily give an effective (i.e. decidable)
procedure for answering the solution existence problem for P. Simply apply
StrongPlan(P) and answer NO if the algorithm returns fail, and otherwise
answer YES. By Theorem 2.26 it follows that the solution existence problem is
decidable. However, this approach falls short for determining the computational
complexity of the solution existence problem; it is suboptimal.

Given a planning problem P on P , we can take on a general perspective and
consider StrongPlan(P) as a tree search algorithm. This means the number
of nodes expanded is O(bd) where b is the branching factor and d the maximum
depth of the tree.

As far as B2-saturated planning trees go, we have that an or-node has at most
one child per action in the action library. Further, the number of children of an
and-node is at most the number of connected components in an action (i.e. the
number of equivalence classes under the epistemic relation of the event model).
Therefore the branching factor b is the greater number of either of these two
quantities. Turning to the depth of a planning tree, we have that on any path
from the root to a leaf, at most two or-nodes are totally bisimilar due to to
blocking condition B2.5 Additionally, there is one more or-node than there
are and-nodes on such a path due to the tree expansion rule. Consequently
the upper bound on d is one, plus twice the number of non-totally bisimilar
information cells on P .

These observations together with Lemma 3.12 means we have O(b(2
2n+1)

) as an
upper bound on the worst case running time of StrongPlan(P) for |P | = n.
When P is fully observable (every reachable information cell is a singleton) the
upper bound is instead O(b2

n+1) due to Lemma 3.10.

We now give a concrete example showing that planning trees can grow inconve-
niently large, in spite of the restrictions imposed by blocking condition B2. We
will say that an epistemic model satisfies exactly p when p holds in every world
of an epistemic model, and every symbol in P \ {p} does not hold.

Definition 3.25. Given some k ∈ N let P = {p1, . . . , pk, pk+1, pk+2} be a set of
k+2 propositional symbols. We define the planning problem Pk = (M0,A, pk+2)
on P , where

• M0 is a singleton epistemic model satisfying exactly p1, and
5Formally, it is the respective labels of nodes that denote bisimilar epistemic models, but

we will allow ourselves this abuse for readability.
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eia:〈pi, {pi 7→ ⊥, pi+1 7→ >}〉 eib:〈pi, {pi 7→ ⊥, pi+2 7→ >}〉
growi

e:〈pi, {pi 7→ ⊥, pi+1 7→ >}〉
stopi

Figure 3.1: Event models used in Pk.

• A = {grow1, . . . , growk, stopk+1} is the action library where each event
model is as indicated in Figure 3.1 (for k = 0 we have A = {stop1}).

Using Lemma 3.20 we see that Pk is a branching and fully observable planning
problem.

Example 3.26. In Figure 3.2 we’ve illustrated a planning tree T for P4 that has
been partially expanded as per the tree expansion rule. In the illustration doubly
drawn nodes are solved, or-nodes are represented by a circle and and-nodes by
a gray square. For each or-node n in T its labelM(n) is a singleton epistemic
model which satisfies exactly one of the propositional symbol in {p1, . . . , p6}. For
visual simplicity we indicate only these symbols in our illustrations, and further
we leave it to the reader to deduce the epistemic models labelling and-nodes by
inspecting their children.

We see that and-nodes expanded using growi consists of two information cells,
while and-nodes expanded using stop5 consists of one information cell. In this
illustration there are 4 nodes in T which may be chosen for expansion (each leaf
not satisfying p6), as there are no applicable actions in the other or-nodes. No
node is prevented from expansion due to B2.

To show the general behaviour of StrongPlan(Pk) we need to determine ex-
actly when the planning tree is B2-saturated. This is so when no or-node can
be chosen for expansion, making the blocking condition B2 superfluous for this
particular planning problem. Intuitively, this is the case because nodes not sat-
isfying the goal formula can only be expanded by a single action, and nodes that
do satisfy the goal formula cannot be expanded at all. Moreover, no path from
the root to a leaf contains two or-nodes satisfying the same symbols, hence they
cannot be bisimilar. For brevity we have therefore put proof of the following
result in the appendix.

Lemma 3.27. B2 does not prevent the tree expansion rule from being applied
to any or-node n of a planning tree T for Pk.
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p1

p2 p3

p3 p4 p4 p5

p4 p5 p5 p6 p5 p6

grow1

grow2 grow3

grow3 grow4 grow4

p6

stop5

Figure 3.2: Partially expanded planning tree for P4

Proof. See Lemma A.5

What Lemma 3.27 tells us is that regardless of the non-deterministic choice made
in the tree expansion rule, all B2-saturated planning trees for Pk are isomor-
phic, because such trees will have had every possible node expanded. Therefore
StrongPlan(Pk) always runs until there are no more nodes left to expand,
that is, until every leaf satisfies pk+2. The running time of StrongPlan(Pk)
is therefore proportional to the number of nodes in a fully expanded tree, and
we now show this to grow exponentially in k.

From Example 3.26 and the (somewhat) suggestive naming, the very astute
reader may by now have recognized that any B2-saturated planning tree for
Pk is reminiscent of a Fibonacci tree. We therefore recall some facts about the
famed Fibonacci numbers. We let Fj denote the j’th Fibonacci number, and
recall the two identities Fj = Fj−1 + Fj−2 and

∑l
j=1 Fj = Fl+2 − 1. Moreover,

a closed-form expression for Fj is
[
ϕj

√
5

]
where [·] is the nearest integer function

and ϕ > 1.61 is the golden ratio.

Proposition 3.28. Let k ∈ N and consider any B2-saturated planning tree T
for Pk = (M0,A, pk+2). The number of nodes in T is exponential in k.

Proof. By Lemma 3.27 we have that T is B2-saturated exactly when every node
has been expanded, so we will first proceed to count the number of or-nodes in
a fully expanded planning tree T . We’ll refer to an or-node n in T as a pi-node
when it is the case thatM(n) satisfies exactly pi, and further let |pi| denote the
number of pi-nodes in T .
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Since no action adds a p1-node, we have immediately from the initial state that
|p1| = 1. We now settle the number of or-nodes resulting from applying the
tree expansion rule in some pi node. When stopk+1 is applicable the result is a
pk+2-node, and furthermore for 1 ≤ i ≤ k we have that when growi is applicable,
the result is a pi+1-node and a pi+2-node. To determine |p2|, we have in the case
of k = 0 that |p2| = 1 due to stop1. Otherwise when k > 0, then we have from
grow1 that |p2| = |p1|+ |p0| which equals 1 as there are no p0-nodes. Summing
up we have that |p1| = 1 and |p2| = 1 for any k.

For 3 ≤ j ≤ k+2 we have that one pj-node is added for each pj−1-node and one
for each pj−2-node; with the case of j = k + 2 combining the single node from
growk and the single node from stopk+1. Put on a symbolic form this means
|pj | = |pj−1| + |pj−2|. Observe now that |p1| = F1, |p2| = F2, and since |pj |
is identical to the Fibonnaci recurrence we arrive at |pj | = |pj−1| + |pj−2| =
Fj−1 + Fj−2 = Fj .

From Lemma A.1 we have that every or-node in T satisfies exactly one propo-
sitional symbol. Therefore the total number of or-nodes in T is precisely given
by |p1| + · · · + |pk+2| = F1 + · · · + Fk+2 = Fk+4 − 1 =

[
ϕk+4

√
5

]
− 1. Since T is

a planning tree there is at least one more or-node than there are and-nodes,
hence the number of and-nodes in T is at most Fk+4 − 2, thus we have

[
ϕk+4

√
5

]
− 1 ≤ |T | ≤ 2

[
ϕk+4

√
5

]
− 3 as ϕ > 1⇒

|T | = Θ(ck) for some c > 1

, thereby showing that the number of nodes in T is exponential in k.

Corollary 3.29. StrongPlan is an exponential time algorithm for the solu-
tion existence problem for Pk.

In an alternative formulation of Pk we can consider {p1, . . . , pk+2} as encoding
an integer, and construct actions that capture integer arithmetic — we use such
actions in Section 3.4.3. A B2-saturated planning tree for this alternative version
contains F2k+2+2 or-nodes, and so the running time of StrongPlan is in this
case doubly exponential in k, coinciding roughly with the upper bound for fully
observable planning problems that we presented at the start of this section. As
shown later in Theorem 3.53, this implies that StrongPlan is asymptotically
suboptimal for deciding whether a solution exists.
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3.3 Optimal Decision Procedures

In this section we introduce asymptotically optimal decision procedures for an-
swering the solution existence problem, with optimality being shown by the
results of Section 3.4. We put the tools of Section 3.1 to use here, both for
showing correctness of this procedure and for bounding the resources used. The
upper bounds differ for each of the four types of planning problems mentioned
in Section 3.1.5. For planning problems that are branching we replace plan-
ning trees with planning graphs, so that our algorithm can avoid expanding
redundant nodes. Non-branching problems are simpler because we only need to
determine whether a sequential plan exists, and so we can use a strategy that
requires fewer space resources in this case.

3.3.1 Replacing Planning Trees

As illustrated in Section 3.2 we risk adding an exponential number of bisimilar
nodes to the planning tree when using this as our underlying data structure. We
can eliminate this behaviour from our decision procedure by identifying nodes
that, loosely stated, contain the same information. Foregoing the extraction of
plans from planning trees, the nodes we seek to identify are those that “behave
the same” when considering in tandem the tree expansion rule (Definition 2.18)
and the notion of solved nodes (Definition 2.21). This means that for two nodes
n, n′ to be identified we must have thatM(n) andM(n′) are modally equivalent
(Definition 3.3) and further, if we take any event model E , the nodes added by
the tree expansion rule using n and E are modally equivalent to the nodes added
using n′ and E . To incorporate this fact into StrongPlan one might attempt
to augment B2 further and keep employing planning trees. However, a more
rewarding approach is to do away with trees as whole, and instead turn to a
more suited form of graph.

Definition 3.30. A planning graph G = (N,M,E, n0) is a bipartite, rooted,
directed and labelled graph. N and M are disjoint sets of nodes, where N
denotes a set of or-nodes and M a set of and-nodes. The or-node n0 ∈ N is
the root, also denoted root(G). Each node v of G is labelled by an epistemic
modelM(v). Each edge (n,m) ∈ E with n ∈ N and m ∈ M is labelled by an
event model E(n,m). We require that there is a path from n0 to every other
node in G (implying that G is weakly connected).

Given a planning problem P = (M0,A, φg), a planning graph G = (N,M,E, n0)
for P is one in which M(n0) = M0 and where every edge (n,m) from an or-
node to an and-node has E(n,m) ∈ A. The initial planning graph for P is
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Figure 3.3: Saturated planning graph for P4

G0 = ({n0}, ∅, ∅, n0) where M(n0) = M0. For n ∈ N and E ∈ A, when E is
applicable inM(n) and no edge leaving n is labelled by E , we say that n is valid
(for expansion) with E .

Definition 3.31. Let a planning graph G = (N,M,E, n0) for P = (M0,A, φg)
be given. For n ∈ N and E ∈ A s.t. n is valid for expansion with E , the graph
expansion rule extends G by:

1. Adding a new node and-node m to M with M(m) = M(n) ⊗ E , and
adding the edge (n,m) with E(n,m) = E .

2. For each information cellM′ inM(m):

(a) If there is an or-node n′ ∈ N s.t. M(n′) -M′, then add the edge
(m,n′),

(b) Otherwise add a new or-node n′ to N with M(n′) = M′ and add
the edge (m,n′).

When G has been expanded by the above rule and no choice of n and E is valid
we say that G is saturated.

Note that a saturated planning graph is finite, because there are finitely many
non-totally bisimilar information cells and finitely many event models in the
action library. Both Definition 3.30 and 3.31 are closely connected to their
counterparts in Section 2.4, and as such planning graphs are a natural develop-
ment of planning trees. A key difference is that no two or-nodes in a planning
graph are bisimilar as a consequence of (2.a) in the graph expansion rule. This
was handled differently using blocking conditions in the previous. Less rele-
vant is that we, for simplicity, define a planning graph as saturated once every
reachable information cell of the planning problem has been expanded.
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Figure 3.4: Saturated planning graph for P2
ext, cycle indicated with thick arrows.

Example 3.32. We’ve illustrated a saturated planning graph for P4 in Figure
3.3. As the graph expansion rule is applied, we check in (2.a) for each informa-
tion cell resulting from the product update, whether the planning graph already
contains an or-node whose label is bisimilar to the information cell. The effect
is that we only add 6 or-nodes to the planning graph, which is in stark contrast
to the F8 − 1 or-nodes we would add using planning trees and the tree expan-
sion rule. More generally, for Pk we have that the size of the saturated planning
graph is polynomial k. Observe that the graph is acyclic and each or-node has
either out-degree 1 or satisfies p6. Therefore if we consider the direct successors
(in a graph) as the counterpart to the children (in a tree), we can intuitively see
how a plan could be extracted in a manner similar to Definition 2.22.

Example 3.33. Consider the planning problem P2
ext, which modifies Pk by

adding an action err3. err3 is applicable in information cells satisfying p3, and
results in an epistemic model containing two information cells; one satisfying
exactly p2 and the other satisfying exactly p4. The saturated planning graph
for this problem is illustrated in Figure 3.4 (it should be clear how errk+1 for
Pkext would be similarly defined). The addition of err3 leads to a cycle (indicated
with thick arrows) in the saturated planning graph, so we might cycle between
information cells satisfying exactly p2 and p3 if we execute grow2 in the former
and err3 in the latter. At the same time, any solution to P2 is also a solution to
P2

ext as adding actions to the action library cannot make a problem unsolvable.
As the p3-node now has an outdegree of 2 it is however less obvious, in contrast
to Example 3.32, on which grounds we should preclude err3 from being part of
a solution.
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To handle the general case, we must be able to determine whether a planning
graph admits a solution when it is cyclic and the outdegree of or-nodes is
greater than 1. To this end we will look for an acyclic subgraph satisfying
certain criteria that guarantees the existence of a strong solution.

Definition 3.34. Let a saturated planning graph G = (N,M,E, n0) for P =
(M0,A, φg) be given. A solved subgraph of G for n′0 ∈ N is a subgraph G′ =
(N ′,M ′, E′, n′0) of G satisfying the following criteria.

C1 n′0 is the single source node (indegree is 0), and every node in G′ is reachable
from n′0,

C2 G′ is acyclic,

C3 For each n′ ∈ N ′: the outdegree of n′ is 0 if M(n′) |= φg (a goal node is a
sink), and otherwise the outdegree of n′ is 1 and this outgoing edge has
the same label as in G,

C4 For each m′ ∈ M ′: (m′, n′) ∈ E′ iff (m′, n′) ∈ E (outgoing edges of and-
nodes are exactly as in G).

We say that G is solved if there exists a solved subgraph of G for n0.

Observe that n′0 can be any or-node of the saturated planning graph. We also
require the following intuitive definition used in the results shown in Appendix
3.3.

Definition 3.35. Given a solved subgraph G′ = (N ′,M ′, E′, n′0), we define for
any node v′ of G′ its height h(v′) recursively by:

• If v′ ∈ N ′ andM(v′) |= φg then h(v′) = 0,

• If v′ ∈ N ′ andM(v′) 6|= φg, then h(v′) = h(m′) + 1 where m′ is the single
the direct successor of v′, and

• If v′ ∈ M ′, then h(v′) = max(h(n′1), . . . , h(n′k)) + 1 where n′1, . . . , n′k are
the direct successors of v′.

From C2 we have that a solved subgraph G′ is an acyclic subgraph G and so
G′ contains no paths of infinite length. C3 means we assign to each reachable
information cell (not satisfying the goal) a single action, whose expansion is
also contained in G′ by virtue of C4, hence G′ faithfully represents the graph
expansion rules applied when saturating G. Taking into account C1, G′ fully
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describes the actions an agent must take from the initial state in order to reach
a sink, regardless of what contingency arise during execution. In this sense a
solved subgraph contains all the information necessary in order to synthesise a
plan, and as such plays the same role as a planning tree whose root is solved.

3.3.2 Working with Planning Graphs

In showing correctness of the decision procedure we develop in Section 3.3.3, we
first show that notion of a solved planning tree coincides with that of a solved
subgraph.

Lemma 3.36. Let a planning problem P = (M0,A, φg) be given. There exists
a B2-saturated planning tree for P whose root is solved iff the saturated planning
graph G for P is solved.

Proof. Assume that we’re given a B2-saturated planning tree T for P such that
root(T ) is solved. We must show that the saturated planning graph for P is
solved. We outline how this is shown, with a full proof of this direction being
available in the proof of Lemma A.6 in Appendix A.2. The proof proceeds
by constructing from T a graph G′ which constitutes a solved subgraph of G
up to bisimilarity. The first step is pruning T so that it contains only solved
nodes, which implies that or-nodes in T have outdegree 0 if they satisfy φg and
otherwise they have outdegree 1. Starting from the leaves of T , we iteratively
move up the planning tree, extending G′ with the or-nodes and and-nodes
encountered with the proviso that no two bisimilar or-nodes are added to G′.
In this way, the children of any node we process in T are guaranteed to (at least)
have a bisimilar partner in G′, allowing us construct G′ so that the edges in T
are matched up to bisimilarity.

With a few modifications, we can map G′ to a subgraph of G which satisfies
C1 and C2. That this mapping satisfies C3 follows from the initial pruning of
T . Showing this mapping satisfies C4 is done on the basis that both the tree
expansion rule and graph expansion rule use the product update operation. This
implies the existence of a solved subgraph of G for P thereby concluding this
direction.

We only sketch the other direction, whose proof is conceptually more simple.
It is essentially the inverse of the procedure we gave above, that is, we take a
solved subgraph ofG, and from this construct a planning tree (up to bisimilarity)
whose root is solved. Assuming that we’re given a solved subgraph G′ of G, we
manipulate it by repeatedly splitting an or-node n whose indegree is greater
than 1, until no such n exists. When splitting a node, we add a new node n′
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whose label isM(n), and one incoming edge of n is modified so that it instead
points to n′. Below n′ we add a copy of the acyclic subgraph that has n as
its root. As G′ initially satisfies C2 we have that the split operation preserves
acyclicity. Furthermore, every sink of G′ remains a sink and the source is never
split as its indegree is 0. Therefore once every or-node in G′ has indegree at
most 1, it constitutes a planning tree (up to bisimilarity) whose root is the
root of G′, and whose leaves are the sinks in G′ meaning that each leaf satisfies
φg. Again, the correspondence between the graph expansion rule and the tree
expansion rule means this procedure in fact gives a B2-saturated planning tree
for P.

Having established the result above, we are still in need of a procedure for deter-
mining whether a saturated planning graph is solved. To this end, we adapt the
algorithm StrongPlan found in [Cimatti et al., 2003] to our setting. While
StrongPlan assumes a fully observable domain, the extension to partial ob-
servability is straightforward. Roughly speaking, StrongPlan starts from an
empty plan, and in each iteration of its main loop extends this plan by assigning
actions to states. There are two requirements for a state to be assigned an ac-
tion. First, a state is at most assigned one action (ensured by PruneStates).
Second, the action must guarantee that its outcomes are either goal states or
states for which an action has already been assigned (achieved using Strong-
PreImage). Keeping in mind these two requirements, we now introduce the
procedure SolvedSubgraph.

Definition 3.37. Let a saturated planning graph G = (N,M,E, n0) be given.
For any N ′ ⊆ N , we define the predicate Solved(m,G,N ′) ⇔ (∀(m,n) ∈ E :
n ∈ N ′).

Informally we have that Solved(m,G,N ′) holds if an action that produces m
is guaranteed to lead to one of the information cells in N ′. As such, Solved
serves to determine whether the second requirement mentioned above holds in
our setting, and is directly put to work in line 6 of SolvedSubgraph. The first
requirement is achieved in line 4 where we ignore any or-node already contained
in G′. The input of SolvedSubgraph is a saturated planning graph and a goal
formula.
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SolvedSubgraph(G = (N,M,E, n0), φg)

1 N ′ = {n ∈ N | M(n) |= φg}, M ′ = ∅, E′ = ∅
2 G′ = (N ′,M ′, E′)
3 while G′ is modified by the following
4 Nus = N \N ′ � Unsolved or-nodes
5 for each n ∈ Nus

6 if n has a direct successor m in G s.t. Solved(m,G,N ′) then
7 Add n, m, (n,m) and (m,n1), . . . , (m,nk) to G′

where and n1, . . . , nk are the direct successors of m in G.
� N ′,M ′, E′ of G′ are modified

8 return G′

The following result is oblivious to the actual cost of the operations in Solved-
Subgraph, meaning that we simply count the number of high-level steps de-
scribed. We rectify this shortcoming later when it becomes prudent to our
analysis.

Lemma 3.38. The number of steps used in SolvedSubgraph is polynomial
in |N |.

Proof. We count the number of iterations in the nested loop construction. For
each iteration starting at line 3, we have that the loop ends unless G′ is modified
in line 7. Each iteration modifying G′ adds at least one node in N to N ′.
Therefore the number of iterations modifying N ′ is at most the number of nodes
in N . Furthermore the loop in line 5 requires at most N iterations, and so line
7 is reached at most |N |2 times.

We will use Gi to denote the graph produced after i iterations of the loop in
line 3 of SolvedSubgraph. Observe that as SolvedSubgraph never removes
nodes, we have that Gi is a subgraph of Gi+1. The following result essentially
states that each or-node n∗ we add to G′ in line 7 can be composed with
subcomponents of G′ to form a solved subgraph of G for n∗.

Lemma 3.39. Given a saturated planning graph G = (N,M,E, n0) for P =
(M0,A, φg), and let Gi = (Ni,Mi, Ei). Further, let n∗ ∈ (N \ Ni) s.t. n∗ has
a direct successor m∗ in G with Solved(m∗, G,Ni), and where n1, . . . , ny ∈ Ni
denotes the direct successors of m∗ (see also Figure 3.5). If for each x s.t.
1 ≤ x ≤ y there exists a solved subgraph of Gi for nx, then there exists a solved
subgraph of G for n∗.

Proof. We form the graph G∗ that is indicated in Figure 3.5. We then show
that this graph satisfies the four criteria for being a solved subgraph of G for
n∗. A full proof is given when showing Lemma A.8 in Appendix A.2.
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Figure 3.5: Illustration of how G∗ as used in Lemma 3.39 is formed. Observe
that the node set of any of the composed graphs (except for their roots) may
overlap — not just H1 and H2.

We now show that any or-node added to G′ by SolvedSubgraph is solved,
which is the last result necessary in order to show correctness of the ensuing
decision procedure.

Lemma 3.40. Let a saturated planning graph G = (N,M,E, n0) for P =
(M0,A, φg) be given, and let G′ = SolvedSubgraph(G,φg). For each n ∈ N ,
there exists a solved subgraph Gs of G for n iff n belongs to G′.

Proof. We show first that if there exists a solved subgraph Gs of G for n, then
n belongs to G′. Let h(n) = 2j for j ≥ 0 denote the height of n in Gs according
to Definition 3.35, and assume towards a contradiction that n does not belong
to G′. We proceed by induction on j. For the base case j = 0 and so h(n) = 0,
meaning thatM(n) |= φg. In line 2 of SolvedSubgraph each node satisfying
φg is added to G′, and as nodes are never removed this contradicts that n does
not belong to G′.

For the induction step assume that h(n) = 2(j + 1) = 2j + 2. From C1 we
have that there is a path to every node in Gs from n, and so it must be that
every other node in Gs has height ≤ 2j + 1. By C3 we have that n has a single
direct successor m, and by C4 that m has n1, . . . , ny direct successors, each of
which therefore has height at most 2j. Therefore we can apply the induction
hypothesis to conclude that each n1, . . . , ny belong G′. By Lemma 3.38 we have
that SolvedSubgraph terminates, this means there is some i ∈ N s.t. each
n1, . . . , ny belong to Gi (the graph produced after i iterations of the loop in line
3). As we assume n does not belong to G′ it cannot belong to Gi either, hence
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n ∈ (N \Ni). But we now have n ∈ Nus and that n and its direct successor m
satisfy the conditions condition in line 6 of SolvedSubgraph, and so it follows
that n belongs to Gi+1, thus contradicting that n does not belong to G′.

Turning to the converse, we now show that if n belongs to G′, then there exists
a solved subgraph Gs of G for n. We proceed by induction on the number i
of iterations by the loop in line 3. For the base case assume that 0 iterations
have been made, which implies that n ∈ {n′ ∈ N | M(n′) |= φg}. Therefore
M(n) |= φg, and so ({n}, ∅, ∅, n) is a solved subgraph of G for n. For the
induction step assume that i + 1 iterations has been made. If n was added in
iteration ≤ i, then the induction hypothesis immediately gives that there exists
a solved subgraph for n. We can therefore assume that n was added in iteration
i + 1, meaning that n ∈ (N \ Ni). From line 6 it follows that n has a direct
successor m in G with Solved(m∗, G,Ni), and where n1, . . . , ny ∈ Ni are the
direct successors ofm∗. For 1 ≤ x ≤ y we have that nx was added in an iteration
≤ i, and so by the induction hypothesis there exists a solved subgraph Hx of
Gi for nx. This means we can apply Lemma 3.39 to conclude that there exists
a solved subgraph of G for n, thus concluding the induction step.

3.3.3 Deciding Whether a Solution Exists

We present an optimal decision procedure for the solution existence problem,
and show that this procedure is both sound and complete.

SolutionExists(P = (M0,A, φg))

1 Construct the initial planning graph G = ({n0}, ∅, ∅, n0) for P withM(n0) =M0.
2 Repeatedly apply the graph expansion rule until G is saturated, with the addition

that labels of or-nodes are bisimulation contracted.
3 Answer YES if n0 belongs to SolvedSubgraph(G,φg), otherwise answer NO.

In line 2 of SolutionExists we make sure that the labels of or-nodes in the
planning graph represent contraction-minimal information cells. Doing this in-
curs little overhead when constructing the saturated planning graph, and ensures
that the epistemic models are of reasonable size.

Theorem 3.41. SolutionExists is a sound and complete decision procedure
for the solution existence problem.

Proof. Soundness means that if SolutionExists(P) answers YES, then there
exists a solution to P. When n0 belongs to SolvedSubgraph(G,φg), then it
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follows from Lemma 3.40 that G is solved. By Lemma 3.36 we therefore have
that there exists a planning tree for P whose root is solved. Applying Theorem
2.24 it follows that there exists a solution to P as required. To show complete-
ness, assume that there exists a solution to P. By Theorem 2.25 this implies the
existence of B2-saturated planning tree for P whose root is solved. By Lemma
3.36 we therefore have that G is solved, and applying Lemma 3.40 it follows that
n0 belongs to SolvedSubgraph(G,φg). Therefore SolutionExists answers
YES as required.

We now make our analysis of the running time of SolutionExists more con-
crete, namely as a function of the size of the input planning problem. For a
planning problem P = (M0,A, φg) its size is given in the obvious way, viz.
|P| = |M0|+

∑
E∈A |E|+ |φg| (see Section 3.1.3 for more on the size of inputs).

Theorem 3.42. The solution existence problem is in 2EXP.

Proof. Given any planning problem P = (M0,A, φg) on P we show that the

running time of SolutionExists(P) is O(22ik

) where i = |P| and k is some
constant. From Lemma 3.11 the number of worlds in any contraction-minimal
information cell on P is at most 2|P |. As |M0| + |P | ≤ i this means any
information cell of an or-node in the saturated planning graph has size at most
O(2i).

We now consider the operations of the algorithm whose running time depends
on the size of the input, namely graph expansion and bisimulation contraction.
When applying the graph expansion rule we need to determine applicability, a
model checking task, and compute the product update. Important here is that
the size of any precondition and any event model is at most i. Using Proposition
3.15 and Proposition 3.16 and the fact that any information cell has size at
most O(2i), this means we can compute the application of any graph expansion
rule using time polynomial in 2i. For bisimulation contraction, we have by
Lemma 3.9 a simple characterization of bisimilar worlds in an information cell.
Therefore, a contraction-minimal model can be obtained by removing worlds
of an information cell until no two have the same label. From |M0| ≤ i and
the fact that or-nodes are bisimulation contracted immediately, computing the
bisimulation contraction of any information cell can be done in time polynomial
in 2i.

By definition of the graph expansion rule, no two or-nodes in the planning graph
are bisimilar and furthermore each or-node is expanded at most once for each
action in the action library. With the number of non-bisimilar information cells
on P being at most 22i

by Lemma 3.12, it follows that the number of or-nodes
in the saturated planning graph is at most 22i

. Moreover, since |A| ≤ i and
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each expansion requires time polynomial in 2i, this means there is a constant
k1 such that O(2(2i)k1

) is an upper bound on the time used for constructing the
saturated planning graph in line 2 of SolutionExists.

The initial computation of nodes satisfying φg (line 1 of SolvedSubgraph)
requires solving at most 22i

model checking tasks. The input of each task is a
contraction-minimal information cell of size at most O(2i) and a formula of size
at most i. The remaining steps of SolvedSubgraph can be computed in time
polynomial in the size of the saturated planning graph by Lemma 3.38, and
so there are at most 22i

such steps. From these facts and Proposition 3.15 it
follows that there is exists a constant k2 such that O(2(2i)k2

) is an upper bound
on the time required for computing line 3 of SolutionExists.

Consequently we have that the running time of SolutionExists(P) is

O(2(2i)k1
+ 2(2i)k2

)

. Letting k = max(k1, k2) this reduces to O(22ik

), and by Theorem 3.41 we
therefore have that the solution existence problem is in 2EXP.

It is worth pointing out that it is the number of propositions in P which is the
most significant factor in the asymptotic analysis of SolutionExists. More-
over, this analysis also reveals that it is the number of non-totally bisimilar
information cells that prevents a better upper bound on the running time of
SolutionExists. In fully observable planning problems we have that any
reachable information cell is a singleton. This means that the number of non-
totally bisimilar information cells for such planning problems is at most 2i by
Lemma 3.10. From these facts we can readily establish the following result.

Theorem 3.43. The solution existence problem for fully observable planning
problems is in EXP.

[Littman, 1997] shows that the solution existence problem for fully observable
automated planning problems is in EXP, and [Rintanen, 2004] shows the case of
2EXP membership under the assumption of partial observability. The member-
ship argument in [Littman, 1997] is by using results on the complexity of solving
MDPs [Condon, 1992], showing this to be polynomial in the number of states.
As a fully observable planning problem may induce an exponentially sized MDP,
this implies the solution existence problem is in EXP. A similar argument is
made in [Rintanen, 2004], though instead with reference to the algorithm in
[Cimatti et al., 2003].
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3.3.4 Non-Branching Problems

Recall that for a non-branching planning problem P, we have for any reachable
information cell of P that any action in the action library is non-branching
(see Definition 3.18). So if P is solvable, then a solution exists which is simply
a sequence of actions. However, this observation does not improve the upper
bound on SolutionExists, since the number of non-totally bisimilar reachable
information cells of P remains the same as in the case of branching problems —
we need another approach. At the same time, it might still be that the length of a
solution is (doubly) exponential in the size of P, subject to whether the planning
problem is fully or partially observable. Therefore, if the solution existence
problem had been a function problem (i.e. its output was required to be the
strong solution, not just YES or NO), we’d need to store these very large plans
and so had no hope of improving the upper bounds shown for SolutionExists.

We now sketch a non-deterministic procedure that decides the solution existence
problem for any partially observable and non-branching planning problem P =
(M0,A, φg) on P . Starting fromM0, ifM0 |= φg answer YES, otherwise non-
deterministically pick an applicable action E ∈ A, and compute the bisimulation
contraction ofM =M0 ⊗ E which is by definition an information cell. Repeat
this process until either M |= φg in which case the answer is YES, or 22|P |

non-deterministic choices have been made in which case the answer is NO.

This procedure is sound, for if the answer is YES then there is a solution to
P consisting of the sequence of actions chosen, each of which are applicable
and whose execution is guaranteed to result in an information cell satisfying
the goal. It is complete for the following reasons. A solution to this type of
planning problem can always be formulated as a sequence of actions, and there
are at most 22|P | non-bisimilar information cells on P by Lemma 3.12. Therefore
when a solution consists of more than 22|P | actions, it will necessarily reach two
bisimilar information cells. Since both applicability and the product update
operation are invariant under bisimulation (Corollary 3.7 and Lemma 3.8), this
means that for a given solution, removing a sequence of actions between any two
bisimilar information cells will also be a solution. Consequently, if P is solvable
then there exists a solution using at most 22|P | actions.

Theorem 3.44. The solution existence problem for non-branching and partially
observable planning problems is in EXPSPACE.

Proof. Given any partially observable and non-branching planning problem P =
(M0,A, φg) on P , and let i = |P|. We show that the procedure outlined above
requires no more than O(2i

k

) space for some constant k. At each step of the
computation we need to store a single contraction-minimal information cell, as
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well as the number of choices that have been made so far. By Lemma 3.11 we
have that a contraction-minimal information cell contains at most 2|P | worlds, so
as |P | ≤ i this requires at most O(2i) space. As in the proof of Theorem 3.42, we
can therefore compute applicability and the product update operation in time
polynomial in 2i, and so this also bounds the amount of space used. Using 2|P |

bits we can represent any integer up to 22|P | , meaning this is the number of bits
required to keep of track of how many choices have been made. Therefore the
procedure uses only O(2i

k

) space for some constant k, hence the procedure is
in NEXPSPACE and consequently in EXPSPACE by Savitch’s theorem. From
soundness and completeness of the procedure the result follows.

In the case of non-branching and fully observable planning problems, we need
only to repeat the above procedure until 2|P | non-deterministic choices have
been made as this is the number of non-bisimilar singleton information cells on
P (Lemma 3.10). Storing a singleton information cell requires no more than
O(i) space, and using |P | ≤ i bits we can keep track of how many choices have
been made. From this the following result is established as in the proof above
(NPSPACE = PSPACE by Savitch’s theorem), except that we must also require
actions to be static (preconditions and postconditions belong to LEL(P )) and
the goal formula to belong to LEL(P ). Otherwise the model checking task may
require time exponential in the size of the planning problem, which poses the
risk of violating the polynomial space bound. As discussed in Section 3.1.4,
if the PSPACE algorithm due [Aucher and Schwarzentruber, 2012] could be
modified to handle postconditions, the following result would be voided of these
requirements.

Theorem 3.45. The solution existence problem for non-branching and fully
observable planning problems is in PSPACE, if each action in the action library
is static and the goal formula is in LEL(P ).

The membership algorithm we sketch here is nondeterministic and uses substan-
tially less space than there are reachable information cells. The key insight upon
which this is based is due to [Bylander, 1994], where the solution existence prob-
lem for automated planning was shown to be in PSPACE. This insight was also
used in [Haslum and Jonsson, 1999] where automated planning problems with
partial observability and deterministic actions was shown to be in EXPSPACE.
[Bolander and Andersen, 2011] shows that the solution existence problem in the
single-agent case is decidable, though the exact complexity is not settled.

As mentioned above, the reason we can obtain better upper bounds is because
we’re working with a decision problem, and so need not store the entire plan.6

6Whether we do in fact achieve a better upper bound is subject to whether PSPACE ?
= EXP

and EXPSPACE ?
= 2EXP.
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Nonetheless, this approach is not completely without practical merit when plan-
ning and execution is interleaved. Say for instance an agent is given a partially
observable and non-branching planning problem that she must solve, and can
apply an EXPSPACE algorithm that decides the solution existence problem.
By picking an action applicable in the initial state, the agent can query the
algorithm and ask whether there exists a strong solution from the resulting
information cell. If so the agent can safely execute this action, as it will not
render her unable to solve the problem. By repeating this process (for the re-
sulting information cells) until the goal is reached, the agent need not store
the entire plan, and so is able to eventually reach a goal state using at most
space exponential in the size of the planning problem. This approach can of
course be generalized to using a constant number of actions when applying the
EXPSPACE algorithm.

3.4 Simulating Turing Machines

In the previous section we gave sound and complete decision procedures for the
solution existence problem, and further analyzed their worst-case case complex-
ity. Next on our agenda is to show that each of the four variants of the solution
existence problem we consider are among the hardest problems in their indi-
cated complexity class. This means we cannot hope to find better procedures
for the solution existence problem than those given above.

The computational complexity of automated planning problems has been ex-
tensively studied. [Bylander, 1994] shows the problem of determining whether
a solution exists to a classical planning problem is PSPACE-Complete. Adding
nondetermism makes the problem EXP-Complete as proved in [Littman, 1997],
and with partial observability we have EXPSPACE completeness due to [Haslum
and Jonsson, 1999]. Lastly, [Rintanen, 2004] shows that with both partial ob-
servability and nondeterminism the problem is 2EXP-Complete. Both [Littman,
1997] and [Haslum and Jonsson, 1999] establish their results by reductions to de-
cision problems known to be complete for their respective classes. The approach
of [Bylander, 1994] is more direct in that planning problems are constructed to
simulate the transitions of a polynomial space bounded DTM on a given input.

The most generic approach is found [Rintanen, 2004] (and is put on full dis-
play in [Rintanen, 2005]), where planning problems are constructed to simulate
DTMs and ATMs either with polynomial or exponential space bounds. The
two key insights of this work is that nondeterminism can be used to simulate
alternating computation, and that partial observability can be used to exponen-
tially increase the number of tape cells that can be represented in a state. What
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we present in this section is based on the same ideas, although of course cast
in the framework of epistemic planning using our notion of a strong solution.
Simulating Turing machines using epistemic planning problems is also done in
[Bolander and Andersen, 2011], where it is shown that the solution existence
problem is undecidable when using multi-agent DEL and taking plans to be
sequences of event models.

We proceed using the approach outlined at the end of Section 3.1.6. More
concretely, for each of the four types of planning problems we gave in Section
3.1.5 our modus operandi is as follows.

1. Define the relationship between a given configuration of a TM T and
an information cell, namely how the state, head and tape contents are
represented as an epistemic model.

2. Define how a transition of T from a configuration c to c′ can be simulated
by an action, so that the taking the product update of the information cell
representing c and said action results is the information cell representing
c′.

3. Show that T can make a transition in c exactly when there is an applicable
action in the information cell representing c.

4. Construct a planning problem which has a solution exactly when T accepts
σ without violating its resource bound.

Two prudent questions may be posed by the reader at this point. Firstly, why do
we not give a reduction to the planning problems formulated in [Rintanen, 2004],
instead of using similar techniques in showing hardness of our solution existence
problem? Secondly, how could things turn out to be any different considering
that we’re exactly dealing with planning problems that contain nondeterminism
and partial observability? We defer our rebuttal to Section 3.5, but invite the
impatient reader to look up the discussion before proceeding.

3.4.1 Non-branching and Fully Observable Problems

Theorem 3.46. The solution existence problem for non-branching and fully
observable planning problems is PSPACE-Complete.

Proof. Hardness follows from Proposition 3.50 and Proposition 3.52 (see below),
and membership from Theorem 3.45.
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This section is dedicated to showing Theorem 3.46. To this end we consider any
deterministic Turing machine T = (Q,Σ, δ, q0, l) running in polynomial space
p(n) on any input σ of length n.

As is our m.o. we start out by defining the relationship between configurations
and information cells. Let P be a set of propositional symbols, in which some
elements are, conveniently, symbolically identical to their intuitive counterpart
in T . We let P be given by

{q | q ∈ Q} ∪ {hi | 1 ≤ i ≤ p(n) + 1} ∪
{si | s ∈ (Σ ∪ {t}), 1 ≤ i ≤ p(n) + 1}

We call propositional symbols of the type q for state symbols, hi for head position
symbols and si for letter-position symbols. The number of symbols in P is
therefore |Q|+ (|Σ|+ 2) · (p(n) + 1), and so polynomial in p(n) and the size of
T . In what follows we implicitly take models to be defined on P and actions to
be members of LDEL(P ).

Let c = σ1qσ2 be a configuration of T where |σ1| = nl and |σ2| = nr. We define
Mc as a singleton epistemic model (on P ), whose single world satisfies q (the
state T is in) and hnl+1 (the position of the head). Furthermore, Mc satisfies
each symbol ti where nl + nr < i ≤ p(n) (unvisited tape cells contain blanks),
and finally the singleton epistemic model satisfies each letter-position symbol si
for which following condition holds.

(σ1(i) = s for 1 ≤ i ≤ nl) or (σ2(i− nl) = s for nl < i ≤ nl + nr)

This condition states that each letter-position symbol satisfied byMc are those
corresponding to the strings σ1 an σ2. Note that this definition is unambiguous,
because there is no overlap on the conditions of i (nor any overlap with ti).
The result is thatMc satisfies exactly the symbols corresponding to the state,
head position and tape contents as indicated by c (see also Example 3.47). We
nameMc the information cell associated with c. For brevity we often skip the
denomination and simply writeMc.

Moving on to the correspondence between transitions and actions, consider now
some δ(q, s) = {(q′, s′, d)}. For each i such that 1 ≤ i ≤ p(n) we define the action
stepq

′,s′,d
i,q,s as the singleton event model (E , e) (of LDEL(P )) with precondition and

postconditions given below (as usual, post(e)(p) = p for those p ∈ P that are
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not specified).

pre(e) = hi ∧ q ∧ si
post(e)(q) = > if q = q′ post(e)(q) = ⊥ otherwise
post(e)(q′) = >
post(e)(si) = > if s = s′ post(e)(si) = ⊥ otherwise
post(e)(s′i) = >
post(e)(hi) = ⊥

post(e)(hi−1) = > if d = L post(e)(hi+1) = > otherwise

Effectively, a single transition of T leads to p(n) actions in the planning problem
we construct.

Example 3.47. Figure 3.6 illustrates the relationship between configurations
and information cells, as well as that between transitions and actions. On
the top left is the configuration c = xyq1z (we omit blanks when specifying
configurations). On the bottom left is the singletonMc, and displayed below it
is a description of the propositional symbols that it satisfies. In this case we have
q1 is satisfied as this is the state of c, and h3 is satisfied as the machine is reading
cell number 3. For each combination of i ∈ {1, . . . , p(n)} and s ∈ (Σ ∪ {t}) we
have a letter-position symbol, meaning that x1, y2, z3,t4, . . . ,tp(n) all belong
to P . More generally, we can describe the tape contents for any configuration
(as well as describing information cells not corresponding to configurations).

For the Turing machine in this example we use δ(q1, z) = {(q2, z
′, R)} meaning

that c yields c′ = xyz′q2. The action simulating this transition is stepq2,z
′,R

3,q1,z
,

which we have illustrated at the bottom center of Figure 3.6. Here we list the
precondition of the action in the top part. The middle part indicates (using :=)
the postconditions of individual propositions, namely those propositions whose
truth value is changed. The lower part contains a subset of these symbols whose
truth value is unchanged. It is clear that this action is applicable inMc. What
is important here is that the head position 3 is fixed for this action (we define
p(n) actions for each transition). As we’re additionally given the letter to be
erased from tape (z), as well as the letter that is to be written (z′), we can
form the action so that the postcondition of z3 is ⊥ and the postcondition of
z′3 is >. The same applies to the head position symbols, where we’re given the
direction of the transition. For state symbols things are even simpler as these
are modified irrespective of the head position. As the truth value of every other
propositional symbol is unchanged, the result of the product update is therefore
the information cell associated withMc′ indicated at the bottom right.

Lemma 3.48. Let c = σ1qσ2 be a configuration of T with i = |σ1| + 1 ≤ p(n)
being the position of T ’s head, and where c yields c′ due to δ(q, s) = {(q′, s′, d)}.
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Figure 3.6: Illustration of how information cells are associated with configura-
tions, and the relationship between actions and transitions when simulating a
DTM running in polynomial space.

Then stepq
′,s′,d
i,q,s is applicable inMc, andMc ⊗ stepq

′,s′,d
i,q,s is the information cell

associated with c′.

Proof. See Lemma A.9 in Appendix A.3.

We now have the ingredients ready for constructing our target planning problem
P. The initial state is Mc0 , namely the information cell associated with the
starting configuration c0. For each transition δ(q, s) = {(q′, s′, R)} the action
library A contains actions stepq

′,s′,d
i,q,s for 1 ≤ i ≤ p(n). Finally, the goal formula

is given by

φg = ¬hp(n)+1 ∧
∨

{q∈Q|l(q)=acc}

q

meaning that the space bound must not be violated and that an accepting state
is reached. The number of actions is at most p(n) · |Q| · (|S|+ 1) and so we have
that P is polynomial in the size of T and p(n). By Proposition 3.19 it follows
that P is non-branching and fully observable.

We now give an auxiliary result. This we use next when we show that if the
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starting configuration of T is accepting, then there exists a solution to P; i.e.
the “if” part of Theorem 3.46.

Lemma 3.49. Let c = σ1qσ2 be a configuration of T with i = |σ1|+ 1 ≤ p(n),
and where c yields c′ due to δ(q, s) = {(q′, s′, d)}. Then Mc |=

r
stepq

′,s′,d
i,q,s

z

s
φ

iffMc′ |= φ.

Proof. Using Lemma 3.48 we have that stepq
′,s′,d
i,q,s is applicable in Mc and so

Mc |= 〈stepq
′,s′,d
i,q,s 〉>. Moreover, Mc ⊗ stepq

′,s′,d
i,q,s is isomorphic to the informa-

tion cell associated with Mc′ . Therefore Mc′ |= φ iff Mc ⊗ stepq
′,s′,d
i,q,s |= φ

iff Mc |= [stepq
′,s′,d
i,q,s ]φ by Lemma 2.16. Recalling Definition 2.11 we conclude

Mc |=
r
stepq

′,s′,d
i,q,s

z

s
φ iffMc′ |= φ.

Proposition 3.50. If the DTM T accepts σ without violating the space bound
p(n), then there exists a solution to the non-branching and fully observable plan-
ning P.

Proof. We must show that if c0 is accepting, then there exists a solution to P.
We strengthen this and show that if T is in a configuration c = σ1qσ2 which
is x-accepting and |σ1| + 1 ≤ p(n), then there is a plan π s.t. Mc |= JπKs φg,
whereMc is the information cell associated with c. As c0 = q0σ is x-accepting
for some x ∈ N, and the initial state isMc0 , this suffices to prove the result.

We prove this stronger claim by induction on x. If c is 0-accepting then l(q) =
acc and the head position is at most p(n) as T does not violate the space
bound. It follows thatMc |= q ∧ ¬hp(n)+1 and thereforeMc |= JskipKs φg thus
completing the base case. Assume for the induction step that c is (x + 1)-
accepting and i ≤ p(n). Then c yields c′ due to some δ(q, s) = {(q′, s′, d)} and
c′ is y-accepting for some y ≤ x. To see that the head position of c′ is at most
p(n), we have from T not violating the space bound that if i = p(n) then d = L.
From this and c′ being y-accepting we can apply the induction hypothesis and
conclude that Mc′ |= JπKs φg for some π. Using Lemma 3.49 it follows that
Mc |=

r
stepq

′,s′,d
i,q,s

z

s
(JπKs φg), henceMc |=

r
stepq

′,s′,d
i,q,s ;π

z

s
φg as required.

We now turn to the “only if” part necessary for Theorem 3.46; i.e. that if a
solution exists to P then the starting configuration of T is accepting. To this
end we first show that actions correspond to transitions, that is, if an action
is applicable in some information cell associated with a configuration, then the
configuration is not halting.

Lemma 3.51. Let c = σ1qσ2 be a configuration of T with i = |σ1| + 1 ≤ p(n)
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and s = σ2(1). If there is an action E ∈ A s.t. such that Mc |= JEKs φ, then
there is a successor configuration c′ of c, andMc′ |= φ.

Proof. For the information cell Mc associated with c we have that its single
world satisfies q, hi and si and no other state, head or letter-position symbols.
FromMc |= JEKs φ it follows that E is applicable inMc. There is only a single
combination in ({1, . . . , p(n)} × Q × S) that defines such an applicable action.
As E exists we must have a transition (q′, s′, d) ∈ δ(q, s) and so E = stepq

′,s′,d
i,q,s .

Therefore c is not halting, and has a successor configuration c′. Using Lemma
3.49 andMc |=

r
stepq

′,s′,d
i,q,s

z

s
φ, we concludeMc′ |= φ as required.

Proposition 3.52. If there exists a solution to the non-branching and fully
observable planning problem P, then the DTM T accepts σ without violating the
space bound p(n).

Proof. Assume there exists a π for P s.t. Mc0 |= JπKs φg. We must show this
to imply that c0 = q0σ is an accepting configuration and T does not violate its
space bound. Letting c = σ1qσ2 be a configuration of T s.t. |σ1|+ 1 ≤ p(n), we
will show the stronger result that if Mc |= JπKs φg, then c is accepting and no
further computation violates the space bound. We proceed by induction on the
length of π (cf. Theorem 2.25).

For the base case assume |π| = 1, meaning that either π = skip or π = E for
some E ∈ A. The case of Mc |= JskipKs φg means that l(q) = acc, hence c is
0-accepting, and as c is a halting configuration no further computation violates
the space bound. If π = E then we have Mc |= JEKs φg which by Lemma 3.51
means that c yields a configuration c′ s.t. Mc′ |= φg. As in the first case this
means c′ is 0-accepting and halting, hence c is 1-accepting. AsMc′ |= ¬hp(n)+1

the postcondition assigned to hp(n)+1 for E is ⊥. So if |σ1|+ 1 = p(n) then this
computation moved the head left, and so the space bound has not been violated.

For the induction step assume thatMc |= JπKs φg and |π| = m+1 form ≥ 1. No
plan has length 0, and so either π = if φ then π1 else π2, or π = π1;π2. We recall
the two claims shown in the proof of Theorem 2.25, stated here equivalently to
suit our needs. First if M |= Jif φ then π1 else π2Ks φg then M |= Jπ1Ks φg or
M |= Jπ2Ks φg, with both |π1| ≤ m and |π2| ≤ m (again, no plan has length 0).
Second, if |π1;π2| ≥ 2 and M |= Jπ1;π2Ks φg then there exists a plan E ;π′ s.t.
M |= JEKs (Jπ′Ks φg) and |π′| ≤ m.

For the case of π = if φ then π1 else π2 we have that Mc |= Jπ1Ks φg with
|π1| ≤ m or Mc |= Jπ2Ks φg with |π2| ≤ m. Either way we can immediately
apply the induction hypothesis, and have that c is accepting and no further
computation violates the space bound. In the case where π = π1;π2, there exists
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a π′ and some E s.t. Mc |= JEKs (Jπ′Ks φg) where |π′| ≤ m. By Lemma 3.51 this
means that c yields c′ s.t. Mc′ |= Jπ′Ks φg. To show that the computation from
c to c′ does not violate the space bound, consider the case of |σ1|+1 = p(n) and
assume towards a contradiction that the postcondition of E assigned to hp(n)+1

is >. From this it follows thatMc′ |= hp(n)+1 and so no action in A is applicable,
as actions are not defined for p(n)+1. Consequently π′ is equivalent to skip, but
then follows the falsity Mc′ |= hp(n)+1 ∧ (JskipKs φg), hence the postcondition
assigned to hp(n)+1 is ⊥. Therefore the head position in c′ is at most p(n).
From this and |π′| ≤ m we can apply the induction hypothesis to conclude that
c′ is x-accepting and no further computation from c′ violates the space bound.
Therefore c is (x+ 1)-accepting and no further computation from c violates the
space bound, thereby completing the induction step.

3.4.2 Branching and Fully Observable Problems

Theorem 3.53. The solution existence problem for branching and fully observ-
able planning problems is EXP-Complete.

Proof. Hardness is established from Proposition 3.57 and Proposition 3.60 since
APSPACE = EXP. Membership follows from Theorem 3.43.

To prove the above we tweak the construction of the previous section, which
allows us to simulate any alternating Turing machine T = (Q,Σ, δ, q0, l) running
in polynomial space p(n) on any input σ of length n. The intuition here is that
with actions having multiple basic events and where the epistemic relation is
the identity, we can simulate alternation by producing multiple information
cells that correspond to configurations. As a strong solution must work for any
outcome, this allows us to mimic the behaviour of an ATM in a universal state.
The trick of using branching actions for simulating alternation, and the modular
manner in which this can be done is due to [Rintanen, 2004].

We can keep P and the notion of an information cell associated with a configu-
ration c as in Section 3.4.1. What we need to change is the actions in the action
library, and when doing so we can even use the actions stepq

′,s′,d
i,q,s presented

above as building blocks. Recall that an existential configuration is accepting
if some successor configuration is accepting, and that a universal configuration
is accepting if every successor configuration is accepting. Therefore our move
to alternating computation requires us to construct actions so that this notion
of acceptance is replicated in any solution. For existential configurations we
therefore construct one action for each possible transition, whereas universal
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Figure 3.7: Illustration of how a universal transition is associated with an action
when simulating an ATM running in polynomial space.

configurations induce only a single action, but this action results in multiple
information cells.

Formally, we consider some δ(q, s) = {(q1, s1, d1), . . . , (qk, sk, dk)} with i s.t.
1 ≤ i ≤ p(n). If l(q) = ∃, then we define k individual actions

stepq
1,s1,d1

i,q,s , . . . , stepq
k,sk,dk

i,q,s

When instead l(q) = ∀, we define a single action

step∀i,q,s = stepq
1,s1,d1

i,q,s ] · · · ] stepq
k,sk,dk

i,q,s

where we use ] to signify the disjoint union of event models. In a fashion
similar to Example 3.47, we illustrate how actions simulate universal transitions
in Figure 3.7 (preconditions and postconditions of actions are omitted for visual
clarity).
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Lemma 3.54. Let c = σ1qσ2 be a configuration of T with i = |σ1| + 1 ≤ p(n)
(the head position), and where c has successor configurations c′1, . . . , c′k due to
δ(q, s) = {(q1, s1, d1), . . . , (qk, sk, dk)}.

• If l(q) = ∃ then for each j ∈ {1, . . . , k} we have that stepq
j ,sj ,dj

i,q,s is appli-

cable inMc, andMc ⊗ stepq
j ,sj ,dj

i,q,s is the information cell associated with
c′j, and

• If l(q) = ∀ then step∀i,q,s is applicable in Mc, and Mc ⊗ step∀i,q,s is the
disjoint union of the information cells associated with c′1, . . . , c′k.

Proof. The case of l(q) = ∃ is readily established using Lemma 3.48 for each j.
For l(q) = ∀ recalling the product update operation and noting that the triples
in {(q1, s1, d1), . . . , (qk, sk, dk)} are all pairwise different, the result follows from
Lemma 3.48.

We show some auxiliary results that we use later when proving that if T accepts
an input, then there exists a solution to the planning problem. First up is the
connection between existential configurations and actions, which is very close
to the connection we established in the case of non-branching actions.

Lemma 3.55. Let c = σ1qσ2 be a configuration of T with i = |σ1|+ 1 ≤ p(n),
l(q) = ∃, and where c has successor configurations c′1, . . . , c′k due to δ(q, s) =
{(q1, s1, d1), . . . , (qk, sk, dk)}. Then for each j ∈ {1, . . . , k} we have that Mc |=r
stepq

j ,sj ,dj

i,q,s

z

s
φ iffMc′j

|= φ.

Proof. As in the proof of Lemma 3.49, here by using Lemma 3.54 rather than
Lemma 3.48.

Connecting transitions for universal states to the plan language requires slightly
more elbow grease. For each (qj , sj , dj) ∈ δ(q, s) we define ψj = K(hl ∧ qj ∧ sjl ),
where l = i − 1 if dj = L, and l = i + 1 if dj = R. We have that ψj holds in
Mc′j

and that it does not hold in any other information cell in Mc ⊗ step∀i,q,s,
as the triples in {(q1, s1, d1), . . . , (qk, sk, dk)} are all pairwise different.

Lemma 3.56. Let c = σ1qσ2 be a configuration of T with i = |σ1|+ 1 ≤ p(n),
l(q) = ∀, and where c has successor configurations c′1, . . . , c′k due to δ(q, s) =
{(q1, s1, d1), . . . , (qk, sk, dk)}. If Mc′j

|= JπjKs φ for any j ∈ {1, . . . , k}, then
Mc |=

q
step∀i,q,s; if ψ1 then π1 else if · · · if ψk then πk

y
s
φ.
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Proof. By construction of ψj we have for any j ∈ {1, . . . , k} that Mc′j
|=

((ψ1 → Jπ1Ks φ) ∧ · · · ∧ (ψj → JπjKs φ)) ∧ (ψ1 ∨ · · · ∨ ψk). With this we can
use a derivation like that in the proof of Theorem 2.24 to conclude Mc′j

|=
K Jif ψ1 then π1 else if · · · if ψk then πkKs φ (we haveMc′j

|= φ⇔Mc′j
|= Kφ

asMc′j
is an information cell). Therefore asMc⊗ step∀i,q,s is the disjoint union

of eachMc′1
, . . . ,Mc′k

(Lemma 3.54), it follows from Lemma 2.16 that

Mc |=
[
step∀i,q,s

]
(K Jif ψ1 then π1 else if · · · if ψk then πkKs φ)

Furthermore step∀i,q,s is applicable since Mc |=
∨

1≤j≤k hi ∧ q ∧ si, so Mc |=〈
step∀i,q,s

〉
> and cf. Definition 2.11 we have as required:

Mc |=
q
step∀i,q,s; if ψ1 then π1 else if · · · if ψk then πk

y
s
φ

An important note is that ψj simply shows the existence of a branching formula
— it is not a part of the planning problem given below. If such a formula did
not exist the above result could not be established. Constructing our planning
problem P we let the initial stateMc0 and goal formula φg be as in Section 3.4.1.
The action library A contains the actions described above for each δ(q, s) =
{(q1, s1, d1), . . . , (qk, sk, dk)} subject to l(q). Both P and P are polynomial in
the size of T and p(n), and Proposition 3.20 implies P is branching and fully
observable.

Proposition 3.57. If the ATM T accepts σ without violating the space bound
p(n), then there exists a solution to the branching and fully observable planning
P.

Proof. We show that if T is in a configuration c = σ1qσ2 which is x-accepting
and |σ1| + 1 ≤ p(n), then there is a plan π s.t. Mc |= JπKs φg, where Mc is
the information cell associated with c. We proceed by induction on x, with
the base being immediate. Assume for the induction step that c = σ1qσ2 is
(x + 1)-accepting, and has successor configurations c′1, . . . , c′k. If l(q) = ∃ then
for some j ∈ {1, . . . , k} we have that c′j is y-accepting for some y ≤ x. The head
position of c′j is at most p(n) as the computation from c to c′j would otherwise
mean T violated the space bound. With this we apply the induction hypothesis,
and have that there is a plan πj s.t. Mc′j

|= JπjKs φg. Using Lemma 3.55 it

follows thatMc |=
r
stepq

j ,sj ,dj

i,q,s

z

s
(JπjKs φg), henceMc |=

r
stepq

j ,sj ,dj

i,q,s ;πj

z

s
φg

as required. If l(q) = ∀ then each c′1, . . . , c′k is y-accepting for some y ≤ x, and
the head position of each such successor configuration is at most p(n). By the
induction hypothesis this means there is a plan πj s.t. Mc′j

|= JπjKs φg for each
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j ∈ {1, . . . , k}. Using Lemma 3.56 it follows that

Mc |=
q
step∀i,q,s; if ψ1 then π1 else if · · · if ψk then πk

y
s
φg

as required. Assuming that c0 = qσ is an accepting configuration we have that
there exists a solution to P.

With the first direction of Theorem 3.53 being completed, next up is showing
that existence of a strong solution is a sufficient condition for the starting con-
figuration to be accepting. The following two results are analogues to Lemma
3.51, now in the context of alternating computation.

Lemma 3.58. Let c = σ1qσ2 be a configuration of T with i = |σ1| + 1 ≤ p(n)
and l(q) = ∃. If there is an action E ∈ A such that Mc |= JEKs φ, then c has a
successor configuration c′, andMc′ |= φ.

Proof. For the information cell Mc associated with c we have that its single
world satisfies q, hi and si and no other state, head or letter symbols. From
Mc |= JEKs φ it follows that E is applicable in Mc. As l(q) = ∃ this means
that for the combination (i, q, s) we have defined k actions corresponding to
δ(q, s) = {(q1, s1, d1), . . . , (qk, sk, dk)}, and these are the only actions applicable
inMc. Therefore E = stepq

j ,sj ,dj

i,q,s for some j ∈ {1, . . . , k}, and so c yields c′j . It

follows from Lemma 3.55 andMc |=
r
stepq

j ,sj ,dj

i,q,s

z

s
φ thatMc′j

|= φ.

Lemma 3.59. Let c = σ1qσ2 be a configuration of T with i = |σ1| + 1 ≤ p(n)
and l(q) = ∀. If there is an action E ∈ A such that Mc |= JEKs φ, then c has
successor configurations c′1, . . . , c′k, andMc′j

|= φ for each j ∈ {1, . . . , k}.

Proof. From the same line of reasoning as in the previous proof we can assume
that some step∀i,q,s is the single applicable action Mc, since l(q) = ∀. From
Lemma 3.54 it follows that Mc ⊗ step∀i,q,s is the disjoint union of information
cells associated with c′1, . . . , c′k, and sinceMc⊗ step∀i,q,s |= φ we have by Lemma
2.16 thatMc′j

|= φ for each j ∈ {1, . . . , k}.

Proposition 3.60. If there exists a solution to the branching and fully observ-
able planning problem P, then the ATM T accepts σ without violating the space
bound p(n).

Proof. Assuming that there exists a solution π for P s.t. Mc0 |= JπKs φg, we
must show that c0 is an accepting configuration and T does not violate its space
bound. Let Mc be the information cell associated with some configuration
c = σ1qσ2 of T , with i = |σ1| + 1 and i ≤ p(n). We show the stronger result,
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that ifMc |= JπKs φg, then c is accepting and no further computation violates
the space bound. This is by induction on the length of π.

For the base case |π| = 1 and we have either π = skip or π = E for some E ∈ A.
If Mc |= JskipKs φg then Mc |= φg, hence l(q) = acc and c is 0-accepting. If
Mc |= JEKs φg we have either l(q) = ∃ or l(q) = ∀ as actions are not defined for
halting states. When l(q) = ∃ it follows from Lemma 3.58 that c yields some c′
s.t. Mc′ |= φg. Therefore c is 1-accepting as it has a successor configuration c′
which is 0-accepting. When l(q) = ∀ we apply Lemma 3.59 and have that c has
successor configurations c′1, . . . , c′k s.t. Mc′j

|= φg for j ∈ {1, . . . , k}. Therefore
each c′j is 0-accepting and hence c is 1-accepting. As in the proof of Proposition
3.52, any information cell satisfying φg cannot satisfy hp(n)+1, and so the space
bound of T is not violated.

For the induction step assume that |π| = m+ 1. As in the proof of Proposition
3.52 we have for π = if φ then π1 else π2 thatMc |= Jπ1Ks φg for |π1| ≤ m or that
Mc |= Jπ2Ks φg for |π2| ≤ m, so applying the induction hypothesis immediately
gives that c is accepting and no further computation violates the space bound.
Moreover, for π = π1;π2 we may assumeMc |= JEKs (Jπ′Ks φg) where |π′| ≤ m.
If l(q) = ∃ it follows from Lemma 3.58 that c has some successor configuration
c′ with Mc′ |= Jπ′Ks φg. As |π′| ≤ m we can apply the induction hypothesis
to conclude that c′ is x-accepting for x ∈ N and thus c is (x + 1)-accepting.
When l(q) = ∀ we have from Lemma 3.59 that c has successor configurations
c′1, . . . , c

′
k s.t. Mc′j

|= Jπ′Ks φg for each j ∈ {1, . . . , k}. As |π′| ≤ m we can apply
the induction hypothesis and have that each c′j is xj-accepting for some xj ∈ N,
hence c is (xmax + 1)-accepting where xmax = max(x1, . . . , xk).

Showing that no further computation from c violates the space bound is for
l(q) = ∃ exactly as in the proof of Proposition 3.52, viz. using proof by con-
tradiction. The same applies to l(q) = ∀, where by assuming that the head
position of any c′j is such that Mc′j

|= hp(n)+1 we derive the contradiction
Mc′j

|= hp(n)+1 ∧ (JskipKs φg).

3.4.3 Non-branching and Partially Observable Problems

Next up are planning problems with partial observability, and for this we turn
to Turing machines running in exponential space. As noted previously, when we
later make the move from DTMs to ATMs, we can reuse the above approach for
simulating alternation. First up however, is showing how configurations with
exponentially many letters on the tape can be represented.
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We let T = (Q,Σ, δ, q0, l) be a deterministic Turing machine running in expo-
nential space e(n) on any input σ of length n. Adding partial observability
allows us to use actions whose epistemic relation is not the identity. In fact we
only need such actions for some initial steps; actions for simulating transitions
are still singletons. In effect we now have non-singleton information cells at
our disposal, and this allows us to encode an entire configuration, including the
exponentially in n sized tape, as a single information cell. In the presentation
that follows, we do not rely on the notions developed in Section 3.4.1 and Sec-
tion 3.4.2, even though we for convenience use some overlapping notation. The
result we’re after first is this.

Theorem 3.61. The solution existence problem for non-branching and partially
observable planning problems is EXPSPACE-Complete.

Proof. Hardness follows from Proposition 3.66 and Proposition 3.67. Member-
ship follows from Theorem 3.44.

We’ll be using two ideas that we credit [Rintanen, 2004]. First is the use of
propositional symbols as bit encodings of the head position, and further giving
each world a distinct identifier, which allows succinct actions to faithfully sim-
ulate transitions (Rintanen does not use an identifier per say, rather he keeps
track of a watched tape cell randomly chosen at the start of plan execution).
Here our construction is very similar. Second is the use of partial observabil-
ity to represent exponentially many possibilities. Here our construction differs,
because our model of observation is unlike that of [Rintanen, 2004], and so we
do not have the option of succinctly specifying an initial state that contains ex-
ponentially many possibilities. We overcome this by employing a bootstrapping
procedure.

The first component of the simulation is to show how configurations and infor-
mation cells correspond. We will use b = dlog2(e(n) + 1)e, which is enough bits
to represent any integer between 1 and e(n) + 1. Note that b is polynomial in
n. We let P be the following set of symbols.

{q | q ∈ Q} ∪ {s | s ∈ (Σ ∪ {t})} ∪
{hi | 1 ≤ i ≤ b} ∪ {idi | 1 ≤ i ≤ b} ∪
{initi | 0 ≤ i ≤ b}

We say that propositional symbols of the type q is a state symbol, s is a letter
symbol, hi is a head position bit, idi is an identification bit and initi is an
initialization control symbol (we purposely introduce more control symbols than
we do bits).

The first thing to note is that unlike the case of polynomial space TMs, we
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do not form letter-position symbols for representing tape contents. Instead, we
will be giving each world in an information cell a unique identifier (the role of
identification bits), which represents its position on tape. Moreover, we also
encode the current position of the head using the head position bits, which
changes as the head moves. We use initi for bootstrapping the initial state of
the planning problem, a procedure which we return to later. For convenience
we write h to indicate the integer represented by h1, . . . , hb and similarly with
id for id1, . . . idb. Moreover, for any integer j between 1 and 2b, we use j1, . . . , jb
to denote its bit (0’s and 1’s) representation.

We’ll now formally show what the information cells we’re after look like (see
also Figure 3.8). Consider a configuration c = σ1qσ2 of T where |σ1| = nl and
|σ2| = nr. We define Mc = (W,∼, V ) on P as the information cell associated
with c. Here W = {wj | 1 ≤ j ≤ 2b} and ∼ is (by definition) the universal
relation onW ; i.e. our information cells contain 2b worlds. We give the valuation
V so that state symbols and head identification bits have the same truth value
in every world, as these are global properties of c. Further, each world is given
a distinct id to indicate a cell index as well as the symbol corresponding to the
letter at this particular cell index. For each world wj ∈W this means:

wj ∈ V (idi) if ji is 1 j is interpreted as an integer
wj ∈ V (hi) if (nl + 1)i is 1 nl + 1 is the position of the head
V (q) = W

V (q′) = ∅ for q′ ∈ (Q \ {q})

wj ∈ V (s) if


j ≤ nl and σ1(j) = s

j > nl, j ≤ nl + nr and σ2(j − nl) = s

j > nl + nr, j ≤ e(n) + 1 and s = t
for s ∈ (Σ ∪ {t})

V (initb) = W

The three cases for wj ∈ V (s) imply that wj is at most in one valuation of
s ∈ (Σ∪{t}), and that if j > e(n) + 1 we associate it with no symbol. We have
defined Mc so that it contains least one more world than there are tape cells,
which means that space bound violation is well-defined (detection follows from
the goal formula). As a technical quirk V (initb) = W is used to indicate that
bootstrapping has taken place.

Example 3.62. We illustrate an information cell associated with some config-
uration c = σ1qσ2 of T in Figure 3.8. We’ll let |σ1| + 1 = m be the position
of the head, and assume σ2(1) = x is currently read. This meansMc contains
a world wm whose id and h bit encodings are both equal to m. In accordance
with the discussion below this example, we simply write id = m and h = m to
indicate this. Also, wm satisfies the state symbol q as well as initb, and finally
it satisfies x. Say that x is also written on the cell of some other position o.
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q, initb

e(n) < id ≤ 2b

Figure 3.8: Illustration of an information cell associated with a configuration,
zooming in on two worlds. The information cell contains 2b worlds.

This means we have a world wo where still h = m, but instead id 6= m (since
o 6= m). As was the case for wm, we have that wo satisfies q, initb and x. In
totalMc contains 2b worlds, each with a distinct id. Moreover, worlds for which
id > e(n) + 1 are assigned no letter symbol.

We will be employing bit comparison and bit manipulation in the remainder.
While nothing more than boolean operations, we include how this is encoded
for the sake of completeness. For integers j, j′ we first introduce some typical
relations. We write j = j′ to abbreviate (j1 ↔ j′1 ∧ · · · ∧ jb ↔ j′b), j 6= j′ to
abbreviate ¬(j = j′), j > j′ to abbreviate ((jb ∧ ¬j′b) ∨ ((jb ↔ j′b) ∧ (jb−1 ∧
¬j′b−1)) ∨ · · · ∨ (((jb ↔ j′b) ∧ · · · ∧ (j2 ↔ j′2)) ∧ (j1 ∧ ¬j′1))), and finally j ≤ j′ to
abbreviate ((j = j′)∨¬(j > j′)). These formulas are polynomial in the size of b.
We also use formulas to encode integer incrementation and decrementation. For
1 ≤ i ≤ b we write post(e)(j) = j+1 to mean post(e)(ji) = ji ↔ ¬(j1∧· · ·∧ji−1)
(the empty conjunction is as usual equivalent to >). We do so similarly for
post(e)(j) = j − 1. As we noted at the end of Section 3.2, these operations
can be used to exponentially increase the number of nodes in our Fibonacci
construction.

If the initial configuration of T is c0 = q0σ, then Mc0 will be exponential in
the size of T . To avoid this we use a bootstrapping procedure, starting from
a singleton information cell Ms satisfying exactly init0. Ms is “blown up” so
that it contains 2b worlds, and then each world is assigned a letter symbol in
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ei:〈initi, {idi 7→ >, initi 7→ ⊥, initi+1 7→ >}〉

e′i:〈initi, {idi 7→ ⊥, initi 7→ ⊥, initi+1 7→ >}〉
booti

Figure 3.9: Action used for bootstrapping the planning problem.

accordance with the input σ. The procedure is controlled by initi, first using
the actions booti for 0 ≤ i < b given in Figure 3.9. Then using the action finalize
which is a singleton event model (E , ef ), where:

pre(ef ) = initb ∧
∧
q∈Q
¬q

post(ef )(q0) = >
post(ef )(t) = (n < id) ∧ (id ≤ e(n) + 1)

∀s ∈ Σ : post(ef )(s) =
∨

{j | σ(j) = s,

1 ≤ j ≤ n}

(id = j)

With this we have a method for transforming a singleton initial state into the
information cell associated with the starting configuration, which is formally
stated as follows.

Lemma 3.63. IfMc0 |= φ, thenMs |= Jboot0; . . . ; bootb−1; finalizeKs φ.

Proof. Ms satisfies init0, and as each booti results in initi+1 being true in
every world these actions are sequentially applicable. finalize is applicable as
bootb−1 results in initb being satisfied and no q ∈ Q holds. The information
cell Ms ⊗ boot0 ⊗ · · · ⊗ bootb−1 contains 2b worlds, each having a distinct id
between 1 and 2b. Therefore finalize assigns truth in accordance with c0, and so
Ms ⊗ boot0 ⊗ · · · ⊗ bootb−1 ⊗ finalize is exactly the information cell associated
withMc0 . From this and Lemma 2.16 we can readily derive the conclusion.

Importantly, none of the bootstrapping actions are applicable in an information
cell associated with a configuration of T , so this is a true initialization procedure.

Turning now to actions for representing transitions, consider some δ(q, s) =
{(q′, s′, d)}. We define the action estepq

′,s′,d
q,s as the singleton event model (E , e)
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with:

pre(e) = initb ∧ q ∧ (h ≤ e(n)) ∧ K̂(s ∧ (h = id))

if q = q′ post(e)(q) = > o.w. post(e)(q) = ⊥
post(e)(q′) = >

if d = L post(e)(h) = h− 1 o.w. post(e)(h) = h+ 1

if s = s′ post(e)(s) = s o.w. post(e)(s) = (h 6= id) ∧ s
if s = s′ post(e)(s′) = s′ o.w. post(e)(s′) = (h = id) ∨ (h 6= id ∧ s′)

Consider now some information cell M on P . Intuitively pre(e) means that
estepq

′,s′,d
q,s is applicable inM whenM has been bootstrapped, q holds in every

world of M, the head is within the allotted part of the tape, and finally that
there is some world satisfying s and whose id equals the head’s position. Stating
the latter condition as e.g. (s∧ (id = h))∨ (id 6= h)) would allow changing state
and moving the head without updating any letter (when s 6= s′), and so the use
of the dual knowledge modality is vital here.

Example 3.64. Figure 3.10 illustrates the manner in which we simulate a
transition. On the top left we have some configuration c = σ1q1σ2 of T with
|σ1| + 1 = m and σ2(1) = x. We then consider that δ(q1, x) = {(q2, z

′, L)}
whose corresponding action is estepq2,z

′,L
q1,x . In the top part of the rectangle below

estepq2,z
′,L

q1,x we show its precondition. The precondition need not mention m,
rather using the dual modality it requires some world to satisfy x∧ (h = id). By
construction we have that every world ofMc satisfies h = m, and additionally
that each world is assigned a distinct id. Therefore exactly one world wm satisfies
h = m = id.

The middle part of the rectangle below estepq2,z
′,L

q1,x shows the postconditions of
propositions whose truth value may be modified. The bottom part mentions a
subset of the symbols whose truth value is unchanged. Here we update q1 and
q2 to reflect that this transition changes the state of T , and additionally h is
decremented by 1 to signify a move to the left. With x := (h 6= id)∧ x we state
that the action preserves the truth value of x in every world ofMc, except those
in which h = id where x becomes false. In other words, x is set false for wm
and its truth value is otherwise retained. Using z′ := (h = id) ∨ (h 6= id ∧ z′)
we similarly achieve that z′ is set true for wm, and the right-hand side of the
disjunct states that z′ retains its truth value in every other world.

Analogous to Lemma 3.48 we have the following.

Lemma 3.65. Let c = σ1qσ2 be a configuration of T with |σ1|+ 1 ≤ e(n), that
yields c′ due to δ(q, s) = {(q′, s′, d)}. Then estepq

′,s′,d
q,s is applicable in Mc, and

Mc ⊗ estepq
′,s′,d
q,s is the information cell associated with c′.
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Figure 3.10: Simulating a transition for a DTM running in exponential space.

Proof. See Lemma A.10 in Appendix A.3.

Using all of the above we’re now ready to give our planning problem P for
simulating T . The initial state is Ms, that is, the singleton information cell
used at the start of bootstrapping satisfying exactly init0. The action library
contains the bootstrapping actions boot0, . . . , bootb−1, finalize, and additionally
an action estepq

′,s′,d
q,s for each transition δ(q, s) = {(q′, s′, d)}. Finally the goal

formula is
φg =

∨
{q∈Q|l(q)=acc}

q ∧ (h ≤ e(n))

The planning problem and P are polynomial in the size of T and log(e(n)), and
Proposition 3.21 implies P is non-branching and partially observable.

Proposition 3.66. If the DTM T accepts σ without violating the space bound
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e(n), then there exists a solution to the non-branching and partially observable
planning problem P.

Proof. The proof is along the lines of that used when T runs in polynomial
space, namely by induction x, showing that for any configuration c that is x-
accepting, there exists a strong solution forMc. The addition here is the use of
Lemma 3.63 for additionally showing that any such plan can be prefixed with
boot0; . . . ; bootb−1; finalize to work from the initial stateMc. The result is fully
shown in the proof of Lemma A.12 in Appendix A.3.

For the other direction of Theorem 3.61 we have the following.

Proposition 3.67. If there exists a solution to the non-branching and partially
observable planning problem P, then the DTM T accepts σ without violating the
space bound e(n).

Proof. First we can show that the bootstrapping procedure must always take
place in a strong solution to P. Following this we proceed along the lines of the
proof of Proposition 3.52, that is, by induction on the length of a solution for
any information cell associated with a configuration. Again the goal formula
ensures the space bound of T is not violated if there exists a solution to P, and
further that c0 is an accepting configuration. For a full proof see Lemma A.14
in Appendix A.3.

3.4.4 Branching and Partially Observable Problems

Last on our agenda in the following result.

Theorem 3.68. The solution existence problem for branching and partially
observable planning problems is 2EXP-Complete.

Proof. Hardness is established from Proposition 3.70 and Proposition 3.71 since
AEXPSPACE = 2EXP. Membership follows from Theorem 3.42.

We can augment the constructions of the previous section so that alternating
computation can be simulated. Doing so is decidedly close to the techniques of
Section 3.4.2, where we lifted DTMs with a polynomial space bound to ATMs
with same bound. Therefore we shall only briefly describe the construction, and
place full proofs in the appendix.
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Without further ado, we let T = (Q,Σ, δ, q0, l) be any alternating Turing ma-
chine running in exponential space e(n) on any input σ of length n. We use
the same set of symbols P and same notion of information cell associated a
configuration as in Section 3.4.3. Furthermore, the actions presented in said
section are building blocks for the actions used to to simulate the transitions
(q1, s1, d1), . . . , (qk, sk, dk) in δ(q, s). When l(q) = ∃, then we define k individual
actions, viz. estepq

1,s1,d1

q,s , . . . , estepq
k,sk,dk

q,s . If instead l(q) = ∀ we define a single
action estep∀q,s = estepq

1,s1,d1

q,s ] · · · ] estepq
k,sk,dk

q,s .

Having read Section 3.4 up until this point, the only novelty is the existence
of branching formulas. Just as when we presented Lemma 3.56, we require the
existence of such formulas for solution to be able to distinguish the outcomes of
an estep∀q,s action. To this end define for each (qj , sj , dj) ∈ δ(q, s) the formula

ψj = K(K̂((id = hl) ∧ qj ∧ sj))

where hl = h − 1 if dj = L, and hl = h + 1 if dj = R, and we note that hl is
compared bitwise to id. We have that ψj holds inMc′j

and that it does not hold
in any other information cell inMc⊗ estep∀q,s, due to the fact that the triples in
{(q1, s1, d1), . . . , (qk, sk, dk)} are all pairwise different. As was the case when we
gave preconditions for our actions, the dual modality K̂ is important for defining
ψj , because it dictates the existence of a world satisfying (id = hl) ∧ qj ∧ sj .
We stress that ψj constructively shows the existence of a branching formula for
distinguishing the information cells of Mc ⊗ estep∀i,q,s — it is not part of the
reduction.

Lemma 3.69. Let c = σ1qσ2 be a configuration of T with |σ1| + 1 ≤ e(n),
l(q) = ∀, and where c has successor configurations c′1, . . . , c′k due to δ(q, s) =
{(q1, s1, d1), . . . , (qk, sk, dk)}. If Mc′j

|= JπjKs φ for any j ∈ {1, . . . , k}, then
Mc |=

q
estep∀i,q,s; if ψ1 then π1 else if · · · if ψk then πk

y
s
φ.

Proof. See the proof of Lemma A.17 in Appendix A.3.

The planning problem P we construct is as in Section 3.4.3 except for the action
library, meaning the initial state isMs (satisfies exactly init0) and the goal is
φg =

∨
{q∈Q|l(q)=acc} q ∧ (h ≤ e(n)). The action library A contains the boot-

strapping actions boot0, . . . , bootb−1, finalize, and additionally for each δ(q, s) =

{(q1, s1, d1), . . . , (qk, sk, dk)}, the k actions estepq1,s1,d1q,s , . . . , estepq
k,sk,dk

q,s if l(q) =

∃, or the action estep∀q,s if l(q) = ∀. We have that P and P are polynomial in
the size of T and log(e(n)).

Proposition 3.70. If the ATM T accepts σ without violating the space bound
e(n), then there exists a solution to the branching and partially observable plan-
ning problem P.
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Proof. See the proof of Lemma A.18 in Appendix A.3.

Proposition 3.71. If there exists a solution to the branching and partially
observable planning problem P, then the ATM T accepts σ without violating the
space bound e(n).

Proof. See the proof of Lemma A.21 in Appendix A.3.

3.5 Conclusion and Discussion

In this chapter we took at closer look at the computational complexity of condi-
tional epistemic planning as propagated in Chapter 2, namely by investigating
the decision problem of whether a strong solution exists to a planning problem.
Our first step was to illustrate that using the StrongPlan algorithm for this
purpose was infeasible. We then took the natural step and introduced planning
graphs as an alternative to planning trees, subsequently showing that the notion
of a solved planning tree corresponds to that of a solved planning graph. Our
results were with regards to four types of planning problems, separated by the
level of observability (partial or full) and whether or not actions were branching.
We gave the procedure SolutionExists for optimally deciding the solution ex-
istence problem in the case of branching planning problems. For non-branching
planning problems, where a solution can always be found that is sequential, we
could improve the upper bound of the corresponding solution existence problem.
Having shown membership, we proceeded to construct epistemic planning prob-
lems that simulated Turing machines, and used this to show that each of the
four variants of the solution existence problem were complete for their respective
complexity class. The results are summarized in Figure 3.11, and we note that
along the way we used insights that must be credited [Bylander, 1994, Rintanen,
2004].

We now return to the two prudent questions mentioned at the beginning of
Section 3.4. Our sincere answer as to why we have not presented a reduction
from the plan existence problem of [Rintanen, 2004] to our solution existence
problem here is simply that we have not been able to find one that works in the
general case. Because the complexity classes we deal with are all closed under
polynomial-time reductions, we have however established that a reduction exist
in both directions. The two reductions that would be interesting and natural
would allow for transforming operators (as given in [Rintanen, 2004, Definition
2]) to event models and event models to operators.

From operators to event models the issue is that an operator may be very
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Partial Observabil-
ity

Branching Complexity Class

No No PSPACE (Theorem 3.46)
No Yes EXP (Theorem 3.53)
Yes No EXPSPACE (Theorem 3.61)
Yes Yes 2EXP (Theorem 3.68)

Figure 3.11: Summary of complexity results for the solution existence problem;
right-most column indicates the problem is complete for the given class. The
result for full observability and non-branching planning problems assumes static
actions and that the goal is a member of LEL(P ).

succinct, that is, the effect of one operator may produce exponentially many
states. We could likely overcome this in a natural way, by adding sequential
composition and nondeterministic union to LDEL(P ) (cf. [van Ditmarsch et al.,
2007]), which would allow us the same succinctness of representation when using
event models. From event models to operators the problems are more dire. We
model what can be observed by virtue of the information cells that result from a
product update operation. In this sense each such information cell corresponds
to some kind of observation. In Rintanen’s framework, partial observability is
handled by letting branching formulas be propositional formulas over a given
set of observation variables [Rintanen, 2004, Definition 5]. We therefore need
to find an operator and a set of observation variables, so that following the
application of said operator, a branching formula can precisely distinguish the
outcomes that do not belong to the same information cell. This we have not
been able to do.

The ways in which our simulation of Turing machines differs from Rintanen’s
provides some insights into the differences of the two frameworks. The succinct-
ness of operators is superfluous for simulating transitions, and so we do not run
into trouble when using event models for this purpose. On the other hand, the
move to partial observability requires us to employ a bootstrapping procedure,
in order for information cells to encode exponentially sized tapes. Rintanen
achieves this by giving an initial state formula that effectively describes expo-
nentially many states.

The second question was how our results could have been any different, consid-
ering we’re dealing solely with planning for a single agent. What we have shown
is that single-agent conditional epistemic planning does capture the spectrum of
automated planning (complexity wise), ranging from classical planning to non-
deterministic planning with partial observability. We see this as a feature of the
conditional epistemic planning framework, confirming that event models ade-
quately capture operators, at least in terms of the types of planning problems
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they can describe (cf. discussion of succinctness above). That this need not be
the case is exemplified in the “KBPs as Plans” approach of [Lang and Zanuttini,
2013]. Here an action cannot be both fully observable and branching, meaning
that the class of planning problems that are EXP-Complete is not captured.

Using the results in this chapter we can conclude that, for better or for worse,
the computational complexity associated with conditional epistemic planning
coincides with the results known from automated planning. In terms of asymp-
totic complexity, we need not be put off by our framework and surrender to the
Markovian route usually taken in automated planning. From a methodological
perspective we have illustrated that epistemic model theory is crucial in devel-
oping optimal decision procedures for the solution existence problem. While
the results from epistemic model theory that we have used are not particularly
sophisticated, they provide us with just what we need. We can keep the size of
an information cell down by computing its bisimulation contraction, and we can
put an upper bound on the number of distinct information cells we may reach.
In going beyond single-agent epistemic planning, notions from model theory are
likely to play an equally important role. Incidentally, it is exactly the model
theory of epistemic-plausibility models that we take to investigate in the ensuing
chapter.
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Chapter 4

Bisimulation for single-agent
plausibility models

This chapter is a replicate of [Andersen et al., 2013] which appers in the pro-
ceedings of the 26th Australasian Conference on Artificial Intelligence, 2013, in
Otago, New Zealand. In the following presentation a few minor corrections have
been made.
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Abstract

Epistemic plausibility models are Kripke models agents use to rea-
son about the knowledge and beliefs of themselves and each other.
Restricting ourselves to the single-agent case, we determine when
such models are indistinguishable in the logical language containing
conditional belief, i.e., we define a proper notion of bisimulation, and
prove that bisimulation corresponds to logical equivalence on image-
finite models. We relate our results to other epistemic notions, such
as safe belief and degrees of belief. Our results imply that there are
only finitely many non-bisimilar single-agent epistemic plausibility
models on a finite set of propositions. This gives decidability for
single-agent epistemic plausibility planning.

4.1 Introduction

A typical approach in belief revision involves preferential orders to express de-
grees of belief and knowledge [Kraus et al., 1990, Meyer et al., 2000]. This goes
back to the ‘systems of spheres’ in [Lewis, 1973, Grove, 1988]. Dynamic doxas-
tic logic was proposed and investigated in [Segerberg, 1998] in order to provide
a link between the (non-modal logical) belief revision and modal logics with
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explicit knowledge and belief operators. A similar approach was pursued in be-
lief revision in dynamic epistemic logic [Aucher, 2005, van Ditmarsch, 2005, van
Benthem, 2007, Baltag and Smets, 2008, van Ditmarsch and Labuschagne, 2007],
that continues to develop strongly [Britz and Varzinczak, 2013, van Benthem,
2011]. We focus on the proper notion of structural equivalence on (static) mod-
els encoding knowledge and belief simultaneously. A prior investigation into
that is [Demey, 2011], which we relate our results to at the end of the paper.
Our motivation is to find suitable structural notions to reduce the complexity of
planning problems. Such plans are sequences of actions, such as iterated belief
revision. It is the dynamics of knowledge and belief that, after all, motivates
our research.

The semantics of belief depend on the structural properties of models. To relate
the structural properties of models to a logical language we need a notion of
structural similarity, known as bisimulation. A bisimulation relation relates a
modal operator to an accessibility relation. Epistemic plausibility models do not
have an accessibility relation as such but a plausibility relation. This induces a
set of accessibility relations: themost plausible states are the accessible states for
the modal belief operator; and the plausible states are the accessible states for
the modal knowledge operator. But it contains much more information: to each
modal operator of conditional belief (or of degree of belief) one can associate a
possibly distinct accessibility relation. This begs the question how one should
represent the bisimulation conditions succinctly. Can this be done by reference
to the plausibility relation directly, instead of by reference to these, possibly
many, induced accessibility relations? It is now rather interesting to observe
that relative to the modal operations of knowledge and belief the plausibility
relation is already in some way too rich.

Example 4.1. The (single-agent) epistemic plausibility model on the left in
Figure 4.1 consists of three worlds w1, w2, and w3. p is only false in w2, and
w1 < w2 < w3

1: the agent finds it most plausible that p is true, less plausible
that p is false, and even less plausible that p is true. As p is true in the most
plausible world, the agent believes p. If we go to slightly less plausible, the
agent is already uncertain about the value of p, she only knows trivialities such
as p ∨ ¬p. The world w3 does not make the agent even more uncertain. We
therefore can discard that other world where p is true. This is the model in the
middle in Figure 4.1. It is bisimilar to the model on the left! Therefore, and
that is the important observation: having one world more or less plausible than
another world in a plausibility model does not mean that in any model with the
same logical content we should find a matching pair of worlds. This is evidenced
in the figure: on the left w3 is less plausible than w2, but in the middle no world
is less plausible than v2; there is no match.

1If s < t, we have s ≤ t and t 6≤ s.
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w1

p

w2

p

w3

p

↔ v1

p

v2

p

↔ u1

p

u2

p

u3

p

Figure 4.1: All three models are bisimilar. The models in the middle and on
the right are normal, the model on the left is not normal. An arrow w1 ← w2

corresponds to w1 ≤ w2. Reflexive edges are omitted. p means that p does not
hold.

Now consider retaining w3 and making it as plausible state as w1. This gives the
plausibility model on the right in Figure 4.1, where u1 and u3 are equiplausible
(equally plausible), written u1 ' u3. This model is bisimilar to both the left and
the middle model. But the right and middle one share the property that more or
less plausible in one, is more or less plausible in the other: now there is a match.
This makes for another important observation: we can reshuffle the plausibilities
such that models with the same logical content preserve the plausibility order.

In Section 4.2 we define the epistemic doxastic logic, the epistemic plausibil-
ity models on which it is interpreted, the suitable notion of bisimulation, and
demonstrate the adequacy of this notion via a correspondence between modal
equivalence and bisimilarity. The final sections 4.3, 4.4, and 4.5 respectively
translate our results to degrees of belief and safe belief, discuss the problematic
generalization to the multi-agent case, and demonstrate the relevance of our
results for epistemic planning.

4.2 Single-agent plausibility models and bisimu-
lation

4.2.1 Language, structures, and semantics

Definition 4.2 (Epistemic doxastic language). For any countable set of propo-
sitional symbols P , we define the epistemic-doxastic language LP by:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | Bϕϕ

where p ∈ P , K is the epistemic modality (knowledge) and Bϕ the conditional
doxastic modality (conditional belief). We use the usual abbreviations for the
other boolean connectives as well as for > and ⊥, and the abbreviation B for
B>. The dual of K is denoted K̂, and the dual of Bϕ is denoted B̂ϕ.
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We consider epistemic plausibility models as in [Baltag and Smets, 2008]. A
well-preorder on a set S is a reflexive and transitive relation ≤ on S such that
every non-empty subset has minimal elements. The set of minimal elements of
a subset T of S is given by:

Min≤T = {s ∈ T | s ≤ s′ for all s′ ∈ T}.

This is a non-standard notion of minimality, taken from [Baltag and Smets,
2008]. Usually a minimal element of a set is an element that is not greater than
any other element. On total preorders the two notions of minimality coincide.
In fact, using the definition of minimality above, any well-preorder is total: For
any pair of worlds s, t, Min≤{s, t} is non-empty, and therefore s ≤ t or t ≤ s.2
These well-preorders are the plausibility relations (or plausibility orderings),
expressing that a world is considered at least as plausible as another. This
encodes the doxastic content of a model.

We can define such epistemic plausibility models with the plausibility relation as
a primitive and with the epistemic relation as a derived notion. Alternatively, we
can assume both as primitive relations, but require that more plausible means
(epistemically) possible. We chose the latter.

Definition 4.3 (Epistemic plausibility model). An epistemic plausibility model
(or simply plausibility model) on a set of propositional symbols P is a tuple
M = (W,≤,∼, V ), where

• W is a set of worlds, called the domain.

• ≤ is a well-preorder on W , called the plausibility relation.

• ∼ is an equivalence relation on W called the epistemic relation. We re-
quire, for all w, v ∈W , that w ≤ v implies w ∼ v.

• V : W → 2P is a valuation.

For w ∈W we name (M, w) a pointed epistemic plausibility model, and refer to
w as the actual world of (M, w).

As we require that ≤-comparable worlds are indistinguishable, totality of ≤
gives that ∼ is the universal relation W ×W .

2A well-preorder is not the same as a well-founded preorder; e.g., y ≤ x, z ≤ x is a
well-founded preorder, but not a well-preorder, as z and y are incomparable. Well-founded
preorders are not necessarily total.
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Definition 4.4 (Satisfaction Relation). LetM = (W,≤,∼, V ) be a plausibility
model on P . The satisfaction relation is given by, for w ∈W , p ∈ P , ϕ,ϕ′ ∈ LP ,

M, w |= p iff p ∈ V (w)
M, w |= ¬ϕ iff notM, w |= ϕ
M, w |= ϕ ∧ ϕ′ iff M, w |= ϕ andM, w |= ϕ′

M, w |= Kϕ iff M, v |= ϕ for all v ∼ w
M, w |= Bψϕ iff M, v |= ϕ for all v ∈ Min≤JψKM,

where JψKM := {w ∈ W | M, w |= ψ}. We write M |= ϕ to mean M, w |= ϕ
for all w ∈W . Further, |= ϕ (ϕ is valid) means thatM |= ϕ for all modelsM,
and Φ |= ϕ (ϕ is a logical consequence of the set of formulas Φ) stands for: for
allM and w ∈M, ifM, w |= ψ for all ψ ∈ Φ, thenM, w |= ϕ.3

Example 4.5. Consider again the the models in Figure 4.1. The model on the
left is of the formM = (W,≤,∼, V ) with W = {w1, w2, w3} and ≤ defined by:
w1 ≤ w2, w2 ≤ w3, w1 ≤ w3 (plus the reflexive edges). The valuation V of the
model on the left maps w1 into {p}, w2 into ∅ and w3 into {p}. In all three
models of the figure, the formula Bp∧¬Kp holds, that is, p is believed but not
known.

4.2.2 Normal epistemic plausibility models and bisimula-
tion

The examples and proposal of Section 4.1 are captured by the definition of
bisimulation that follows after these preliminaries. First, given a plausibility
modelM = (W,∼,≤, V ) consider an equivalence relation on worlds defined as
follows:

w ≈ w′ iff V (w) = V (w′).

The ≈-equivalence class of a world is defined as usual as [w]≈ = {w′ ∈W | w′ ≈
w}. Next, the ordering ≤ on worlds in W can be lifted to an ordering between
sets of worlds W ′,W ′′ ⊆W in the following way:

W ′ ≤W ′′ iff w′ ≤ w′′ for all (w′, w′′) ∈W ′ ×W ′′.

Finally, the lifted ordering leads us to a formalization of normal models of Ex-
ample 4.1.

Definition 4.6 (Normal Plausibility Relation). Given a plausibility modelM =
(W,≤,∼, V ), the normal plausibility relation onM is the relation onW defined
by:

w � w′ iff Min≤[w]≈ ≤ Min≤[w′]≈.

3For an axiomatization of this logic see e.g. [Stalnaker, 1996].
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M is called normal if � = ≤. The normalisation of M = (W,≤,∼, V ) is
M′ = (W,�,∼, V ). As for <, we write w ≺ w′ for w � w′ and w′ 6� w.

Note that if u, v ∈ Min≤W
′ for some set W ′ then, by definition of Min≤, both

u ≤ v and v ≤ u. Hence, the condition Min≤[w]≈ ≤ Min≤[w′]≈ above is
equivalent to the existence of some minimal element of [w]≈ being ≤-smaller
than some minimal element of [w′]≈.

Lemma 4.7. Let w and w′ be two worlds in the normal model M = (W,�,∼
, V ). If w and w′ have the same valuation, they are equiplausible.

Proof. As w ≈ w′, we have [w]≈ = [w′]≈, and thus Min�[w]≈ = Min�[w′]≈. By
Definition 4.6 we have w � w′ and w′ � w, which is equivalent to w ' w′.

Example 4.8. Take another look at the models of Figure 4.1 (for reference, we
name them M1, M2 and M3). We want models M1 and M2 to be bisimilar
via the relation R given by R = {(w1, v1), (w3, v1), (w2, v2)} (see Section 4.1).
Usually, in a bisimulation, every modal operator has corresponding back and
forth requirements. For our logic of conditional belief there is an infinity of
modal operators, as there is an infinity of of conditional formulas. (Having
only unconditional belief Bϕ defined as B>ϕ is not enough, see Example 4.13.)
Instead, we define our bisimulation indirectly by way of the plausibility relation.
Example 4.1 showed that we cannot match ‘more plausible’ inM1 with ‘more
plausible’ inM2 using simply ≤. With ≤ as seen inM3 (the normalization of
M1) where ≤=�, we can.

Definition 4.9 (Bisimulation). Let plausibility modelsM = (W,≤,∼, V ) and
M′ = (W ′,≤′,∼′, V ′) be given. Let �,�′ be the respective derived normal
plausibility relations. A non-empty relation R ⊆ W × W ′ is a bisimulation
betweenM andM′ if for all (w,w′) ∈ R:

[atoms] V (w) = V ′(w′).

[forth�] If v ∈W and v � w, there is a v′ ∈W ′ s.t. v′ �′ w′ and (v, v′) ∈ R.

[back�] If v′ ∈W ′ and v′ �′ w′, there is a v ∈W s.t. v � w and (v, v′) ∈ R.

[forth∼] If v ∈W and w ∼ v, there is a v′ ∈W ′ s.t. w′ ∼′ v′ and (v, v′) ∈ R.

[back∼] If v′ ∈W ′ and w′ ∼′ v′, there is a v ∈W s.t. w ∼ v and (v, v′) ∈ R.

A total bisimulation betweenM andM′ is a bisimulation with domain W and
codomain W ′. For a bisimulation between pointed models (M, w) and (M′, w′)
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it is required that (w,w′) ∈ R. If a bisimulation between (M, w) and (M′, w′)
exists, the two models are called bisimilar and we write (M, w)↔(M′, w′). Two
worlds w,w′ of a modelM are called bisimilar if there exists a bisimulation R
betweenM and itself with (w,w′) ∈ R.

This definition gives us the bisimulation put forth in Example 4.8. As ∼ is the
universal relation on W , [forth∼] and [back∼] enforce that all bisimulations are
total.

If ∼ was not a primitive, we could instead have conditions [up-forth�] and [up-
back�] (that consider less plausible v and v′), in place of [forth∼] and [back∼].
This would define the same bisimulations.

4.2.3 Correspondence between bisimilarity and modal equiv-
alence

In the following we prove that bisimilarity implies modal equivalence and vice
versa. This shows that our notion of bisimulation is proper for the language and
models at hand. First we define modal equivalence.

Definition 4.10 (Modal equivalence). Given are modelsM = (W,≤,∼, V ) and
M′ = (W ′,≤′,∼′, V ′) on P with w ∈W and w′ ∈W ′. We say that (M, w) and
(M′, w′) are modally equivalent iff for all ϕ ∈ LP ,M, w |= ϕ iffM′, w′ |= ϕ. In
this case we write (M, w) ≡ (M′, w′).

Lemma 4.11. If two worlds of a model are ≈-equivalent, they are bisimilar.

Proof. Assume worlds w and w′ of a model M = (W,≤,∼, V ) have the same
valuation. Let R be the relation that relates each world of M to itself and
additionally relates w to w′. We want to show that R is a bisimulation. This
amounts to showing [atoms], [forth�], [back�], [forth∼] and [back∼] for the pair
(w,w′) ∈ R. [atoms] holds trivially since w ≈ w′. [forth∼] and [back∼] also
hold trivially, by choice of R. For [forth�], assume v ∈W and v � w. We need
to find a v′ ∈W such that v′ � w′ and (v, v′) ∈ R. Letting v′ = v, it suffices to
prove v � w′. Since w ≈ w′ this is immediate: v � w iff Min≤[v]≈ ≤ Min≤[w]≈
iff (because w ≈ w′) Min≤[v]≈ ≤ Min≤[w′]≈ iff v � w′. [back�] is proved
similarly.

Proposition 4.12. Bisimilarity implies modal equivalence.
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Proof. We will prove that for all formulas ϕ ∈ LP , if R is a bisimulation between
pointed models (M, w) and (M′, w′) thenM, w |= ϕ iffM′, w′ |= ϕ. The proof
is by induction on the structure of ϕ. The base case is when ϕ is propositional.
Then the required follows immediately from [atoms], using that (w,w′) ∈ R.
For the induction step, we have the following cases of ϕ: ¬ψ,ψ ∧ γ,Kψ,Bγψ.
We skip the first three, fairly standard cases and show only Bγψ.

Let R be a bisimulation between (M, w) and (M′, w′) withM = (W,≤,∼, V )
and M = (W ′,≤′,∼′, V ′). We only prove M, w |= Bγψ ⇒ M′, w′ |= Bγψ,
the other direction being proved symmetrically. So assumeM, w |= Bγψ, that
is, M, v |= ψ for all v ∈ Min≤JγKM. We need to prove M′, v′ |= ψ for all
v′ ∈ Min≤′JγKM′ . So let v′ ∈ Min≤′JγKM′ . Choose x ∈ Min≤{u ∈ W | u ≈
z and (z, v′) ∈ R for some z ∈W}. Let y ∈ JγKM be chosen arbitrarily, and
choose y′ with (y, y′) ∈ R (recall that any bisimulation is total). The induction
hypothesis impliesM′, y′ |= γ. Let y′′ ≈ y′ be chosen arbitrarily. Lemma 4.11
implies the existence of a bisimulation R′ between (M′, y′′) and (M′, y′). Since
M′, y′ |= γ, the induction hypothesis gives usM′, y′′ |= γ, that is, y′′ ∈ JγKM′ .
Since v′ was chosen ≤′-minimal in JγKM′ , we must have v′ ≤′ y′′. Since y′′ was
chosen arbitrarily with y′′ ≈ y′, we get v′ ≤′ Min≤′ [y

′]≈. We can now conclude
Min≤′ [v

′]≈ ≤′ v′ ≤′ Min≤′ [y
′]≈, and hence v′ � y′.

By [back�] there is a v such that (v, v′) ∈ R and v � y. By choice of x,
x ≤ Min≤[v]≈. Since v � y we now get: x ≤ Min≤[v]≈ ≤ Min≤[y]≈ ≤ y. Since
y was chosen arbitrarily in JγKM, we can conclude:

x ≤ u for all u ∈ JγKM. (4.1)

By choice of x, there is a z ≈ x with (z, v′) ∈ R. From z ≈ x, Lemma 4.11
implies the existence of a bisimulation R′′ between (M, x) and (M, z). Since R′′
is a bisimulation between (M, x) and (M, z), and R is a bisimulation between
(M, z) and (M′, v′), the composition R′′ ◦ R must be a bisimulation between
(M, x) and (M′, v′). Applying the induction hypothesis to the bisimulation
R′′ ◦ R, we can from v′ ∈ JγKM′ conclude x ∈ JγKM. Combining this with
(4.1), we get x ∈ Min≤JγKM. By original assumption this implies M, x |= ψ.
Applying again the induction hypothesis to the bisimulation R′′ ◦R, this gives
usM, v′ |= ψ, as required, thereby concluding the proof.

We proceed now to the converse, that modal equivalence with regard to LP
implies bisimulation, though first taking a short detour motivating the need for
conditional belief.

Example 4.13. The normal plausibility models (M1, w1) and (M2, v1) of Fig-
ure 4.2 are modally equivalent for the language with only unconditional belief.
We can show this by first demonstrating thatM1 andM2 have the same modal
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description Φ (a modal description Φ of a model M is a set of formulas such
that Φ |= ψ iffM |= ψ). We observe that the description of both models is

B(p1 ∧ ¬p2 ∧ ¬p3) ∧K((p1 ∧ ¬p2 ∧ ¬p3) ∨ (¬p1 ∧ p2 ∧ ¬p3) ∨ (¬p1 ∧ ¬p2 ∧ p3))

To see why, note that w1 and v1 are both the only minimal worlds in their
respective models, so belief in (description of the valuation) p1∧¬p2∧¬p3 will be
the same. Further, in both models all three constituent worlds are epistemically
possible, so K cannot distinguish either between the models (the disjunction
sums up the three different valuations). We then note that, as both w1 and v1

satisfy p1 ∧ ¬p2 ∧ ¬p3, (M1, w1) and (M2, v1) of Figure 4.2 must be modally
equivalent: any boolean formula must be a consequence of p1 ∧ ¬p2 ∧ ¬p3,
whereas any belief or knowledge formula evaluated in the points of these models
must be a model validity that is a consequence from the model description Φ.

On the other hand, (M1, w1) and (M2, v1) are not bisimilar. Pairs in the
bisimulation must have matching valuations, so the only option is the relation
{(w1, v1), (w2, v3), (w3, v2)}. But this does neither satisfy [forth�] nor [back�].

We do not want that these models are modally equivalent in, for example, a
dynamic epistemic language. Consider an agent learning ¬p1 from a public
announcement. This deletes w1 and v1 from their respective models. After this
announcement inM1, the agent believes p2. InM2 this is not the case. Here
the agent will believe p3. With conditional belief we can capture this distinction
already in the static language (M1 |= B¬p1p2, whileM2 6|= B¬p1p2).

w1

p1

w2

p2

w3

p3

M1 : v1

p1

v2

p3

v3

p2

M2 :

Figure 4.2: The models M1 and M2 of Example 4.13. For visual clarity, we
leave out false propositional variables.

Definition 4.14 (∆). Let two worlds w,w′ of a modelM = (W,≤,∼, V ) on P
be given where V (w) 6= V (w′). If there is a p ∈ V (w)−V (w′), then let δw,w′ be
such a p; otherwise, let δw,w′ = ¬q for some q ∈ V (w′)−V (w). Any such choice
of δw,w′ for a given pair w,w′ is called a propositional difference between w and
w′. If instead V (w) = V (w′), let δw,w′ = >. Finally, let ∆w =

∧
w′≺w δw,w′

be the conjunction of some propositional difference between w and each world
strictly more �-plausible than w (the empty conjunction when no such world
exist).

Continuing Example 4.13, we can choose ∆w2 = ¬p1. We then have that B̂∆w2p2

distinguishesM1 andM2 by evaluating belief on worlds no more plausible than
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w2 and v2 respectively. However, choosing ∆w2 = p2 would not distinguish,
so we add an additional disjunct for w3. Regardless of which propositional
differences are used in ∆w2

and ∆w3
, B̂∆w2

∨∆w3p2 distinguishes the models.
This is, of course, not sufficient for constructing distinguishing formulas in the
general case, but for our purposes of proving Proposition 4.16 it is enough.

Lemma 4.15. Let w and w′ be worlds of the model M = (W,≤,∼, V ) s.t.
w′ � w, and ϕ a formula of LP , s.t. M, w′ |= ϕ. ThenM, w |= B̂∆w∨∆w′ϕ.

Proof. In the following we abbreviate ∆w∨∆w′ by ∆w,w′ . We need to show that
∃u ∈ Min≤J∆w,w′KM, s.t. M, u |= ϕ. By construction of ∆w,w′ , we have that
for all s ∈ J∆w,w′KM, either s ≈ w, s ≈ w′ or (w � s and w′ � s). By choice
of w and w′, we have w′ � w, meaning that ∃w′′ ∈ Min≤J∆w,w′KM such that
w′ ≈ w′′. Lemma 4.11 then says that w′ and w′′ are bisimilar, and Proposition
4.12 that they are modally equivalent. ThusM, w′′ |= ϕ. This is the u we are
looking for, givingM, w |= B̂∆w,w′ϕ.

Proposition 4.16. On the class of image-finite models, modal equivalence im-
plies bisimilarity.

Proof. Let M = (W,≤,∼, V ) and M′ = (W ′,≤′,∼′, V ′) be two image-finite,
plausibility models on P , and define R ⊆ W ×W ′, such that (w,w′) ∈ R iff
(M, w) ≡ (M′, w′). We show that R is in fact a bisimulation of the kind defined
in Definition 4.9. Showing that R satisfies [atoms] is trivial. We skip the, less
trivial, [forth∼], and [back∼] and show the considerably more complicated case
of [forth�] ([back�] is similar) as follows: Assume (M, w) ≡ (M′, w′), v ∈ W
and v � w and show that assuming that for all v′ ∈ W ′, v′ � w′ implies
(M, v) 6≡ (M′, v′), leads to a contradiction. This then gives (M, v) ≡ (M′, v′)
and therefore (v, v′) ∈ R.

Let S′ = {v′ | v′ � w′} = {v′1, . . . v′n} be the successors of w′. This set is finite,
due to image-finiteness of the model. If v and no successor of w′ is modally
equivalent, there exists formulae ϕv

′
i , such thatM, v |= ϕv

′
i andM′, v′i 6|= ϕv

′
i .

Therefore,M, v |= ϕv
′
1 ∧ · · · ∧ϕv′n . For notational ease, let Φ = ϕv

′
1 ∧ · · · ∧ϕv′n .

WithM, v |= Φ, Lemma 4.15 givesM, w |= B̂∆w,vΦ (∆w,v is finite due to image-
finiteness of the models). Now,M′, w′ |= B̂∆w,vΦ (which we must have due to
modal equivalence) iff there exists a u′ ∈ Min≤J∆w,vKM′ such thatM′, u′ |= Φ.
By construction of Φ, no world v′i exists such that v′i � w′ andM′, v′i |= Φ, so
we must have w′ ≺ u′. There are two cases for (the weakest requirements for)
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this u′ to be minimal. Either (i) u′ ≤ w′ or (ii) w′ < u′ and w′ 6∈ J∆w,vKM′ .
If (i) is the case, we must have a world w′′, with w′′ ≈ w′ and w′′ < u′, or we
couldn’t have w′ ≺ u′. But w′′ < u′ means that u′ cannot be minimal unless
w′ 6∈ J∆w,vKM′ , because otherwise w′′ ∈ J∆w,vKM′ . So, for (i) and (ii) both, we
must have w′ 6∈ J∆w,vKM′ . This yieldsM′, w′ |= ¬∆w,v. But asM, w |= ∆w,v,
we get the sought after contradiction of (M, w) ≡ (M′, w′).

4.3 Degrees of belief and safe belief

In this section we sketch some further results that can be obtained for our
single-agent setting of the logic of knowledge and conditional belief. Apart
from conditional belief, other familiar epistemic notions in the philosophical
logical and artificial intelligence community are safe belief [Stalnaker, 1996] and
degrees of belief [Kraus et al., 1990, Spohn, 1988]. Our results generalize fairly
straightforwardly to such other notions. An agent has safe belief in formula ϕ
iff it will continue to believe ϕ no matter what true information conditions its
belief.4

Definition 4.17 (Safe belief). We extend the inductive language definition with
a clause 2ϕ for safe belief in ϕ. The semantics areM, w |= 2ϕ iff (M, w |= Bψϕ
for all ψ such thatM, w |= ψ).

Degrees of belief are a quantitative alternative to conditional belief. The zeroth
degree of belief B0ϕ is defeasible belief Bϕ as already defined. For M, w |=
B1ϕ to hold ϕ should be true in (i) all minimal worlds accessible from w; but
additionally, (ii) if you take away those from the equivalence class, in all worlds
that are now minimal. If we do this with the normal plausibility relation we
get what we want (otherwise, we run into the same problems as before — our
treatment is not compatible with e.g. Spohn’s approach [Spohn, 1988], that
allows ‘gaps’ (layers without worlds) in between different degrees of belief).

Min0
�[w]∼ := Min�([w]∼)

Minn+1
� [w]∼ := Minn�[w]∼ if Minn�([w]∼) = [w]∼

Minn+1
� [w]∼ := Minn�[w]∼ ∪Min�([w]∼ \Minn�[w]∼) otherwise

We now can define the logic of knowledge and degrees of belief.
4This definition is conditional to modally definable subsets, unlike [Baltag and Smets,

2008, Stalnaker, 1996] where it is on any subset. In that case safe belief is not bisimulation
invariant and increases the expressivity of the logic.
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Figure 4.3: A plausibility model wherein the two p worlds are not bisimilar,
because they have different higher-order belief properties.

Definition 4.18 (Degrees of belief). We replace the clause for conditional belief
in the inductive language definition by a clause Bnϕ for belief in ϕ to degree n,
for n ∈ N. The semantics are

M, w |= Bnϕ iff for all v ∈ Minn�([w]∼) :M, v |= ϕ

In an extended version of this paper we are confident that we will prove that the
logics of conditional belief and knowledge, of degrees of belief and knowledge,
and both with the addition of safe belief are all expressively equivalent.

4.4 Multi-agent epistemic doxastic logic

For a finite set A of agents and a set of propositional symbols P the multi-agent
epistemic-doxastic language LP,A is

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kaϕ | Bϕaϕ,

where p ∈ P and a ∈ A. Epistemic plausibility models are generalized similarly,
we now have plausibility relations ≤a and epistemic relations ∼a for each agent
a. For each agent the domain is partitioned into (possibly) various equivalence
classes, such that each class is a well-preorder. The single-agent results do not
simply transfer to the multi-agent stage. We give an example.

Example 4.19. Consider Figure 4.3. The solid arrows represent the plausibili-
ties for agent a and the dashed arrow for agent b. In our example, the partition
for a is {w0}, {w1, w2, w3}, whereas the partition for b is {w0, w1}, {w2}, {w3}.
Unlike before, the two p-states are not bisimilar, because in the state w1 agent
b is uncertain about the value of p but defeasibly believes p (there is a less
plausible alternative w0, whereas in state w3 agent b knows (and believes) that
p. In both worlds, of course, agent a still believes that p, but a distinguishing
formula between the two is now, for example, ¬Kbp ∧Bap, true in w1 but false
in w3.

It will be clear from Example 4.19 that we cannot, for each agent, derive a nor-
mal plausibility relation �a from a given plausibility relation ≤a by identifying
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worlds with the same valuation: w ≈a w′ iff V (w) = V (w′) and w ∼a w′ does
not work (worlds w1 and w3 in Example 4.3 satisfy different formulas). Some
strengthening guarantees that bisimilarity still implies modal equivalence. An
example is, using the above ≈a:

w ≈ w′ iff (for all agents a : w ≈a w′)
w �a w′ iff (Min≤a [w]≈ ≤a Min≤a [w′]≈)

Unfortunately we do not get that modal equivalence then implies bisimilarity.
The strongest possible approach is of course to require that [ w ≈ w′ iff (w,w′)
is a pair in the bisimulation relation ]. This works, but it is is rather self-
defeating. In due time we hope to find a proper generalisation in between these
two extremes.

4.5 Planning

In planning an agent is tasked with finding a course of action (i.e. a plan)
that achieves a given goal. A planning problem implicitly represents a state-
transition system, where transitions are induced by actions. Exploring this
state-space is a common method for reasoning about and synthesising plans. A
growing community investigates planning in dynamic epistemic logic [Bolander
and Andersen, 2011, Löwe et al., 2011, Aucher, 2012, Andersen et al., 2012], and
using the framework presented here we can in similar fashion consider planning
with doxastic attitudes. To this end we identify states with plausibility models,
and the goal with a formula of the epistemic doxastic language. Further we
can describe the dynamics of actions by using e.g. hard announcements or soft
announcements [van Benthem, 2007], or yet more expressive notions such as
event models [Baltag and Smets, 2008].

With the state-space consisting of plausibility models, model theoretic results
become pivotal to the development of planning algorithms. In general, we cannot
require even single-agent plausibility models (even on a finite set of propositional
symbols) to be finite. Also, normal plausibility models need not be finite —
obvious, as the ‘normalising’ procedure in which we replace ≤ by � does not
change the domain. Our definition of bisimulation has a crucial property in this
regard: By Lemma 4.11 the bisimulation contraction of a model will contain
no two worlds with the same valuation, hence any bisimulation minimal model
on a finite set of propositions is finite. Moreover, two bisimulation minimal
models are bisimilar exactly when they are isomorphic, and it follows that are
only finitely many distinct bisimulation minimal epistemic plausibility models.
With the reasonable assumption that actions preserve bisimilarity (this is the
case for the types of actions mentioned above), our investigations on the proper
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notion of bisimulation therefore allow us to employ a smaller class of models
in planning. This is a chief motivation for our work here, and an immediate
consequence is that determining whether there exists a plan for a plausibility
planning problem is decidable (see [Andersen et al., 2014]).

w0

p

w1

p

w2

p

w3

p

w4

p

· · ·

Figure 4.4: Uncontractable chain of p and ¬p-worlds.

It is remarkable that the approach of [Demey, 2011] to defining bisimulation for
epistemic plausibility models does not yield decidability of planning problems,
not even for single-agent models defined on a single proposition. It has, for
instance, that the model in Figure 4.4 consisting of an infinite ‘directed chain’ of
alternating p and ¬p worlds (a copy of the natural numbers axis) is bisimulation
minimal. In our approach the bisimulation minimal model would be the middle
one of Figure 4.1, regardless of the number of worlds. Though [Demey, 2011]
also shows that bisimilarity implies modal equivalence and vice versa (for image
finite models), this is not inconsistent with our results here. Another difference
between our approach and [Demey, 2011] lies in the semantics of safe belief.
There, safe belief is relative to any subset (see also Footnote 4). For a ‘directed
chain’ model, the safe belief semantics of [Demey, 2011] permits counting the
number of p and ¬p worlds. Such more expressive semantics naturally come at a
cost, namely having no finite bound on the size of minimal single-agent models.
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Chapter 5

Addendum to Bisimulation
for single-agent plausibility
models

Section 5.2 represents joint work between Mikkel Birkegaard Andersen,
Thomas Bolander, Hans van Ditmarsch and this author. This work was
conducted during a research visit in Nancy, October 2013, and constitutes
part of a joint journal publication not yet finalized. The presentation of
the results in Section 5.2 is solely the work of this author. The other parts
of this chapter are solely due to the author of this thesis.

In the previous chapter we presented a notion of bisimulation for single-agent
plausibility models, and showed it to correspond with modal equivalence for the
doxastic language containing conditional belief. We further presented semantics
for degrees of belief and safe belief, and briefly mentioned the role of model
theory in planning — this chapter expands on exactly these topics. In Section
5.1 we show that the notion of bisimulation in Definition 4.9 also corresponds
to modal equivalence for the doxastic language containing degrees of belief.
Following this, we use Section 5.2 to investigate the relative expressive power of
various doxastic languages, separated by which doxastic modalities are included.
We conclude on our findings in Section 5.3, and additionally discuss further
work.
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As we will consider different languages interpreted on plausibility models, we
start things off by giving them distinct names. The language LP as it was named
in Chapter 4 is from this point on referred to as LCP , as it adds the conditional
doxastic modality to the epistemic language. By LC,2P we denote the addition
of the safe belief modality 2 to LCP , and in the usual way we define the dual 3ϕ
as ¬2¬ϕ. The semantics of safe belief is given below, where we also spell out
the semantics of its dual for convenience.

M, w |= 2ϕ iff (M, w |= Bψϕ for all ψ ∈ LCP such thatM, w |= ψ)

M, w |= 3ϕ iff (M, w |= B̂ψϕ for some ψ ∈ LCP such thatM, w |= ψ)

Turning to our quantitative doxastic modality, we let LDP denote the epistemic
language with the addition of Bn, referred to as either the degree of belief
modality or quantitative doxastic modality. For some k ∈ N we let LD,kP ⊂ LDP
denote the language in which the maximum degree of the quantitative doxastic
modality is k.

5.1 Degrees of Belief

In this section we show how the quantitative doxastic modality matches up
against the notion of bisimulation given in Definition 4.9. First we establish some
results regarding the relationship between Minn� and the normal plausibility
relation. Next we apply these these results to show that the bisimulation found
Definition 4.9 corresponds to modal equivalence for LDP (see Definition 3.3) in
the typical sense.

5.1.1 Belief Spheres and the Normal Plausibility Relation

For this subsection we letM = (W,≤,∼, V ) denote a plausibility model and �
the normal plausibility relation of M. As ∼ is universal it is immediate that
[w]∼ = W for any w ∈ W . Therefore Minn�[w]∼ is exactly Minn�W , so for
notational simplicity we use the latter form exclusively. We refer to the set of
worlds Minn�W as (belief) sphere n, and accordingly for w ∈ Minn�W we say
that w is in (belief) sphere n. The reading of Bnϕ is that ϕ is believed to
degree n, where degrees should be determined in accordance with the normal
plausibility relation �. As the semantics are given in terms of Minn�, we must
show each belief sphere is in accord with �. By this we mean that there is
no world w in sphere n, such that any world v not in sphere n is at least as
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plausible as w; i.e. v � w. Having shown this (see Proposition 5.2), we have
another, equivalent, reading of Bnϕ, namely that ϕ is true in every world of
sphere n.

Lemma 5.1. Belief sphere n is a subset of belief sphere n+ 1.

Proof. Immediate from the recursive definition in Section 4.3.

Proposition 5.2. Any world in sphere n is strictly more plausible wrt. � than
any world not in sphere n.

Proof. Given worlds w, v ∈ W and any n ∈ N. We show that if w ∈ Minn�W
and v 6∈Minn�W , then w ≺ v. We proceed by induction on n. For the base case
assume that w ∈ Min0

�W and v 6∈ Min0
�W . By �-minimality we have that

w � u for all u ∈W , and so also w � v. Assuming towards a contradiction that
v � w, we have from �-transitivity that v � u for all u ∈ W . But this leads to
the contradiction that v ∈ Min0

�W , and so we conclude v 6� w. We now have
that w ≺ v, settling the base case.

Assume now that w ∈ Minn+1W and v 6∈ Minn+1
� W . By assumption sphere

n+1 must be a proper subset ofW , so we have that w ∈ (Minn�W ∪Min�(W \
Minn�W )), which gives rise to two cases. If w ∈ Minn�W then it follows from
Lemma 5.1 that v 6∈Minn�W , and so we have w ≺ v by applying the induction
hypothesis. Otherwise we have w ∈ Min�(W \ Minn�W ), and so from �-
minimality it follows that w � u for all u ∈ (W \Minn�W ). With our initial
assumption we have v ∈ (W \ (Minn�W ∪Min�(W \Minn�W ))), which implies
that v ∈ (W \ Minn�W ) and consequently w � v. As in the base case the
assumption of v � w leads to a contradiction, because we have v 6∈Min�(W \
Minn�W ). As v 6� w we can conclude that w ≺ v.

Recall that the definition of minimality gives us that if w ∈Min�W then w � v
for any v ∈ W . However, this only holds for sphere 0; consider for instance a
plausibility model with two worlds w, v where w ≺ v, we have v ∈Min1

�W but
at the same time v 6� w. The issue here is that sphere 1 is a proper superset of
sphere 0. For worlds that just made the cut into a sphere, we have the following
useful analogue.

Lemma 5.3. Given any n ∈ N and any w ∈ W . If w 6∈ Minn�W , then v � w

for any v ∈Minn+1
� W .

Proof. We consider two exhaustive cases for v. Either v ∈ (Minn+1
� W\Minn�W )

in which case v � w follows from minimality, since by assumption w ∈ (W \
Minn�W ). Otherwise v ∈ Minn�W , and so from w 6∈ Minn�W and Proposition
5.2 it follows that v ≺ w and hence also v � w.
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Lemma 5.4. Worlds that are �-equiplausible belong to exactly the same belief
spheres.

Proof. We show that if v � w and w � v, then for any n ∈ N, w ∈ Minn�W iff
v ∈ Minn�W . As � is a total preorder then by the assumption of v � w and
w � v, it follows by minimality that for any subset W ′ ⊆ W : w ∈ Min�W

′

iff v ∈ Min�W
′. Expanding the definitions of Minn�W and Minn�W we see

that both are unions of such �-minimal subsets of W , hence it follows that
w ∈Minn�W iff v ∈Minn�W .

Lemma 5.5. Worlds that have the same valuation belong to exactly the same
belief spheres.

Proof. Consider w, v ∈W where V (w) = V (v). Then w ≈ v and thusMin≤[w]≈ =
Min≤[v]≈. By Definition 4.6 we have w � v and v � w, hence applying Lemma
5.4 we arrive at the conclusion.

5.1.2 Bisimulation and Modal Equivalence for LDP

We now show that the notion of bisimulation is proper for plausibility models
when considering the language containing the quantitative doxastic modality.

Lemma 5.6. Let two plausibility models M = (W,≤,∼, V ), M′ = (W ′,≤′,∼′
, V ′) with w ∈ W and w′ ∈ W ′ be given, and let �, �′ denote their respective
normal plausibility relations. If R is a bisimulation between M and M′ where
(w,w′) ∈ R, then for any n ∈ N, w ∈Minn�W iff w′ ∈Minn�′W

′.

Proof. Due to symmetry it is sufficient to show that w ∈ Minn�W implies
w′ ∈Minn�′W

′. We proceed by induction on n.

To show the base case let w ∈ Min0
�W . Towards a contradiction assume that

w′ 6∈ Min0
�W

′. Applying Proposition 5.2 this means there is a v′ ∈ Min0
�′W

′

s.t. v′ �′ w′ and w′ 6�′ v′. From [back�] we have a v ∈ W s.t. v � w and
(v, v′) ∈ R. As w is �-minimal in W we must have w � v. By [forth�] there
is u′ ∈ W ′ s.t. u′ �′ v′ and (w, u′) ∈ R, and since v′ is �′-minimal we have
u′ ∈ Min0

�W
′. By [atoms] it follows that V (w) = V ′(w′) = V ′(u′), and so as

w′ ≈′ u′ we have by Lemma 5.5 that w′ ∈Min0
�W

′, a contradiction.

For the induction step assume that w ∈Mink+1
� W and let V = (W \Mink�W ).

With this definition of V we have that Mink+1
� W = (Mink�W )∪ (Min�V ) and

further that (Mink�W ) ∩ V is the empty set. Therefore either w ∈ Mini�W
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for 0 ≤ i ≤ k, or w ∈ Min�V . In the former case we have w′ ∈ Mini�′W
′

immediately from the induction hypothesis.

We can therefore assume for the remainder that w ∈ Min�V . Now let V ′ =
(W ′ \ Mink�′W

′) and observe that Mink+1
�′ W

′ = (Mink�′W
′) ∪ (Min�′V

′).
Towards a contradiction assume that w′ 6∈ Mink+1

�′ W
′. By Proposition 5.2 we

therefore have a v′ ∈ Min�′V
′ s.t. v′ � w′ and w′ 6� v′. This also implies

that v′ 6∈ Mink�′W
′. By [back�] there is v ∈ W s.t. v � w and (v, v′) ∈ R. It

cannot be the case that v ∈ Mink�W , because the induction hypothesis would
yield the contradiction v′ ∈ Mink�′W

′, and so we must have v ∈ V . As w is
�-minimal in V it follows that w � v, and so by [forth�] there is u′ ∈ W ′ s.t.
u′ � v′ and (w, u′) ∈ R. By [atoms] we have that V (w) = V ′(w′) = V ′(u′) and
therefore w′ ≈′ u′. By assumption of w′ 6∈ Mink+1

�′ W
′ we can therefore apply

Lemma 5.5 to conclude that u′ 6∈ Mink+1
�′ W

′. As v′ is in sphere k + 1, we can
apply Proposition 5.2 to conclude v′ ≺ u′. But this contradicts u′ �′ v′, and so
it must be the case that w′ ∈Mink+1

�′ W
′.

Having shown that bisimilar worlds (even in different models) must have the
same degree of belief, the following is readily established.

Proposition 5.7. Bisimilarity implies modal equivalence for LDP .

Proof. We show that for all ϕ ∈ LDP , if (M, w) and (M′, w′) are bisimilar then
M, w |= ϕ iffM′, w′ |= ϕ. ForM = (W,≤,∼, V ) andM′ = (W,≤′,∼′, V ′), let
R be a bisimulation s.t. (w,w′) ∈ R. We proceed by induction on the structure
of ϕ, so by Proposition 4.12 we need only cover the case of Bnϕ.

We must show that M, w |= Bnϕ iff M′, w′ |= Bnϕ for any n ∈ N. By
symmetry it suffices to show that M, w |= Bnϕ implies M′, w′ |= Bnϕ, which
means that M′, v′ |= ϕ for all v′ ∈ Minn�′W

′. So assume that M, w |= Bnϕ.
For any v′ ∈Minn�′W

′ there will be (by totality of bisimulations) a v ∈ W s.t.
(v, v′) ∈ R. By Lemma 5.6 it follows that v ∈Minn�W , and so by assumption of
M, w |= Bnϕ we haveM, v |= ϕ. By the induction hypothesis we can conclude
M′, v′ |= ϕ, and so we haveM′, w′ |= Bnϕ.

As a brief intermission we remark that both ∼ and ≤ are primitives in our
plausibility models. So ifM is image-finite we require that for any world w ∈M,
the sets {v ∈ W | v ∼ w} and {v ∈ W | v ≤ w} must be finite [Blackburn
et al., 2001]. As ∼ is universal this has the very significant implication (which
is generally not the case for Kripke models) that any image-finite plausibility
models is in fact finite! Consequently we have that any belief sphere of an
image-finite model is finite. We return to the business at hand, showing the
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prototypical other direction of Proposition 5.7. To this end we first provide the
counterpart to Lemma 5.6 in the case of image-finite and modally equivalent
models for LDP (for the notion of modal equivalence, see Definition 3.3).

Lemma 5.8. Let image-finite pointed plausibility models (M, w) and (M′, w′)
whereM = (W,≤,∼, V ) andM′ = (W ′,≤′,∼′, V ′) be given. Further let �, �′
denote their respective normal plausibility relations. If (M, w) ≡LD

P
(M′, w′),

then for any n ∈ N it is the case that w ∈Minn�W iff w′ ∈Minn�′W
′.

Proof. Due to symmetry we need only show left to right, so assume that w ∈
Minn�W . Towards a contradiction assume that w′ 6∈ Minn�′W

′. For any v′ ∈
Minn�′W

′ we therefore have that v′ is not in the same belief spheres as w′, so by
the contrapositive of Lemma 5.5 it follows that V ′(w′) 6= V ′(v′). Furthermore,
as (M, w) ≡LD

P
(M′, w′) it follows that V (w) = V ′(w′), and therefore also

V (w) 6= V ′(v′).

Having established this fact means we can find a simple formula γw,v′ for w and
v′, which is true in w but false in v′. Formally, if there is a p ∈ (V (w) \ V ′(v′))
then γw,v′ = p, and otherwise γw,v′ = ¬q for some q ∈ (V ′(v′) \ V (w)). We
define

Γnw =
∧

v′∈Minn
�′W

′

γw,v′

which is finite by image finiteness of M′. By construction we have that Γnw
holds in w, but not in any world belonging to belief sphere n ofM′. In symbols
this means thatM, w |= Γnw and by assumption of w ∈Minn�W it follows that
M, w |= B̂nΓnw. Furthermore, because there is no v′ ∈ Minn�′W

′ s.t. M′, v′ |=
Γnw, we can conclude that M′, w′ 6|= B̂nΓnw. But this contradicts (M, w) ≡LD

P

(M′, w′) and consequently it must be the case that w′ ∈Minn�′W
′

Having established this result, the following is shown using the same proof
technique as in the Hennessy-Milner theorem.

Proposition 5.9. On the class of image-finite models, modal equivalence for
LDP implies bisimilarity.

Proof. Let M = (W,≤,∼, V ) and M′ = (W ′,≤′,∼′, V ′) be two image-finite,
plausibility models on P , and define R ⊆ W × W ′, such that (w,w′) ∈ R
iff (M, w) ≡LD

P
(M′, w′). We show that R satisfies the clauses in Definition

4.9, meaning that the ≡LD
P

relation itself is a bisimulation. Foregoing [atoms],
[forth∼] and [back∼], we will prove the most involved case [forth�] ([back�] can
be shown symmetrically).
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Assume that (M, w) ≡LD
P

(M′, w′), v ∈W and v � w. Towards a contradiction
assume that there is no v′ ∈W ′ such that v′ �′ w′ and (M, v) ≡LD

P
(M′, v′). Let

S′ = {v′ ∈ W ′ | v′ �′ w′} = {v′1, . . . v′m} be the �′-successors of w′ (S′ is finite
by image-finiteness ofM′). By assumption every v′i ∈ S′ is modally inequivalent
to v, so for each v′i we have a formula ϕi s.t. M, v |= ϕi andM′, v′i 6|= ϕi. Letting
Φ = ϕ1 ∧ · · · ∧ ϕm it follows thatM, v |= Φ andM′, v′i 6|= Φ.

If w ∈ Min0
�W then v � w means that v ∈ Min0

�W , and so M, w |= B̂0Φ.
Further, it follows from Lemma 5.8 that w′ ∈Min0

�′W
′. By �-minimality of w′

in W ′ we have therefore that S′ = Min0
�′W

′. By construction of Φ this means
that M′, w′ 6|= B̂0Φ, contradicting the assumption that w and w′ are modally
equivalent.

If w 6∈ Min0
�W , let n be chosen such that w ∈ Minn+1

� W and w 6∈ Minn�W .
Such an n exists as W is finite. Since v � w, it must be the case that v ∈
Minn+1

� W as Lemma 5.2 would otherwise imply w ≺ v. Therefore fromM, v |=
Φ we have that M, w |= B̂n+1Φ. Moreover, by Lemma 5.8 it follows that
w′ ∈Minn+1

�′ W
′ and w′ 6∈Minn�′W

′. By Lemma 5.3 we can therefore conclude
v′ �′ w′ for all v′ ∈ Minn+1

�′ W
′ and hence Minn+1

�′ W
′ ⊆ S′.1 By construction

of Φ this means there are no worlds inMinn+1
�′ W

′ satisfying Φ, and soM′, w′ 6|=
B̂nΦ. But this contradicts the assumption of (M, w) ≡LD

P
(M′, w′).

Consequently we have that there must exist some v′ ∈ W ′ with v′ �′ w′ s.t.
(M, v) ≡LD

P
(M′, v′), showing that ≡LD

P
satisfies [forth�].

By going through the structural characterisation of bisimulation, we now have
an immediate correspondence between modal equivalence for the language with
conditional beliefs and modal equivalence for the language with degrees of belief.

Corollary 5.10. On the class of image-finite models, modal equivalence for LCP
corresponds to modal equivalence for LDP .

Proof. Left to right follows from Proposition 4.16 and Proposition 5.7. Right to
left follows similarly from 5.9 and Proposition 4.12.

5.2 Expressive power

This section represents joint work between Mikkel Birkegaard Andersen,
1While sphere n is in fact exactly S′, this is not necessary to show for this proof.
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Thomas Bolander, Hans van Ditmarsch and this author. This work was
conducted during a research visit in Nancy, October 2013, and constitutes
part of a joint journal publication not yet finalized. The presentation of
the results in this section is solely the work of this author.

Since we’re investigating different logical languages interpreted on the same class
of models, there’s more to the story than bisimulation and modal equivalence.
As we saw already in Example 4.13, having conditional belief allow us to distin-
guish models which cannot be distinguished using only unconditional belief. In
this sense conditional belief can express more properties of a model than uncon-
ditional belief. Adopting this view of formulas we can for instance say that Bpq
describes a certain property of plausibility models, namely that of plausibility
models in which, when given information that p is true, q is believed. Now we
can think of all the properties expressible using formulas of LCP as a benchmark
of how expressive the language with conditional belief really is. While gauging
expressivity in absolute terms might provide further insight into a language,
our main focus will be on the relative expressive power between LCP and the
languages introduced above with different doxastic modalities.

In the next section we formally introduce the notion of expressive power, as
well as the notion of parameterized bisimulation. In Section 5.2.2 we show
that the language with conditional belief and the languages with degrees of
belief are incomparable, and in Section 5.2.3 we show that adding safe belief to
the language with conditional belief yields a strictly more expressive language.
This is in fact opposite of what we we’re confident could be proven at the end of
Section 4.3 (a carbon-copy of our original publication [Andersen et al., 2013]).

5.2.1 Formalities

We adopt the notions and basic concepts of the expressive power (or, expressiv-
ity) of a language as presented in [van Ditmarsch et al., 2007]. We remind the
reader that ϕ1 ≡ ϕ2 means that ϕ1 and ϕ2 are equivalent as per Definition 3.2.
While ≡ is overloaded below, this introduces no ambiguity, as it will be clear
from context whether we’re referring to models, formulas or languages.

Definition 5.11. Let L1 and L2 be languages interpreted in the same class of
models.

• L2 is at least as expressive as L1 (denoted L1 5 L2) iff for every ϕ1 ∈ L1

there is a ϕ2 ∈ L2 s.t. ϕ1 ≡ ϕ2.
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• L1 and L2 are equally expressive (denoted L1 ≡ L2) iff L1 5 L2 and
L2 5 L1.

• L2 is more expressive than L1 (denoted L1 < L2) iff L1 5 L2 and L2 65 L1.

• L1 and L2 are incomparable iff L1 65 L2 and L2 65 L1.

We will be showing several cases below where L1 65 L2. Our modus operandi
is to show there is a ϕ1 ∈ L1, where for any ϕ2 ∈ L2 we can find two pointed
models (M, w), (M′, w′) such that M, w |= ϕ1, M′, w′ 6|= ϕ1 and (M, w |=
ϕ2 ⇔M′, w′ |= ϕ2). In other words, for some ϕ1 ∈ L1, no matter the choice of
ϕ2 ∈ L2, there will be models which ϕ1 distinguishes but ϕ2 does not, meaning
that ϕ1 6≡ ϕ2.

It becomes helpful to show that plausibility models are modally equivalent, when
we do not allow certain propositional symbols to occur in formulas. To this end
we introduce restricted bisimulations, meaning that only a subset of atoms are
considered. Technically, for some plausibility model M = (W,≤,∼, V ) on P
we consider any Q ⊆ P . Here Q is the set of atoms we “care about”, and so a
restricted equivalence relation on W is given by

w ≈Q w′ iff (V (w) ∩Q) = (V (w′) ∩Q)

Immediately we can define a restricted version of the normal plausibility relation,
viz.

w �Q w′ iff Min≤[w]≈Q ≤Min≤[w′]≈Q

For ≈P and �P we will omit P as index, as these relation are exactly the
non-restricted definitions of ≈ and � presented in Section 4.2.2.

Definition 5.12 (Restricted Bisimulation). Let plausibility modelsM = (W,≤
,∼, V ) andM′ = (W ′,≤′,∼′, V ′) on P be given, and further let Q ⊆ P . Denote
by �Q,�′Q the respective derived normal plausibility relations. A non-empty
relation R ⊆W ×W ′ is a Q-bisimulation betweenM andM′ if for all (w,w′) ∈
R:

[atoms] (V (w) ∩Q) = (V ′(w′) ∩Q).

[forth�] If v ∈W and v �Q w, there is a v′ ∈W ′ s.t. v′ �′Q w′ and (v, v′) ∈ R.

[back�] If v′ ∈W ′ and v′ �′Q w′, there is a v ∈W s.t. v �Q w and (v, v′) ∈ R.

[forth∼], [back∼] as in Definition 4.9
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If a Q-bisimulation between (M, w) and (M′, w′) exists, the two models are
called Q-bisimilar.

This definition yields the following result.

Proposition 5.13. Q-bisimilarity implies modal equivalence for LCQ.

Proof. Almost exactly as in Proposition 4.12, the difference being when ϕ ∈ LCQ
is propositional, meaning that ϕ = q for some q ∈ Q. The truth value of q must
coincide for any pair of worlds in the bisimulation relation due to [atoms] (in
the restricted bisimulation).

5.2.2 Expressive Power of Degrees of Belief

We now treat the relative expressive power of LCP and LDP . Assuming that P is
countably infinite we can show that these two languages are in fact incompara-
ble.

Proposition 5.14. If P is countably infinite, then LDP 65 LCP .

Proof. Let p ∈ P and consider the formula B1p which belongs to LDP , and
further take any formula ϕC ∈ LCP . As ϕC is finite, there will be some q in
the countably infinite set P which does not occur in ϕC . It follows then that
ϕC ∈ LCP\{q}. For any such q there exists two models of the form below, where
we have that R = {(x, x′), (y, x′), (z, z′)} is a (P \ {q})-bisimulation; the dotted
edges illustrate R.

x

p, q

y

p

zM: x′

p

z′M′:

Since (x, x′) ∈ R it follows from Proposition 5.13 that (M, x) ≡LC
P\{q}

(M′, x′).
It is therefore clear that (M, x |= ϕC) iff (M′, x′ |= ϕC). What is more we have
that M, x |= B1p whereas M′, x′ 6|= B1p. This means that using the formula
B1p of LDP , for any formula ϕC of LCP there are models which B1p distinguishes
but ϕC does not; i.e. B1p 6≡ ϕC . Consequently we have that LDP 65 LCP .
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Proposition 5.15. If P is countably infinite, then LCP 65 LDP .

Proof. We first prove that the two models below, defined for any k ∈ N, are
modally equivalent for a subset of LDP . We stress the importance of the fact
that x (resp. y) has the same valuation as x′ (resp. y′), and that x is strictly
more plausible than y whereas y′ is strictly more plausible than x′.

w0

p0

w1

p1

. . . wk

pk

x

q, r

y

q

Mk:

w′0

p0

w′1

p1

. . . w′k

pk

y′

q

x′

q, r

M′k:

Claim. For any k ∈ N, let Mk and M′k be models of the above form, then
(Mk, w0) ≡LD,k

P
(M′k, w′0).

Proof of claim. Recall that LD,kP is the language in which the degree of any
quantitative belief modality is at most k. We will prove the stronger version of
this claim, namely that (Mk, wi) ≡LD,k

P
(M′k, w′i) for 0 ≤ i ≤ k, (Mk, x) ≡LD,k

P

(M′k, x′) and (Mk, y) ≡LD,k
P

(M′k, y′).

We let ϕ ∈ LD,kP and proceed by induction on ϕ. For the base case ϕ is a
propositional symbol, and so as the valuation of each wi matches that of w′i, x
matches x′ and y matches y′ we’re done. The cases of negation and conjunction
readily follow using the induction hypothesis.

Consider now ϕ = Kψ and assume thatMk, w0 |= Kψ. This means that for all
v ∈ {w0, . . . , wk, x, y} : Mk, v |= ψ. By the induction hypothesis we therefore
have for all v′ ∈ {w′0, . . . , w′k, y′, x′} : M′k, v′ |= ψ, and hence M′k, w′0 |= Kψ.
The exact same argument holds for w1, . . . , wk, x, y, and the other direction
(right to left) is symmetrical.

Consider ϕ = Bjψ for 0 ≤ j ≤ k, and recall that this is sufficient since ϕ ∈ LD,kP .
LetW andW ′ respectively denote the domain ofMk andMk. As every world in
the above models have different valuations, bothMk andM′k are normal, that
is, the plausibility relation and the normal plausibility relation are identical.
Therefore Minj�W = {w0, . . . , wj} and Minj�′W

′ = {w′0, . . . , w′j}. Assuming
Mk, w0 |= Bjψ we have thatMk, v |= ψ for all v ∈ Minj�W , and so this means
that M, v |= ψ for all v ∈ {w0, . . . , wj}. As j ≤ k we can apply the induction
hypothesis to concludeM′k, v′ |= ψ for all v′ ∈ {w′0, . . . , w′j} = Minj�′W

′. From
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this it follows thatM′k, w′0 |= Bjψ as required. The same argument applies to
w1, . . . , wk, x, y because Minj�W (i.e. belief sphere j) is unaltered by the world
in which Bjψ is evaluated (importantly, x and y are not in belief sphere k). The
other direction is shown symmetrically thus completing the proof of this claim.

Consider now Bqr belonging to LCP and any formula ϕD ∈ LDP . Since ϕD is
finite there is some k ∈ N such that ϕD ∈ LD,kP (e.g. take k to be the largest
degree of belief modality occurring in ϕD). By the above claim we therefore
have modelsMk andM′k such that (Mk, w0 |= ϕD)⇔ (M′k, w′0 |= ϕD). The
reason such models always exist is that p0, . . . , pk are taken from a countably
infinite set of symbols and k ∈ N.

To determine the truth of Bqr we point out that [[q]]Mk = {x, y} and [[q]]M′k =
{y′, x′}. Given the plausibility relation we have that conditional on q, x is
minimal in Mk and y′ is minimal in M′k. Since Mk, x |= r and M′k, y′ 6|= r,
it follows thatMk, w0 |= Bqr, whileM′k, w′0 6|= Bqr. With this we have shown
that taking the formula Bqr of LCP , there is for any ϕD ∈ LDP models which Bqr
distinguishes but ϕD does not; i.e. Bqr 6≡ ϕD. It follows that LCP 65 LDP .

The two propositions above yield the following result.

Corollary 5.16. If P is countably infinite, the languages LCP and LDP are in-
comparable.

The proof of Proposition 5.14 illustrates the inability of conditional belief to
capture quantitative belief (even to degree 1), because the latter represents belief
that is irrespective of some chosen facts. The proof of Proposition 5.15 showcases
the ability of conditional belief to capture a form of quantitative belief to an
arbitrary degree, with this degree depending on factual content (here simply
p) rather than a fixed number. In both proofs it is important that an infinite
number of symbols are at our disposal. How the two languages compare when
P is finite has not been settled.

The incomparability of LCP and LDP is remarkable in light of Corollary 5.10, since
the incomparability result is established without relying on image-infinite mod-
els. Rather, we gave simple formulas in both languages that describe an infinite
number of models, but which the other (respective) language cannot finitely
capture. Taking on a broader perspective this suggests that conditional belief
and degrees of belief should not be considered alternatives, but rather as com-
plementary doxastic attitudes able to express different properties of plausibility
models.
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5.2.3 Expressive Power of Safe Belief

As LC,2P is a superset of LCP it is clear that the former is at least as expressive as
the latter, that is, LCP 5 L

C,2
P . However, if P is countably infinite, then we can

show the two languages to not be equally expressive. The proof is very similar
in fashion to the proof of Proposition 5.14.

Proposition 5.17. If P is countably infinite, then LC,2P 65 LCP

Proof. Let p ∈ P and consider the formula 3p which belongs to LC,2P , and
further let ϕC ∈ LCP be arbitrarily chosen. As ϕC is finite, there will be some
q in the countably infinite set P not occurring in ϕC , and so ϕC ∈ LCP\{q}.
For any such q there exists two models of the form below where we have that
R = {(x, x′), (y, y′), (z, z′)} is a (P \ {q})-bisimulation; R is indicated with
dotted edges.

x y

p, q

z

q

Mq: x′ y′

p

z′M′q:

Since (z, z′) ∈ R it follows from Proposition 5.13 that (Mq, z) ≡LC
P\{q}

(M′q, z′).
We now have that (Mq, z |= ϕC) iff (M′q, z′ |= ϕC) and want to show that,
in contrast to ϕC , 3p distinguishes the two pointed models. The semantics of
safe belief state thatMq, z |= 3p iff there is some ψ ∈ LCP s.t. (Mq, z |= ψ and
Mq, z |= B̂ψp). FromMq, z |= q andMq, z |= B̂qp, and since q is a formula of
LCP , we can concludeMq, z |= 3p.

We will now show thatM′q, z′ 6|= 3q, i.e. that there is no ψ ∈ LCP s.t. (M′q, z′ |=
ψ and M′q, z′ |= B̂ψp). Assume towards a contradiction that such a ψ did
exist. Since x′ ≈′ z′ it follows from Lemma 4.11 and Proposition 4.12 that
(M′q, x′) ≡LC

P
(M′q, z′). From our assumption of ψ we have thatM′q, z′ |= ψ,

so then it must be the case that {x′, z′} ⊆ [[ψ]]. Inspecting the plausibility
relation this means thatMin≤′ [[ψ]] = {x′}. SinceM′q, x′ 6|= p we must therefore
also haveM′q, z′ 6|= B̂ψp, but this contradicts our initial assumption. Therefore
such a ψ cannot exist and we can conclude thatM′q, z′ 6|= 3p.

We now have that using the formula 3p of LC,2P , for any formula of ϕC ∈ LCP
there are models which 3p distinguishes but ϕC does not; i.e. 3p 6≡ ϕC . It
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therefore follows that LC,2P 65 LCP .

Corollary 5.18. If P is countably infinite, then LC,2P is more expressive than
LCP .

Safe belief enables us to express properties about infinitely many propositions
with a finite formula, exactly as was the case for degrees of a belief. This is what
prompts the increase in expressive power, again under the assumption that we
have infinitely many propositional symbols available, even though 2 is given its
semantics in terms of conditional belief.

Having established these results, we close with a few remarks about the lan-
guages we have not treated. We use the obvious naming scheme for doing so.
The languages L2

P and LD,2P cannot be dealt in our current setting, for 2 is
given its semantics in terms of conditional belief. A trivial result is that LC,D,2P

is at least as expressive as both LC,DP and LC,2P as it subsumes both languages.
Finally, assuming P is infinite it follows from Corollary 5.16 that LC,DP is more
expressive than both LCP and LDP . Given the, at least to us, surprising nature
of the results established in this section, we shall not dare to venture a guess as
to how these other combinations relate, leaving these questions for future work.

5.3 Conclusion and Discussion

In this chapter we showed that the notion of bisimulation developed in Chap-
ter 4 was also the right fit for capturing modal equivalence of LDP , that is, the
extension of the epistemic language with a degrees of belief modality. Next, we
proved several results on the expressive power of languages formed by different
combinations of the conditional belief modality, the degrees of belief modality
and the safe belief modality. We showed that under the assumption of hav-
ing an infinite number of propositional symbols given, the conditional belief
modality and degree of belief modality are able to express different properties
of plausibility models, and as such stand as genuine doxastic alternatives. We
furthermore showed that the addition of the safe belief modality to LCP yields a
more expressive language.

That our notion of bisimulation developed in Chapter 4 is also appropriate
for the language containing degrees of belief confirms our intuition that it is
indeed the correct model-theoretic notion we have put forth. What is more, this
implies that we can work with either or both modalities in a planning context,
without increasing the size of contraction-minimal models nor the number of
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non-bisimilar information cells. That we may want to do so is apparent from
our expressivity results, for both modalities capture highly relevant aspects of
planning with doxastic notions.

In terms of future work we have already accounted for the unresolved question
of how the languages compare for a finite number of propositions, and further-
more noted languages that remains to be compared in terms of expressive power.
Highly important to us is also the generalization of our notion of bisimulation to
multi-agent plausibility models, which is current work. Our preliminary results
show that there is a natural, albeit somewhat awkward, definition which cor-
responds to modal equivalence for the multi-agent epistemic-doxastic language
containing the conditional belief modality. Such a result is vital for formalizing
multi-agent planning with doxastic attitudes.
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Chapter 6

Don’t Plan for the
Unexpected: Planning Based
on Plausibility Models

This chapter is a replicate of [Andersen et al., 2014], accepted for publication
in a special issue of Logique et Analyses devoted to the theme “Dynamics in
Logic”.
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Don’t Plan for the Unexpected: Planning Based
on Plausibility Models

Mikkel Birkegaard Andersen Thomas Bolander
Martin Holm Jensen

DTU Compute, Technical University of Denmark

Abstract

We present a framework for automated planning based on plau-
sibility models, as well as algorithms for computing plans in this
framework. Our plausibility models include postconditions, as on-
tic effects are essential for most planning purposes. The framework
presented extends a previously developed framework based on dy-
namic epistemic logic (DEL), without plausibilities/beliefs. In the
pure epistemic framework, one can distinguish between strong and
weak epistemic plans for achieving some, possibly epistemic, goal.
By taking all possible outcomes of actions into account, a strong
plan guarantees that the agent achieves this goal. Conversely, a
weak plan promises only the possibility of leading to the goal. In
real-life planning scenarios where the planning agent is faced with a
high degree of uncertainty and an almost endless number of possible
exogenous events, strong epistemic planning is not computationally
feasible. Weak epistemic planning is not satisfactory either, as there
is no way to qualify which of two weak plans is more likely to lead to
the goal. This seriously limits the practical uses of weak planning,
as the planning agent might for instance always choose a plan that
relies on serendipity. In the present paper we introduce a planning
framework with the potential of overcoming the problems of both
weak and strong epistemic planning. This framework is based on
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plausibility models, allowing us to define different types of plausibil-
ity planning. The simplest type of plausibility plan is one in which
the goal will be achieved when all actions in the plan turn out to have
the outcomes found most plausible by the agent. This covers many
cases of everyday planning by human agents, where we—to limit our
computational efforts—only plan for the most plausible outcomes of
our actions.

6.1 Introduction

Whenever an agent deliberates about the future with the purpose of achieving
a goal, she is engaging in the act of planning. Automated Planning is a widely
studied area of AI dealing with such issues under many different assumptions
and restrictions. In this paper we consider planning under uncertainty [Ghal-
lab et al., 2004] (nondeterminism and partial observability), where the agent
has knowledge and beliefs about the environment and how her actions affect
it. We formulate scenarios using plausibility models obtained by merging the
frameworks in [Baltag and Smets, 2006, van Ditmarsch and Kooi, 2008].

Example 6.1 (The Basement). An agent is standing at the top of an unlit
stairwell leading into her basement. If she walks down the steps in the dark, it’s
likely that she will trip. On the other hand, if the lights are on, she is certain to
descend unharmed. There is a light switch just next to her, though she doesn’t
know whether the bulb is broken.

She wishes to find a plan that gets her safely to the bottom of the stairs. Plan-
ning in this scenario is contingent on the situation; e.g. is the bulb broken?
Will she trip when attempting her descent? In planning terminology a plan
that might achieve the goal is a weak solution, whereas one that guarantees it
is a strong solution.

In this case, a weak solution is to simply descend the stairs in the dark, risking
life and limb for a trip to the basement. On the other hand, there is no strong
solution as the bulb might be broken (assuming it cannot be replaced). Intu-
itively, the best plan is to flick the switch (expecting the bulb to work) and then
descend unharmed, something neither weak nor strong planning captures.

Extending the approach in [Andersen et al., 2012] to a logical framework incor-
porating beliefs via a plausibility ordering, we formalise plans which an agent
considers most likely to achieve her goals. This notion is incorporated into al-
gorithms developed for the framework in [Andersen et al., 2012], allowing us to
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M M′ M′′

w:h v1:h v2:h u1:h u2:h

Figure 6.1: Three plausibility models.

synthesise plans like the best one in Example 6.1.

In the following section we present the logical framework we consider throughout
the paper. Section 6.3 formalises planning in this framework, and introduces
the novel concept of plausibility solutions to planning problems. As planning
is concerned with representing possible ways in which the future can unfold,
it turns out we need a belief modality corresponding to a globally connected
plausibility ordering, raising some technical challenges. Section 6.4 introduces
an algorithm for plan synthesis (i.e. generation of plans). Further we show that
the algorithm is terminating, sound and complete. To prove termination, we
must define bisimulations and bisimulation contractions.

6.2 Dynamic Logic of Doxastic Ontic Actions

The framework we need for planning is based on a dynamic logic of doxastic on-
tic actions. Actions can be epistemic (changing knowledge), doxastic (changing
beliefs), ontic (changing facts) or any combination. The following formalisa-
tion builds on the dynamic logic of doxastic actions [Baltag and Smets, 2006],
adding postconditions to event models as in [van Ditmarsch and Kooi, 2008].
We consider only the single-agent case. Before the formal definitions are given,
we present some intuition behind the framework in the following example, which
requires some familiarity with epistemic logic.

Example 6.2. Consider an agent and a coin biased towards heads, with the
coin lying on a table showing heads (h). She contemplates tossing the coin and
realizes that it can land either face up, but (due to nature of the coin) believes
it will land heads up. In either case, after the toss she knows exactly which face
is showing.

The initial situation is represented by the plausibility model (defined later)
M and the contemplation by M′′ (see Figure 6.1). The two worlds u1, u2

are epistemically distinguishable (u1 6∼ u2) and represent the observable non-
deterministic outcome of the toss. The dashed directed edge signifies a (global)
plausibility relation, where the direction indicates that she finds u2 more plau-
sible than u1 (we overline proposition symbols that are false).
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Example 6.3. Consider again the agent and biased coin. She now reasons
about shuffling the coin under a dice cup, leaving the dice cup on top to conceal
the coin. She cannot observe which face is up, but due to the bias of the coin
believes it to be heads. She then reasons further about lifting the dice cup in
this situation, and realises that she will observe which face is showing. Due to
her beliefs about the shuffle she finds it most plausible that heads is observed.

The initial situation is again M. Consider the model M′, where the solid
directed edge indicates a local plausibility relation, and the direction that v2 is
believed over v1. By local we mean that the two worlds v1, v2 are (epistemically)
indistinguishable (v1 ∼ v2), implying that she is ignorant about whether h
or ¬h is the case.1 Together this represents the concealed, biased coin. Her
contemplations on lifting the cup is represented by the model M′′ as in the
previous example.

In Example 6.2 the agent reasons about a non-deterministic action whose out-
comes are distinguishable but not equally plausible, which is different from the
initial contemplation in Example 6.3 where the outcomes are not distinguish-
able (due to the dice cup). In Example 3 she subsequently reasons about the
observations made after a sensing action. In both examples she reasons about
the future, and in both cases the final result is the modelM′′. In Example 6.8
we formally elaborate on the actions used here.

It is the nature of the agent’s ignorance that makeM′ andM′′ two inherently
different situations. Whereas in the former she is ignorant about h due to the
coin being concealed, her ignorance in the latter stems from not having lifted the
cup yet. In general we can model ignorance either as a consequence of epistemic
indistinguishability, or as a result of not yet having acted. Neither type subsumes
the other and both are necessary for reasoning about actions. We capture
this distinction by defining both local and global plausibility relations. The
end result is that local plausibility talks about belief in a particular epistemic
equivalence class, and global plausibility talks about belief in the entire model.
We now remedy the informality we allowed ourselves so far by introducing the
necessary definitions for a more formal treatment.

Definition 6.4 (Dynamic Language). Let a countable set of propositional sym-
bols P be given. The language L(P ) is given by the following BNF:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | Bϕϕ | Xϕ | [E , e]ϕ

where p ∈ P , E is an event model on L(P ) as (simultaneously) defined below,
1In the remainder, we use (in)distinguishability without qualification to refer to epistemic

(in)distinguishability.
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and e ∈ D(E). K is the local knowledge modality, Bϕ the global conditional
belief modality, X is a (non-standard) localisation modality (explained later)
and [E , e] the dynamic modality.

We use the usual abbreviations for the other boolean connectives, as well as
for the dual dynamic modality 〈E , e〉ϕ := ¬ [E , e]¬ϕ and unconditional (or
absolute) global belief Bϕ := B>ϕ. The duals of K and Bϕ are denoted K̂ and
B̂ϕ.

Kϕ reads as “the (planning) agent knows ϕ”, Bψϕ as “conditional on ψ, the
(planning) agent believes ϕ”, and [E , e]ϕ as “after all possible executions of
(E , e), ϕ holds”. Xϕ reads as “locally ϕ”.

Definition 6.5 (Plausibility Models). A plausibility model on a set of proposi-
tions P is a tupleM = (W,∼,≤, V ), where

• W is a set of worlds,
• ∼ ⊆W ×W is an equivalence relation called the epistemic relation,
• ≤ ⊆W ×W is a connected well-preorder called the plausibility relation,2

• V : P → 2W is a valuation.

D(M) = W denotes the domain ofM. For w ∈ W we name (M, w) a pointed
plausibility model, and refer to w as the actual world of (M, w). < denotes the
strict plausibility relation, that is w < w′ iff w ≤ w′ and w′ 6≤ w. ' denotes
equiplausibility, that is w ' w′ iff w ≤ w′ and w′ ≤ w.

In our model illustrations a directed edge from w to w′ indicates w′ ≤ w. By
extension, strict plausibility is implied by unidirected edges and equiplausibility
by bidirected edges. For the models in Figure 6.1, we have v1 ∼ v2, v2 < v1 in
M′ and u1 6∼ u2, u2 < u1 in M′′. The difference between these two models is
in the epistemic relation, and is what gives rise to local (solid edges) and global
(dashed edges) plausibility. In [Baltag and Smets, 2006] the local plausibility
relation is defined as E:=∼ ∩ ≤; i.e. w E w′ iff w ∼ w′ and w ≤ w′. E is a
locally well-preordered relation, meaning that it is a union of mutually disjoint
well-preorders. Given a plausibility model, the domain of each element in this
union corresponds to an ∼-equivalence class.

Our distinction between local and global is not unprecedented in the literature,
but it can be a source of confusion. In [Baltag and Smets, 2006], ≤ was indeed

2A well-preorder is a reflexive, transitive binary relation s.t. every non-empty subset has
minimal elements [Baltag and Smets, 2008].
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connected (i.e. global), but in later versions of the framework [Baltag and Smets,
2008] this was no longer required. The iterative development in [van Ditmarsch,
2005] also discuss the distinction between local and global plausibility (named
preference by the author). Relating the notions to the wording in [Baltag and
Smets, 2006], ≤ captures a priori beliefs about virtual situations, before ob-
taining any direct information about the actual situation. On the other hand,
E captures a posteriori beliefs about an actual situation, that is, the agent’s
beliefs after she obtains (or assumes) information about the actual world.

M′′ represents two distinguishable situations (v1 and v2) that are a result of
reasoning about the future, with v2 being considered more plausible than v1.
These situations are identified by restricting M′′ to its ∼-equivalence classes;
i.e. M′′ � {v1} and M′′ � {v2}. Formally, given an epistemic model M,
the information cells in M are the submodels of the form M � [w]∼ where
w ∈ D(M). We overload the term and name any ∼-connected plausibility
model on P an information cell. This use is slightly different from the notion
in [Baltag and Smets, 2008], where an information cell is an ∼-equivalence
class rather than a restricted model. An immediate property of information
cells is that ≤=E; i.e. the local and global plausibility relations are identical.
A partition of a plausibility model into its information cells corresponds to a
localisation of the plausibility model, where each information cell represents a
local situation. The (later defined) semantics of X enables reasoning about such
localisations using formulas in the dynamic language.

Definition 6.6 (Event Models). An event model on the language L(P ) is a
tuple E = (E,∼,≤, pre, post), where

• E is a finite set of (basic) events,
• ∼ ⊆ E × E is an equivalence relation called the epistemic relation,
• ≤ ⊆ E × E is a connected well-preorder called the plausibility relation,
• pre : E → L(P ) assigns to each event a precondition,
• post : E → (P → L(P )) assigns to each event a postcondition for each

proposition. Each post(e) is required to be only finitely different from the
identity.

D(E) = E denotes the domain of E . For e ∈ E we name (E , e) a pointed event
model, and refer to e as the actual event of (E , e). We use the same conventions
for accessibility relations as in the case of plausibility models.

Definition 6.7 (Product Update). Let M = (W,∼,≤, V ) and E = (E,∼′,≤′
, pre, post) be a plausibility model on P resp. event model on L(P ). The product
update ofM with E is the plausibility model denotedM⊗E = (W ′,∼′′,≤′′, V ′),
where
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E E ′ E ′′

e1:〈>, {h 7→ ⊥}〉

e2:〈>, {h 7→ >}〉

f1:〈>, {h 7→ ⊥}〉

f2:〈>, {h 7→ >}〉

g1:〈¬h, ∅〉

g2:〈h, ∅〉

Figure 6.2: Three event models.

• W ′ = {(w, e) ∈W × E | M, w |= pre(e)},
• ∼′′= {((w, e), (v, f)) ∈W ′ ×W ′ | w ∼ v and e ∼′ f},
• ≤′′= {((w, e), (v, f)) ∈W ′ ×W ′ | e <′ f or (e '′ f and w ≤ v)},
• V ′(p) = {(w, e) ∈W ′ | M, w |= post(e)(p)} for each p ∈ P .

The reader may consult [Baltag and Moss, 2004, Baltag and Smets, 2006, Baltag
and Smets, 2008, van Ditmarsch and Kooi, 2008] for thorough motivations and
explanations of the product update. Note that the event model’s plausibilities
take priority over those of the plausibility model (action-priority update).

Example 6.8. Consider Figure 6.2, where the event model E represents the
biased non-deterministic coin toss of Example 6.2, E ′ shuffling the coin under
a dice cup, and E ′′ lifting the dice cup of Example 6.3. We indicate ∼ and
≤ with edges as in our illustrations of plausibility models. Further we use the
convention of labelling basic events e by 〈pre(e), post(e)〉. We write post(e) on
the form {p1 7→ ϕ1, . . . , pn 7→ ϕn}, meaning that post(e)(pi) = ϕi for all i, and
post(e)(q) = q for q 6∈ {p1, . . . , pn}.

Returning to Example 6.2 we see thatM⊗ E = M′′ where u1 = (w, e1), u2 =
(w, e2). In E we have that e2 < e1, which encodes the bias of the coin, and e1 6∼
e2 encoding the observability, which leads to u1 and u2 being distinguishable.

Regarding Example 6.3 we have that M⊗ E ′ = M′ (modulo renaming). In
contrast to E , we have that f1 ∼ f2, representing the inability to see the face of
the coin due to the dice cup. For the sensing action E ′′, we haveM⊗E ′⊗E ′′ =
M′′, illustrating how, when events are equiplausible (g1 ' g2), the plausibilities
ofM′ carry over toM′′.

We’ve shown examples of how the interplay between plausibility model and
event model can encode changes in belief, and further how to model both ontic
change and sensing. In [Bolander and Andersen, 2011] there is a more general
treatment of action types, but here such a classification is not our objective.
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Instead we simply encode actions as required for our exposition and leave these
considerations as future work.

Among the possible worlds, ≤ gives an ordering defining what is believed. Given
a plausibility model M = (W,∼,≤, V ), any non-empty subset of W will have
one or more minimal worlds with respect to ≤, since ≤ is a well-preorder. For
S ⊆W , the set of ≤-minimal worlds, denoted Min≤S, is defined as:

Min≤S = {s ∈ S | ∀s′ ∈ S : s ≤ s′}.

The worlds in Min≤S are called the most plausible worlds in S. The worlds
of Min≤D(M) are referred to as the most plausible ofM. With belief defined
via minimal worlds (see the definition below), the agent has the same beliefs for
any w ∈ D(M). Analogous to most plausible worlds, an information cellM′ of
M is called most plausible if D(M′) ∩Min≤D(M) 6= ∅ (M′ contains at least
one of the most plausible worlds ofM).

Definition 6.9 (Satisfaction Relation). Let a plausibility model M = (W,∼
,≤, V ) on P be given. The satisfaction relation is given by, for all w ∈W :

M, w |= p iff w ∈ V (p)
M, w |= ¬ϕ iff notM, w |= ϕ
M, w |= ϕ ∧ ψ iffM, w |= ϕ andM, w |= ψ
M, w |= Kϕ iffM, v |= ϕ for all w ∼ v
M, w |= Bψϕ iffM, v |= ϕ for all v ∈Min≤{u ∈W | M, u |= ψ}
M, w |= Xϕ iffM � [w]∼, w |= ϕ
M, w |= [E , e]ϕ iffM, w |= pre(e) impliesM⊗E , (w, e) |= ϕ

where ϕ,ψ ∈ L(P ) and (E , e) is a pointed event model. We write M |= ϕ
to mean M, w |= ϕ for all w ∈ D(M). Satisfaction of the dynamic modality
for non-pointed event models E is introduced by abbreviation, viz. [E ]ϕ :=∧
e∈D(E) [E , e]ϕ. Furthermore, 〈E〉ϕ := ¬ [E ]¬ϕ.3

The reader may notice that the semantic clause for M, w |= Xϕ is equivalent
to the clause for M, w |= [E , e]ϕ when [E , e] is a public announcement of a
characteristic formula [van Benthem, 1998] being true exactly at the worlds in
[w]∼ (and any other world modally equivalent to one of these). In this sense, the
X operator can be thought of as a public announcement operator, but a special
one that always announces the current information cell. In the special case
whereM is an information cell, we have for all w ∈ D(M) thatM, w |= Xϕ iff
M, w |= ϕ.

3Hence, M, w |= 〈E〉ϕ ⇔ M, w |= ¬ [E]¬ϕ ⇔ M, w |= ¬(
∧

e∈D(E) [E, e]¬ϕ) ⇔ M, w |=∨
e∈D(E) ¬ [E, e]¬ϕ⇔M, w |=

∨
e∈D(E) 〈E, e〉ϕ.
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6.3 Plausibility Planning

The previous covered a framework for dealing with knowledge and belief in a
dynamic setting. In the following, we will detail how a rational agent would
adapt these concepts to model her own reasoning about how her actions affect
the future. Specifically, we will show how an agent can predict whether or not
a particular plan leads to a desired goal. This requires reasoning about the
conceivable consequences of actions without actually performing them.

Two main concepts are required for our formulation of planning, both of which
build on notions from the logic introduced in the previous section. One is
that of states, a representation of the planning agent’s view of the world at a
particular time. Our states are plausibility models. The other concept is that of
actions. These represent the agent’s view of everything that can happen when
she does something. Actions are event models, changing states into other states
via product update.

In our case, the agent has knowledge and beliefs about the initial situation,
knowledge and beliefs about actions, and therefore also knowledge and beliefs
about the result of actions.

All of what follows regards planning in the internal perspective. Section 6.3.1
shows how plausibility models represent states, Section 6.3.2 how event mod-
els represent actions and Section 6.3.3 how these ideas can formalise planning
problems with various kinds of solutions.

6.3.1 The Internal Perspective On States

In the internal perspective, an agent using plausibility models to represent her
own view will, generally, not be able to point out the actual world. Consider
again the modelM in Figure 6.1, that has two indistinguishable worlds w1 and
w2. IfM is the agent’s view of the situation, she will of course not be able to
say which is the actual world. If she was, then the model could not represent
the situation where the two worlds are indistinguishable. By requiring the agent
to reason from non-pointed plausibility models only (a similar argument makes
the case for non-pointed event models), we enforce the internal perspective.
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M E M′

w1:mt

w2:mt

e1:〈¬m, {t 7→ ⊥}〉

e2:〈m, {t 7→ >}〉

e3:〈>, {t 7→ ⊥}〉

(w1, e1):mt

(w2, e3):mt

(w2, e2):mt

Figure 6.3: The situation before and after attempting to pay with a debit card,
plus the event model depicting the attempt. This illustrates that the most
plausible information cell can contain the least plausible world.

6.3.2 Reasoning About Actions

Example 6.10 (Friday Beer). Nearing the end of the month, an agent is going
to have an end-of-week beer with her coworkers. Wanting to save the cash she
has on hand for the bus fare, she would like to buy the beer using her debit
card. Though she isn’t certain, she believes that there’s no money (m) on the
associated account. Figure 6.3 shows this initial situation asM, where t signifies
that the transaction hasn’t been completed. In this small example her goal is
to make t true.

When attempting to complete the transaction (using a normal debit card reader),
a number of different things can happen, captured by E in Figure 6.3. If there
is money on the account, the transaction will go through (e2), and if there isn’t,
it won’t (e1). This is how the card reader operates most of the time and why e1

and e2 are the most plausible events. Less plausible, but still possible, is that
the reader malfunctions for some other reason (e3). The only feedback the agent
will receive is whether the transaction was completed, not the reasons why it did
or didn’t (e1 ∼ e3 6∼ e2). That the agent finds out whether the transaction was
successful is why we do not collapse e1 and e2 to one event e′ with pre(e′) = >
and post(e′)(t) = m.

M⊗ E expresses the agent’s view on the possible outcomes of attempting the
transaction. The modelM′ is the bisimulation contraction ofM⊗E , according
to the definition in Section 6.4.1 (the world (w1, e3) having been removed, as it
is bisimilar to (w1, e1)).

M′ consists of two information cells, corresponding to whether or not the trans-
action was successful. What she believes will happen is given by the global
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plausibility relation. When actually attempting the transaction the result will
be one of the information cells of M′, namely Mt = M′ � {(w1, e1), (w2, e3)}
or Mt = M′ � {(w2, e2)}, in which she will know ¬t and t respectively. As
(w1, e1) is the most plausible, we can say that she expects to end up in (w1, e1),
and, by extension, in the information cellMt: She expects to end up in a situ-
ation where she knows ¬t, but is ignorant concerning m. If, unexpectedly, the
transaction is successful, she will know that the balance is sufficient (m). The
most plausible information cell(s) in a model are those the agent expects. That
(w2, e3) is in the expected information cell, when the globally more plausible
world (w2, e2) is not, might seem odd. It isn’t. The partitioning ofM into the
information cells Mt and Mt suggests that she will sense the value of t (¬t
holds everywhere in the former, t everywhere in the latter). As she expects to
find out that t does not to hold, she expects to be able to rule out all the worlds
in which t does hold. Therefore, she expects to be able to rule out (w2, e2) and
not (w2, e3) (or w1, e1). This givesM′ |= BX(K¬t∧B¬m∧ K̂m): She expects
to come to know that the transaction has failed and that she will believe there’s
no money on the account (though she does consider it possible that there is).

Under the definition of planning that is to follow in Section 6.3.3, an agent has
a number of actions available to construct plans. She needs a notion of which
actions can be considered at different stages of the planning process. As in the
planning literature, we call this notion applicability.

Definition 6.11 (Applicability). An event model E is said to be applicable in
a plausibility modelM ifM |= 〈E〉>.

Unfolding the definition of 〈E〉, we see what applicability means:

M |= 〈E〉> ⇔ ∀w ∈ D(M) :M, w |= 〈E〉> ⇔
∀w ∈ D(M) :M, w |= ∨e∈D(E) 〈E , e〉> ⇔
∀w ∈ D(M),∃e ∈ D(E) :M, w |= 〈E , e〉> ⇔
∀w ∈ D(M),∃e ∈ D(E) :M, w |= pre(e) andM⊗E , (w, e) |= > ⇔
∀w ∈ D(M),∃e ∈ D(E) :M, w |= pre(e).

This says that no matter which is the actual world (it must be one of those con-
sidered possible), the action defines an outcome. This concept of applicability
is equivalent to the one in [Bolander and Andersen, 2011]. The discussion in
[de Lima, 2007, sect. 6.6] also notes this aspect, insisting that actions must be
meaningful. The same sentiment is expressed by our notion of applicability.

Proposition 6.12. Given a plausibility modelM and an applicable event model
E, we have D(M⊗E) 6= ∅.



142 Don’t Plan for the Unexpected: Planning Based on Plausibility Models

M0

flick desc

w1:tlbsu w2:tlbsu

f1:〈t ∧ ¬s ∧ b, {l 7→ >, s 7→ >}〉

f2:〈t ∧ (s ∨ ¬b), {l 7→ ⊥, s 7→ ¬s}〉

e1:〈t, {t 7→ ⊥}〉

e2:〈t ∧ ¬l, {t 7→ ⊥, u 7→ ⊥}〉

Figure 6.4: An information cell,M0, and two event models, flick and desc.

The product updateM⊗E expresses the outcome(s) of doing E in the situation
M, in the planning literature called applying E in M. The dynamic modality
[E ] expresses reasoning about what holds after applying E .

Lemma 6.13. Let M be a plausibility model and E an event model. Then
M |= [E ]ϕ iffM⊗E |= ϕ.

Proof. M |= [E ]ϕ ⇔ ∀w ∈ D(M) :M, w |= [E ]ϕ ⇔
∀w ∈ D(M) : M, w |=

∧
e∈D(E)[E , e]ϕ ⇔ ∀(w, e) ∈ D(M) × D(E) : M, w |=

[E , e]ϕ ⇔
∀(w, e) ∈ D(M)×D(E) :M, w |= pre(e) impliesM⊗E , (w, e) |= ϕ ⇔
∀(w, e) ∈ D(M⊗E) :M⊗E , (w, e) |= ϕ ⇔ M⊗ E |= ϕ.

Here we are looking at global satisfaction, by evaluating [E ]ϕ in all ofM, rather
than a specific world. The reason is that evaluation in planning must happen
from the perspective of the planning agent and its “information state”. Though
one of the worlds ofM is the actual world, the planning agent is ignorant about
which it is. Whatever plan it comes up with, it must work in all of the worlds
which are indistinguishable to the agent, that is, in the entire model. A similar
point, and a similar solution, is found in [Jamroga and Ågotnes, 2007].

Example 6.14. We now return to the agent from Example 6.1. Her view of
the initial situation (M0) and her available actions (flick and desc) are seen
in Figure 6.4. The propositional letters mean t: “top of stairs”, l: “light on”,
b: “bulb working”, s : “switch on” and u: “unharmed”. Initially, in M0, she
believes that the bulb is working, and knows that she is at the top of the stairs,
unharmed and that the switch and light is off: M0 |= Bb ∧K(t ∧ u ∧ ¬l ∧ ¬s).

flick and desc represent flicking the light switch and trying to descend the stairs,
respectively. Both require being at the top of the stairs (t). f1 of flick expresses
that if the bulb is working, turning on the switch will turn on the light, and f2
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M0 ⊗ flick

M0 ⊗ desc

(w1, f1):tlbsu (w2, f2):tlbsu

(w1, e1):tlbsu (w2, e1):tlbsu(w1, e2):tlbsu (w2, e2):tlbsu

Figure 6.5: The models resulting from applying the actions flick and desc in
M0. Reflexive edges are not shown and the transitive closure is left implicit.

that if the bulb is broken or the switch is currently on, the light will be off. The
events are epistemically distinguishable, as the agent will be able to tell whether
the light is on or off. desc describes descending the stairs, with or without the
light on. e1 covers the agent descending the stairs unharmed, and can happen
regardless of there being light or not. The more plausible event e2 represents
the agent stumbling, though this can only happen in the dark. If the light is
on, she will descend safely. Definition 6.11 and Lemma 6.13 let us express the
action sequences possible in this scenario.

• M0 |= 〈flick〉> ∧ 〈desc〉>. The agent can initially do either flick or desc.

• M0 |= [flick] 〈desc〉>. After doing flick, she can do desc.

• M0 |= [desc] (¬ 〈flick〉> ∧ ¬ 〈desc〉>). Nothing can be done after desc.

Figure 6.5 shows the plausibility models arising from doing flick and desc inM0.
Via Lemma 6.13 she can now conclude:

• M0 |= [flick] (Kb ∨ K¬b): Flicking the light switch gives knowledge of
whether the bulb works or not.

• M0 |= [flick]BKb. She expects to come to know that it works.

• M0 |= [desc] (K¬t∧B¬u). Descending the stairs in the dark will definitely
get her to the bottom, though she believes she will end up hurting herself.

6.3.3 Planning

We now turn to formalising planning and then proceed to answer two questions
of particular interest: How do we verify that a given plan achieves a goal? And
can we compute such plans? This section deals with the first question, plan
verification, while the second, plan synthesis, is detailed in Section 6.4.
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Definition 6.15 (Plan Language). Given a finite set A of event models on
L(P ), the plan language L(P,A) is given by:

π ::= E | skip | if ϕ then π else π | π;π

where E ∈ A and ϕ ∈ L(P ). We name members π of this language plans, and
use if ϕ then π as shorthand for if ϕ then π else skip.

The reading of the plan constructs are “do E”, “do nothing”, “if ϕ then π, else
π′”, and “first π then π′” respectively. In the translations provided in Definition
6.16, the condition of the if-then-else construct becomes a K-formula, ensuring
that branching depends only on worlds which are distinguishable to the agent.
The idea is similar to the meaningful plans of [de Lima, 2007], where branching
is allowed on epistemically interpretable formulas only.

Definition 6.16 (Translation). Let α be one of s, w, sp or wp. We define an
α-translation as a function [·]α : L(P,A)→ (L(P )→ L(P )):

[E ]α ϕ := 〈E〉> ∧


[E ]XKϕ if α = s

K̂ 〈E〉XKϕ if α = w

[E ]BXKϕ if α = sp

[E ] B̂XKϕ if α = wp

[skip]α ϕ := ϕ

[if ϕ′ then π else π′]α ϕ := (Kϕ′ → [π]αϕ) ∧ (¬Kϕ′ → [π′]αϕ)

[π;π′]αϕ := [π]α([π′]αϕ)

We call [·]s the strong translation, [·]w the weak translation, [·]sp the strong
plausibility translation and [·]wp the weak plausibility translation.

The translations are constructed specifically to make the following lemma hold,
providing a semantic interpretation of plans (leaving out skip and π1;π2).

Lemma 6.17. LetM be an information cell, E an event model and ϕ a formula
of L(P ). Then:

1. M |= [E ]sϕ iff M |= 〈E〉> and for each information cell M′ of M⊗ E :
M′ |= ϕ.

2. M |= [E ]wϕ iff M |= 〈E〉> and for some information cell M′ of M⊗ E :
M′ |= ϕ.
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3. M |= [E ]spϕ iff M |= 〈E〉> and for each most plausible information cell
M′ ofM⊗E :M′ |= ϕ.

4. M |= [E ]wpϕ iff M |= 〈E〉> and for some most plausible information cell
M′ ofM⊗E :M′ |= ϕ.

5. M |= [if ϕ′ then π else π′]αϕ iff
(M |= ϕ′ impliesM |= [π]αϕ) and (M 6|= ϕ′ impliesM |= [π′]αϕ).

Proof. We only prove 4 and 5, as 1–4 are very similar. For 4 we have:

M |= [E ]wp ϕ ⇔ M |= 〈E〉> ∧ [E ] B̂XKϕ ⇔Lemma 6.13

M |= 〈E〉> andM⊗E |= B̂XKϕ ⇔

M |= 〈E〉> and ∀(w, e) ∈ D(M⊗E) :M⊗E , (w, e) |= B̂XKϕ ⇔Prop. 6.12

M |= 〈E〉> and ∃(w, e) ∈Min≤D(M⊗E) :M⊗E , (w, e) |= XKϕ ⇔
M |= 〈E〉> and ∃(w, e) ∈Min≤D(M⊗E) :M⊗E � [(w, e)]∼, (w, e) |= Kϕ ⇔
M |= 〈E〉> and ∃(w, e) ∈Min≤D(M⊗E) :M⊗E � [(w, e)]∼ |= ϕ ⇔
M |= 〈E〉> and in some most plausible information cellM′ ofM⊗E ,M′ |= ϕ.

For if-then-else, first note that:

M |= ¬Kϕ′ → [π]αϕ ⇔ ∀w ∈ D(M) :M, w |= ¬Kϕ′ → [π]αϕ ⇔
∀w ∈ D(M) :M, w |= ¬Kϕ′ impliesM, w |= [π]αϕ ⇔M is an info. cell

∀w ∈ D(M) : ifM, v |= ¬ϕ′ for some v ∈ D(M) thenM, w |= [π]αϕ ⇔
ifM, v |= ¬ϕ′ for some v ∈ D(M) then ∀w ∈ D(M) :M, w |= [π]αϕ ⇔
M 6|= ϕ′ impliesM |= [π′]αϕ.

Similarly, we can prove:

M |= Kϕ′ → [π]αϕ ⇔ M |= Kϕ′ impliesM |= [π′]αϕ.

Using these facts, we get:

M |= [if ϕ′ then π else π′]αϕ ⇔ M |= (Kϕ′ → [π]αϕ) ∧ (¬Kϕ′ → [π′]αϕ) ⇔
M |= Kϕ′ → [π]αϕ andM |= ¬Kϕ′ → [π′]αϕ ⇔
(M |= ϕ′ impliesM |= [π]αϕ) and (M 6|= ϕ′ impliesM |= [π′]αϕ).

Using XK (as is done in all translations) means that reasoning after an action is
relative to a particular information cell (asM, w |= XKϕ⇔M � [w]∼, w |= Kϕ
⇔ M � [w]∼ |= ϕ).
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Definition 6.18 (Planning Problems and Solutions). Let P be a finite set of
propositional symbols. A planning problem on P is a triple P = (M0,A, ϕg)
where

• M0 is a finite information cell on P called the initial state.

• A is a finite set of event models on L(P ) called the action library.

• ϕg ∈ L(P ) is the goal (formula).

A plan π ∈ L(P,A) is an α-solution to P if M0 |= [π]αϕg. For a specific
choice of α = s/w/sp/wp, we will call π a strong/weak/strong plausibility/weak
plausibility-solution respectively.

Given a π, we wish to check whether π is an α-solution (for some particular α)
to P. This can be done via model checking the dynamic formula given by the
translation [π]α ϕg in the initial state of P.

A strong solution π is one that guarantees that ϕg will hold after executing it (“π
achieves ϕg”). If π is a weak solution, it achieves ϕg for at least one particular
sequence of outcomes. Strong and weak plausibility-solutions are as strong- and
weak-solutions, except that they need only achieve ϕg for all of/some of the
most plausible outcomes.

Example 6.19. The basement scenario (Example 6.1) can be formalised as the
planning problem PB = (M0, {flick, desc}, ϕg) with M0, flick and desc being
defined in Figure 6.4 and ϕg = ¬t ∧ u. Let π1 = desc. We then have that:

M0 |= [desc]w (¬t ∧ u)⇔M0 |= 〈desc〉> ∧ K̂ 〈desc〉XK(¬t ∧ u)⇔desc is applic.

M0 |= K̂ 〈desc〉XK(¬t ∧ u)⇔ ∃w ∈ D(M0) :M0, w |= 〈desc〉XK(¬t ∧ u).

Picking w1, we have

M0, w1 |= 〈desc〉XK(¬t ∧ u)⇔M0 ⊗ desc, (w1, e1) |= XK(¬t ∧ u)⇔
M0 ⊗ desc � [(w1, e1)]∼ |= (¬t ∧ u)

which holds as seen in Figure 6.5. Thus, π1 is a weak solution. Further, Lemma
6.17 tells us that π1 is not a s/wp/sp solution, as u does not hold in the (most
plausible) information cellM⊗ desc � {(w1, e2), (w2, e2)}.

The plan π2 = flick; desc is a strong plausibility solution, as can be verified by
M0 |= [π2]sp (¬t∧u). Without an action for replacing the lightbulb, there are no
strong solutions. Let replace be the action in Figure 6.6, where post(r1)(u) = ¬s
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replace r1:〈t ∧ ¬b, {b 7→ >, u 7→ ¬s}〉

Figure 6.6: Event model for replacing a broken bulb.

signifies that if the power is on, the agent will hurt herself, and define a new
problem P ′B = {M0, {flick, desc, replace}, ϕg). Then

π3 = flick; (if ¬l then flick; replace; flick); desc

is a strong solution (we leave verification to the reader): If the light comes on
after flicking the switch (as expected) she can safely walk down the stairs. If
it does not, she turns off the power, replaces the broken bulb, turns the power
on again (this time knowing that the light will come on), and then proceeds as
before.

Besides being an sp-solution, π2 is also a w- and a wp-solution, indicating a
hierarchy of strengths of solutions. This should come as no surprise, given both
the formal and intuitive meaning of planning and actions presented so far. In
fact, this hierarchy exists for any planning problem, as shown by the following
result which is a consequence of Lemma 6.17 (stated without proof).

Lemma 6.20. Let P = (M0,A, ϕg) be a planning problem. Then:

• Any strong solution to P is also a strong plausibility solution:
M0 |= [π]s ϕg ⇒M0 |= [π]sp ϕg.

• Any strong plausibility solution to P is also a weak plausibility solution:
M0 |= [π]sp ϕg ⇒M0 |= [π]wp ϕg.

• Any weak plausibility solution to P is also a weak solution:
M0 |= [π]wp ϕg ⇒M0 |= [π]w ϕg.

6.4 Plan Synthesis

In this section we show how to synthesise conditional plans for solving planning
problems. Before we can give the concrete algorithms, we establish some tech-
nical results which are stepping stones to proving termination of our planning
algorithm, and hence decidability of plan existence in our framework.
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6.4.1 Bisimulations, contractions and modal equivalence

We now define bisimulations on plausibility models. For our purpose it is suf-
ficient to define bisimulations on ∼-connected models, that is, on information
cells.4 First we define a normal plausibility relation which will form the basis of
our bisimulation definition.

Definition 6.21 (Normality). Given is an information cell M = (W,∼,≤, V )
on P . By slight abuse of language, two worlds w,w′ ∈ W are said to have the
same valuation if for all p ∈ P : w ∈ V (p) ⇔ w′ ∈ V (p). Define an equivalence
relation on W : w ≈ w′ iff w and w′ has the same valuation. Now define w � w′
iff Min≤([w]≈) ≤ Min≤([w′]≈). This defines the normal plausibility relation.
M is called normal if � = ≤. The normalisation of M = (W,∼,≤, V ) is
M′ = (W,∼,�, V ).

Definition 6.22 (Bisimulation). Let M = (W,∼,≤, V ) and M′ = (W ′,∼′
,≤′, V ′) be information cells on P . A non-empty relation R ⊆ W ×W ′ is a
bisimulation between M and M′ (and M,M′ are called bisimilar) if for all
(w,w′) ∈ R:

[atom] For all p ∈ P : w ∈ V (p) iff w′ ∈ V ′(p).

[forth] If v ∈W and v � w then there is a v′ ∈W ′ s.t. v′ �′ w′ and (v, v′) ∈ R.

[back] If v′ ∈W ′ and v′ � w′ then there is a v ∈W s.t. v � w and (v, v′) ∈ R.

If R has domain W and codomain W ′, it is called total. If M = M′, it is
called an autobisimulation (onM). Two worlds w and w′ of an information cell
M = (W,∼,≤, V ) are called bisimilar if there exists an autobisimulation R on
M with (w,w′) ∈ R.

We are here only interested in total bisimulations, so, unless otherwise stated,
we assume this in the following. Note that our definition of bisimulation imme-
diately implies that there exists a (total) bisimulation between any information
cell and its normalisation. Note also that for normal models, the bisimulation
definition becomes the standard modal logic one.5

4The proper notion of bisimulation for plausibility structures is explored in more detail
by Andersen, Bolander, van Ditmarsch and Jensen in ongoing research. A similar notion for
slightly different types of plausibility structures is given in [van Ditmarsch, pear]. Surprisingly,
Demey does not consider our notion of bisimulation in his thorough survey [Demey, 2011] on
different notions of bisimulation for plausibility structures.

5We didn’t include a condition for the epistemic relation, ∼, in [back] and [forth], simply
because we are here only concerned with ∼-connected models.
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Lemma 6.23. If two worlds of an information cell have the same valuation
they are bisimilar.

Proof. Assume worlds w and w′ of an information cellM = (W,∼,≤, V ) have
the same valuation. Let R be the relation that relates each world ofM to itself
and additionally relates w to w′. We want to show that R is a bisimulation.
This amounts to showing [atom], [forth] and [back] for the pair (w,w′) ∈ R.
[atom] holds trivially since w ≈ w′. For [forth], assume v ∈ W and v � w. We
need to find a v′ ∈ W s.t. v′ � w′ and (v, v′) ∈ R. Letting v′ = v, it suffices
to prove v � w′. Since w ≈ w′ this is immediate: v � w ⇔ Min≤([v]≈) ≤
Min≤([w]≈)

w≈w′⇔ Min≤([v]≈) ≤ Min≤([w′]≈) ⇔ v � w′. [back] is proved
similarly.

Unions of autobisimulations are autobisimulations. We can then in the standard
way define the (bisimulation) contraction of a normal information cell as its
quotient with respect to the union of all autobisimulations [Blackburn and van
Benthem, 2006].6 The contraction of a non-normal model is taken to be the
contraction of its normalisation. In a contracted model, no two worlds are
bisimilar, by construction. Hence, by Lemma 6.23, no two worlds have the
same valuation. Thus, the contraction of an information cell on a finite set of
proposition symbols P contains at most 2|P | worlds. Since any information cell
is bisimilar to its contraction [Blackburn and van Benthem, 2006], this shows
that there can only exist finitely many non-bisimilar information cells on any
given finite set P .

Two information cells M and M′ are called modally equivalent, written M ≡
M′, if for all formulas ϕ in L(P ): M |= ϕ ⇔ M′ |= ϕ. Otherwise, they are
called modally inequivalent. We now have the following standard result (the
result is standard for standard modal languages and bisimulations, but it is not
trivial that it also holds here).

Theorem 6.24. If two information cells are (totally) bisimilar they are modally
equivalent.

Proof. We need to show that if R is a total bisimulation between information
cells M and M′, then for all formulas ϕ of L(P ): M |= ϕ ⇔ M′ |= ϕ. First
we show that we only have to consider formulas ϕ of the static sublanguage of
L(P ), that is, the language without the [E , e] modalities. In [Baltag and Smets,

6More precisely, let M be a normal information cell and let R be the union of all auto-
bisimulations on M. Then the contraction M′ = (W ′,∼′,≤′, V ′) of M has as worlds the
equivalence classes [w]R = {w′ | (w,w′) ∈ R} and has [w]R ≤′ [w′]R iff v ≤ v′ for some
v ∈ [w]R and v′ ∈ [w′]R.
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2006], reduction axioms from the dynamic to the static language are given for
a language similar to L(P ). The differences in language are our addition of
postconditions and the fact that our belief modality is defined from the global
plausibility relation rather than being localised to epistemic equivalence classes.
The latter difference is irrelevant when only considering information cells as
we do here. The former difference of course means that the reduction axioms
presented in [Baltag and Smets, 2006] will not suffice for our purpose. [van
Ditmarsch and Kooi, 2008] shows that adding postconditions to the language
without the doxastic modalities only requires changing the reduction axiom
for [E , e] p, where p is a propositional symbol. Thus, if we take the reduction
axioms of [Baltag and Smets, 2006] and replace the reduction axiom for [E , e] p
by the one in [van Ditmarsch and Kooi, 2008], we get reduction axioms for our
framework. We leave out the details.

We now need to show that if R is a total bisimulation between information cells
M andM′, then for all [E , e]-free formulas ϕ of L(P ): M |= ϕ⇔M′ |= ϕ. Since
R is total, it is sufficient to prove that for all [E , e]-free formulas ϕ of L(P ) and all
(w,w′) ∈ R: M, w |= ϕ⇔M′, w′ |= ϕ. The proof is by induction on ϕ. In the
induction step we are going to need the induction hypothesis for several different
choices of R, w and w′, so what we will actually prove by induction on ϕ is this:
For all formulas ϕ of L(P ), if R is a total bisimulation between information cells
M andM′ on P and (w,w′) ∈ R, thenM, w |= ϕ⇔M′, w′ |= ϕ.

The base case is when ϕ is propositional. Then the required follows immediately
from [atom], using that (w,w′) ∈ R. For the induction step, we have the
following cases of ϕ: ¬ψ,ψ ∧ γ,Xψ,Kψ,Bγψ. The first two cases are trivial.
So is Xψ, as Xψ ↔ ψ holds on any information cell. For Kψ we reason as
follows. Let R be a total bisimulation between information cells M and M′
with (w,w′) ∈ R. Using that R is total and that M and M′ are both ∼-
connected we get: M, w |= Kψ ⇔ ∀v ∈ W : M, v |= ψ

i.h.⇔ ∀v′ ∈ W ′: M′, v |=
ψ ⇔M′, w′ |= Kψ.

The case of Bγψ is more involved. Let M,M′,R, w and w′ be as above. By
symmetry, it suffices to prove M, w |= Bγψ ⇒ M′, w′ |= Bγψ. So assume
M, w |= Bγψ, that is, M, v |= ψ for all v ∈ Min≤{u ∈ W | M, u |= γ}. We
need to prove M′, v′ |= ψ for all v′ ∈ Min≤′{u′ ∈ W ′ | M′, u′ |= γ}. So let
v′ ∈Min≤′{u′ ∈W ′ | M′, u′ |= γ}. By definition of Min≤′ this means that:

for all u′ ∈W ′, ifM′, u′ |= γ then v′ ≤′ u′. (6.1)

Choose an x ∈ Min≤{u ∈ W | u ≈ u′ and (u′, v′) ∈ R}. We want to use (6.1)
to show that the following holds:

for all u ∈W , ifM, u |= γ then x ≤ u. (6.2)
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To prove (6.2), let u ∈ W withM, u |= γ. Choose u′ with (u, u′) ∈ R. The in-
duction hypothesis impliesM′, u′ |= γ. We now prove that v′ ≤′ Min≤′([u

′]≈).
To this end, let u′′ ∈ [u′]≈. We need to prove v′ ≤′ u′′. Since u′′ ≈ u′,
Lemma 6.23 implies that u′ and u′′ are bisimilar. By induction hypothesis we
then getM′, u′′ |= γ.7 Using (6.1) we now get v′ ≤′ u′′, as required. This show
v′ ≤′ Min≤′([u

′]≈). We now have Min≤′([v
′]≈) ≤′ v′ ≤′ Min≤′([u

′]≈), and
hence v′ � u′. By [back] there is then a v s.t. (v, v′) ∈ R and v � u. By choice
of x, x ≤ Min≤([v]≈). Using v � u, we now finally get: x ≤ Min≤([v]≈) ≤
Min≤([u]≈) ≤ u. This shows that (6.2) holds.

From (6.2) we can now conclude x ∈ Min≤{u ∈ W | M, u |= γ} and hence,
by original assumption, M, x |= ψ. By choice of x there is an x′ ≈ x with
(x′, v′) ∈ R. Since M, x |= ψ and x′ ≈ x, we can again use Lemma 6.23 and
the induction hypothesis to conclude M, x′ |= ψ. Since (x′, v′) ∈ R, another
instance of the induction hypothesis gives usM′, v′ |= ψ, and we are done.

Previously we proved that there can only be finitely many non-bisimilar infor-
mation cells on any finite set P . Since we have now shown that bisimilarity
implies modal equivalence, we immediately get the following result, which will
be essential to our proof of termination of our planning algorithms.

Corollary 6.25. Given any finite set P , there are only finitely many modally
inequivalent information cells on P .

6.4.2 Planning Trees

When synthesising plans, we explicitly construct the search space of the problem
as a labelled and-or tree, a familiar model for planning under uncertainty
[Ghallab et al., 2004]. Our and-or trees are called planning trees.

Definition 6.26 (Planning Tree). A planning tree is a finite, labelled and-or
tree in which each node n is labelled by a plausibility model M(n), and each
edge (n,m) leaving an or-node is labelled by an event model E(n,m).

Planning trees for planning problems P = (M0,A, ϕg) are constructed as fol-
lows: Let the initial planning tree T0 consist of just one or-node root(T0) with
M(root(T0)) =M0 (the root labels the initial state). A planning tree for P is
then any tree that can be constructed from T0 by repeated applications of the
following non-deterministic tree expansion rule.

7Note that we here use the induction hypothesis for the autobisimulation on M′ linking
u′ and u′′, not the bisimulation R betweenM andM′.
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Definition 6.27 (Tree Expansion Rule). Let T be a planning tree for a planning
problem P = (M0,A, ϕg). The tree expansion rule is defined as follows. Pick an
or-node n in T and an event model E ∈ A applicable inM(n) with the proviso
that E does not label any existing outgoing edges from n. Then:

1. Add a new and-node m to T withM(m) =M(n)⊗ E , and add an edge
(n,m) with E(n,m) = E .

2. For each information cellM′ inM(m), add an or-nodem′ withM(m′) =
M′ and add the edge (m,m′).

The tree expansion rule is similar in structure to—and inspired by—the expan-
sion rules used in tableau calculi, e.g. for modal and description logics [Horrocks
et al., 2006]. Note that the expansion rule applies only to or-nodes, and that
an applicable event model can only be used once at each node.

Considering single-agent planning a two-player game, a useful analogy for plan-
ning trees are game trees. At an or-node n, the agent gets to pick any applicable
action E it pleases, winning if it ever reaches an information model in which the
goal formula holds (see the definition of solved nodes further below). At an
and-node m, the environment responds by picking one of the information cells
of M(m)—which of the distinguishable outcomes is realised when performing
the action.

Without restrictions on the tree expansion rule, even very simple planning prob-
lems might be infinitely expanded (e.g. by repeatedly choosing a no-op action).
Finiteness of trees (and therefore termination) is ensured by the following block-
ing condition.

B The tree expansion rule may not be applied to an or-node n for which there
exists an ancestor or-node m withM(m) ≡M(n).8

Lemma 6.28 (Termination). Any planning tree built by repeated application of
the tree expansion rule under condition B is finite.

Proof. Planning trees built by repeated application of the tree expansion rule
are finitely branching: the action library is finite, and every plausibility model
has only finitely many information cells (the initial state and all event models in
the action library are assumed to be finite, and taking the product update of a

8Modal equivalence between information cells can be decided by taking their respective
bisimulation contractions and then compare for isomorphism, cf. Section 6.4.1.
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finite information cell with a finite event model always produces a finite result).
Furthermore, condition B ensures that no branch has infinite length: there only
exists finitely many modally inequivalent information cells over any language
L(P ) with finite P (Corollary 6.25). König’s Lemma now implies finiteness of
the planning tree.
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Figure 6.7: A planning tree T for PB . Each node contains a (visually compacted)
plausibility model. Most plausible children of and-nodes are gray, doubly drawn
or-nodes satisfy the goal formula, and below solved nodes we’ve indicated their
strength.

Example 6.29. Let’s consider a planning tree in relation to our basement sce-
nario (cf. Example 6.19). Here the planning problem is PB = (M0, {flick, desc}, ϕg)
withM0, flick and desc being defined in Figure 6.4 and ϕg = ¬t ∧ u. We have
illustrated the planning tree T in Figure 6.7. The root n0 is an or-node (rep-
resenting the initial state M0), to which the tree expansion rule of Definition
6.27 has been applied twice, once with action E = flick and once with E = desc.

The result of the two tree expansions on n0 is two and-nodes (children of n0)
and four or-nodes (grandchildren of n0). We end our exposition of the tree
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expansion rule here, and note that the tree has been fully expanded under
the blocking condition B, the dotted edge indicating a leaf having a modally
equivalent ancestor. Without the blocking condition, this branch could have
been expanded ad infinitum.

Let T denote a planning tree containing an and-node n with a child m. The
nodem is called a most plausible child of n ifM(m) is among the most plausible
information cells ofM(n).

Definition 6.30 (Solved Nodes). Let T be any planning tree for a planning
problem P = (M0,A, ϕg). Let α be one of s, w, sp or wp. By recursive
definition, a node n in T is called α-solved if one of the following holds:

• M(n) |= ϕg (the node satisfies the goal formula).
• n is an or-node having at least one α-solved child.
• n is an and-node and:

– If α = s then all children of n are α-solved.
– If α = w then at least one child of n is α-solved.
– If α = sp then all most plausible children of n are α-solved.
– If α = wp then at least one of the most plausible children of n is
α-solved.

Let T denote any planning tree for a planning problem P = (M0,A, ϕg). Below
we show that when an or-node n of T is α-solved, it is possible to construct
an α-solution to the planning problem (M(n),A, ϕg). In particular, if the root
node is α-solved, an α-solution to P can be constructed. As it is never necessary
to expand an α-solved node, nor any of its descendants, we can augment the
blocking condition B in the following way (parameterised by α where α is one
of s, w, sp or wp).

Bα The tree expansion rule may not be applied to an or-node n if one of the
following holds: 1) n is α-solved; 2) n has an α-solved ancestor; 3) n has
an ancestor or-node m withM(m) ≡M(n).

A planning tree that has been built according to Bα is called an α-planning
tree. Since Bα is more strict than B, Lemma 6.28 immediately gives finiteness of
α-planning trees—and hence termination of any algorithm building such trees
by repeated application of the tree expansion rule. Note that a consequence of
Bα is that in any α-planning tree an α-solved or-node is either a leaf or has
exactly one α-solved child. We make use of this in the following definition.
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Definition 6.31 (Plans for Solved Nodes). Let T be any α-planning tree for
P = (M0,A, ϕg). For each α-solved node n in T , a plan π(n) is defined recur-
sively by:

• ifM(n) |= ϕg, then π(n) = skip.

• if n is an or-node and m its α-solved child, then π(n) = E(n,m);π(m).

• if n is an and-node and m1, . . . ,mk its α-solved children, then

– If k = 1 then π(n) = π(m1).
– If k > 1 then for all i = 1, . . . , k let δmi

denote a formula true in
M(mi) but not in any of theM(mj) 6≡ M(mi) and let π(n) =

if δm1 then π(m1) else if δm2 then π(m2) else · · · if δmk
then π(mk).

Note that the plan π(n) of a α-solved node n is only uniquely defined up to the
choice of δ-formulas in the if-then-else construct. This ambiguity in the definition
of π(n) will not cause any troubles in what follows, as it only depends on formulas
satisfying the stated property. We need, however, to be sure that such formulas
always exist and can be computed. To prove this, assume n is an and-node and
m1, . . . ,mk its α-solved children. Choose i ∈ {1, . . . , k}, and let mn1

, . . . ,mnl

denote the subsequence ofm1, . . . ,mk for whichM(mnj ) 6≡ M(mi). We need to
prove the existence of a formula δmi such thatM(mi) |= δmi butM(mnj ) 6|= δmi

for all j = 1, . . . , l. Since M(mnj
) 6≡ M(mi) for all j = 1, . . . , l, there exists

formulas δj such that M(mi) |= δj but M(mnj
) 6|= δj . We then get that

δ1 ∧ δ2 ∧ · · · ∧ δl is true in M(mi) but none of the M(mnj
). Such formulas

can definitely be computed, either by brute force search through all formulas
ordered by length or more efficiently and systematically by using characterising
formulas as in [Andersen et al., 2012] (however, characterising formulas for the
present formalism are considerably more complex than in the purely epistemic
framework of the cited paper).

Let n be a node of a planning tree T . We say that n is solved if it is α-solved
for some α. If n is s-solved then it is also sp-solved, if sp-solved then wp-solved,
and if wp-solved then w-solved. This gives a natural ordering s > sp > wp > w.
Note the relation to Lemma 6.20. We say that a solved node n has strength
α, if it is α-solved but not β-solved for any β > α, using the aforementioned
ordering.

Example 6.32. Consider again the planning tree T in Figure 6.7 for the plan-
ning problem PB = (M0, {flick, desc}, ϕg) with ϕg = ¬t ∧ u. Each solved node
has been labelled by its strength. The reader is encouraged to check that each
node has been labelled correctly according to Definition 6.30. The leafs satisfy-
ing the goal formula ϕg have strength s, by definition. The strength of the root
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node is sp, as its uppermost child has strength sp. The reason this child has
strength sp is that its most plausible child has strength s.

We see that T is an sp-planning tree, as it is possible to achieve T from n0

by applying tree expansions in an order that respects Bsp. However, it is not
the smallest sp-planning tree for the problem, as e.g. the lower subtree is not
required for n0 to be sp-solved. Moreover, T is not a w-planning tree, as Bw
would have blocked further expansion once either of the three solved leafs were
expanded.

In our soundness result below, we show that plans of α-solved roots are always
α-solutions to their corresponding planning problems. Applying Definition 6.31
to the sp-planning tree T gives an sp-solution to the basement planning problem,
viz. π(n0) = flick; desc; skip. This is the solution we referred to as the best in
Example 6.1: Assuming all actions result in their most plausible outcomes, the
best plan is to flick the switch and then descend. After having executed the
first action of the plan, flick, the agent will know whether the bulb is broken
or not. This is signified by the two distinct information cells resulting from the
flick action, see Figure 6.7. An agent capable of replanning could thus choose
to revise her plan and/or goal if the bulb turns out to be broken.

Theorem 6.33 (Soundness). Let α be one of s, w, sp or wp. Let T be an
α-planning tree for a problem P = (M0,A, ϕg) such that root(T ) is α-solved.
Then π(root(T )) is an α-solution to P.

Proof. We need to prove that π(root(T )) is an α-solution to P, that is,M0 |=
[π(root(T ))]α ϕg. Since M0 is the label of the root, this can be restated as
M(root(T )) |= [π(root(T ))]α ϕg. To prove this fact, we will prove the following
stronger claim:

For each α-solved or-node n in T ,M(n) |= [π(n)]α ϕg.

We prove this by induction on the height of n. The base case is when n is a
leaf (height 0). Since n is α-solved, we must have M(n) |= ϕg. In this case
π(n) = skip. From M(n) |= ϕg we can conclude M(n) |= [skip]α ϕg, that is,
M(n) |= [π(n)]α ϕg. This covers the base case. For the induction step, let n be
an arbitrary α-solved or-node n of height h > 0. Let m denote the α-solved
child of n, and m1, . . . ,ml denote the children of m. Let mn1 , . . . ,mnk

denote
the subsequence of m1, . . . ,ml consisting of the α-solved children of m. Then,
by Definition 6.31,

• If k = 1 then π(n) = E(n,m);π(mn1
).

• If k > 1 then π(n) = E(n,m);π(m) where π(m) =
if δmn1

then π(mn1
) else if δmn2

then π(mn2
) else · · · if δmnk

then π(mnk
).
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We here consider only the (more complex) case k > 1. Our goal is to prove
M(n) |= [π(n)]α ϕg, that is, M(n) |= [E(n,m);π(m)]α ϕg. By the induction
hypothesis we haveM(mni

) |= [π(mni
)]α ϕg for all i = 1, . . . , k (the mni

are of
lower height than n).

Claim 1. M(mni
) |= [π(m)]α ϕg for all i = 1, . . . , k.

Proof of claim. Let i be given. We need to prove

M(mni
) |=

[
if δmn1

then π(mn1
) else · · · if δmnk

then π(mnk
)
]
α
ϕg.

Note that by using item 5 of Lemma 6.17 it suffices to prove that for all j =
1, . . . , k,

M(mni
) |= δmnj

impliesM(mni
) |=

[
π(mnj

)
]
α
ϕg. (6.3)

Let j ∈ {1, . . . , k} be chosen arbitrarily. Assume first j = i. By induc-
tion hypothesis we have M(mnj ) |=

[
π(mnj )

]
α
ϕg, and hence M(mni) |=[

π(mnj
)
]
α
ϕg. From this (6.3) immediately follows. Assume now j 6= i. By the

construction of the δ-formulas, eitherM(mnj ) ≡M(mni) orM(mni) 6|= δmnj
.

In the latter case, (6.3) holds trivially. In case of M(mnj
) ≡ M(mni

) we im-
mediately getM(mni

) |=
[
π(mnj

)
]
α
ϕg, since by induction hypothesis we have

M(mnj
) |=

[
π(mnj

)
]
α
ϕg. This concludes the proof of the claim.

Note that by definition of the tree expansion rule (Definition 6.27),M(m1), . . . ,M(ml)
are the information cells inM(m).

Claim 2. The following holds:

• If α = s (w), then for every (some) information cellM′ inM(m): M′ |=
[π(m)]α ϕg.

• If α = sp (wp), then for every (some) most plausible information cellM′
inM(m): M′ |= [π(m)]α ϕg.

Proof of claim. We only consider the most complex cases, α = sp and α = wp.
First consider α = sp. Let M′ be a most plausible information cell in M(m).
We need to proveM′ |= [π(m)]α ϕg. Since, as noted above,M(m1), . . . ,M(ml)
are the information cells in M(m), we must have M′ = M(mi) for some i ∈
{1, . . . , l}. Furthermore, asM′ is among the most plausible information cells in
M(m), mi must by definition be a most plausible child of m. Definition 6.30
then gives us that mi is α-solved. Thus mi = mnj for some j ∈ {1, . . . , k}. By
Claim 1 we have M(mnj ) |= [π(m)]α ϕg, and since M′ = M(mi) = M(mnj )
this gives the desired conclusion. Now consider the case α = wp. Definition 6.30
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gives us that at least one of the most plausible children of m are α-solved.
By definition, this must be one of the mni

, i ∈ {1, . . . , k}. Claim 1 gives
M(mni

) |= [π(m)]α ϕg. Since mni
is a most plausible child of m, we must have

that M(mni
) is among the most plausible information cells in M(m). Hence

we have proven that [π(m)]α ϕg holds in a most plausible information cell of
M(m).

By definition of the tree expansion rule (Definition 6.27), M(m) = M(n) ⊗
E(n,m). Thus we can replaceM(m) byM(n)⊗E(n,m) in Claim 2 above. Using
items 1–4 of Lemma 6.17, we immediately get from Claim 2 that independently
of α the following holds: M(n) |= [E(n,m)]α [π(m)]α ϕg (the conditionM(n) |=
〈E(n,m)〉> holds trivially by the tree expansion rule). From this we can then
finally concludeM(n) |= [E(n,m);π(m)]α ϕg, as required.

Theorem 6.34 (Completeness). Let α be one of s, w, sp or wp. If there is an
α-solution to the planning problem P = (M0,A, ϕg), then an α-planning tree T
for P can be constructed, such that root(T ) is α-solved.

Proof. First note that we have [skip;π]α ϕg = [skip]α ([π]α ϕg) = [π]α ϕg. Thus,
we can without loss of generality assume that no plan contains a subexpression
of the form skip;π. The length of a plan π, denoted |π|, is defined recursively
by: |skip| = 1; |E| = 1; |if ϕ then π1 else π2| = |π1|+ |π2|; |π1;π2| = |π1|+ |π2|.

Claim 1. Let π be an α-solution to P = (M0,A, ϕg) with |π| ≥ 2. Then there
exists an α-solution of the form E ;π′ with |E ;π′| ≤ |π|.

Proof of claim. Proof by induction on |π|. The base case is |π| = 2. We have two
cases, π = if ϕ then π1 else π2 and π = π1;π2, both with |π1| = |π2| = 1. If π is
the latter, it already has desired the form. If π = if ϕ then π1 else π2 then, by
assumption on π, M0 |= [if ϕ then π1 else π2]α ϕg. Item 5 of Lemma 6.17 now
gives thatM0 |= ϕ impliesM0 |= [π1]α ϕg andM0 6|= ϕ impliesM0 |= [π2]α ϕg.
Thus we must either haveM0 |= [π1]α ϕg orM0 |= [π2]α ϕg, that is, either π1

or π2 is an α-solution to P. Thus either π1; skip or π2; skip is an α-solution to
P, and both of these have length |π|. This completes the base case. For the
induction step, consider a plan π of length l > 2 which is an α-solution to P.
We again have two cases to consider, π = if ϕ then π1 else π2 and π = π1;π2.
If π = π1;π2 is an α-solution to P, then π1 is an α-solution to the planning
problem P ′ = (M0,A, [π2]α ϕg), asM0 |= [π1;π2]α ϕg ⇔M0 |= [π1]α [π2]α ϕg.
Clearly |π1| < l, so the induction hypothesis gives that there is an α-solution
(E ;π′1) to P ′, with |E ;π′1| ≤ |π1|. Then, E ;π′1;π2 is an α-solution to P and we
have |E ;π′1;π2| = |E ;π′1|+ |π2| ≤ |π1|+ |π2| = |π|. If π = if ϕ then π1 else π2 is
an α-solution to P, then we can as above conclude that either π1 or π2 is an
α-solution to P. With both |π1| < l and |π2| < l, the induction hypothesis gives
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the existence an α-solution E ;π′, with |E ;π′| ≤ |π|. This completes the proof of
the claim.

We now prove the theorem by induction on |π|, where π is an α-solution to
P = (M0,A, ϕg). We need to prove that there exists an α-planning tree for
P in which the root is α-solved. Let T0 denote the planning tree for P only
consisting of its root node with labelM0. The base case is when |π| = 1. Here,
we have two cases, π = skip and π = E . In the first case, the planning tree
T0 already has its root α-solved, since M0 |= [skip]α ϕg ⇔ M0 |= ϕg. In the
second case, π = E , we haveM0 |= [E ]α ϕg as π = E is an α-solution to P. By
definition, this means that E is applicable in M0, and we can apply the tree
expansion rule to T0, which will produce:

1. A child m of the root node withM(m) =M0 ⊗ E .
2. Children m1, . . . ,ml of m, whereM(m1), . . . ,M(ml) are the information

cells ofM(m).

Call the expanded tree T1. Since M0 |= [E ]α ϕg, Lemma 6.17 implies that for
every/some/every most plausible/some most plausible information cell M′ in
M0 ⊗ E , M′ |= ϕg (where α = s/w/sp/wp). Since M(m1), . . . ,M(ml) are
the information cells ofM0 ⊗ E , we can conclude that every/some/every most
plausible/some most plausible child of m is α-solved. Hence also m and thus n
are α-solved. The base is hereby completed.

For the induction step, let π be an α-solution to P with length l > 1. Let T0

denote the planning tree for P consisting only of its root node with labelM0. By
Claim 1, there exists an α-solution to P of the form E ;π′ with |E ;π′| ≤ |π|. As
M0 |= [E ;π′]α ϕg ⇔M0 |= [E ]α [π′]α ϕg, E is applicable inM0. Thus, as in the
base case, we can apply the tree expansion rule to T0 which will produce nodes
as in 1 and 2 above. Call the expanded tree T1. SinceM0 |= [E ]α [π′]α ϕg, items
1–4 of Lemma 6.17 implies that for every/some/every most plausible/some most
plausible information cell inM0⊗E , [π′]α ϕg holds. Hence, for every/some/every
most plausible/some most plausible child mi of m, M(mi) |= [π′]α ϕg. Let
mn1

, . . . ,mnk
denote the subsequence of m1, . . . ,ml consisting of the children

of m for which M(mni) |= [π′]α ϕg. Then, by definition, π′ is an α-solution
to each of the planning problem Pi = (M(mni),A, ϕg), i = 1, . . . , k. As |π′| <
|E ;π′| ≤ l, the induction hypothesis gives that α-planning trees T ′i with α-solved
roots can be constructed for each Pi. Let T2 denote T1 expanded by adding each
planning tree T ′i as the subtree rooted at Mni

. Then each of the nodes mni

are α-solved in T , and in turn both m and root(T2) are α-solved. The final
thing we need to check is that T2 has been correctly constructed according to
the tree expansion rule, more precisely, that condition Bα has not been violated.
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Since each T ′i has in itself been correctly constructed in accordance with Bα, the
condition can only have been violated if for one of the non-leaf or-nodes m′ in
one of the T ′i s,M(m′) ≡M(root(T2)). We can then replace the entire planning
tree T2 by a (node-wise modally equivalent) copy of the subtree rooted at m′,
and we would again have an α-planning tree with an α-solved root.

6.4.3 Planning Algorithm

In the following, let P denote any planning problem, and α be one of s, w, sp or
wp. With all the previous in place, we now have an algorithm for synthesising
an α-solution to P, given as follows.

Plan(α,P)

1 Let T be the α-planning tree only consisting of root(T ) labelled by the
initial state of P.

2 Repeatedly apply the tree expansion rule of P to T until no more rules
apply satisfying condition Bα.

3 If root(T ) is α-solved, return π(root(T )), otherwise return fail.

Theorem 6.35. Plan(α,P) is a terminating, sound and complete algorithm
for producing α-solutions to planning problems P. Soundness means that if
Plan(α,P) returns a plan, it is an α-solution to P. Completeness means that
if P has an α-solution, Plan(α,P) will return one.

Proof. Termination comes from Lemma 6.28 (with B replaced by the stronger
condition Bα), soundness from Theorem 6.33 and completeness from Theorem
6.34 (given any two Bα-saturated α-planning trees T1 and T2 for the same plan-
ning problem, the root node of T1 is α-solved iff the root node of T2 is).

With Plan(α,P) we have given an algorithm for solving α-parametrised plan-
ning problems. The α parameter determines the strength of the synthesised
plan π, cf. Lemma 6.20. Whereas the cases of weak (α = w) and strong (α = s)
plans have been the subject of much research, the generation of weak plausibility
(α = wp) and strong plausibility (α = sp) plans based on pre-encoded beliefs
is a novelty of this paper. Plans taking plausibility into consideration have sev-
eral advantages. Conceptually, the basement scenario as formalised by PB (cf.
Example 6.19) allowed for several weak solutions (with the shortest one being
hazardous to the agent) and no strong solutions. In this case, the synthesised
strong plausibility solution corresponds to the course of action a rational agent
(mindful of her beliefs) should take. There are also computational advantages.
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An invocation of Plan(sp,P) will expand at most as many nodes as an invo-
cation of Plan(s,P) before returning a result (assuming the same order of tree
expansions). As plausibility plans only consider the most plausible information
cells, we can prune non-minimal information cells during plan search.

We also envision using this technique in the context of an agent framework where
planning, acting and execution monitoring are interleaved.9 Let us consider the
case of strong plausibility planning (α = sp). From some initial situation an
sp-plan is synthesised which the agent starts executing. If reaching a situation
that is not covered by the plan, she restarts the process from this point; i.e.
she replans. Note that the information cell to replan from is present in the tree
as a sibling of the most plausible information cell(s) expected from executing
the last action. Such replanning mechanisms allow for the repetition of actions
necessary in some planning problems with cyclic solutions.

We return one last time to the basement problem and consider a modified replace
action such that the replacement light bulb might, though it is unlikely, be
broken. This means that there is no strong solution. Executing the sp-solution
flick; desc, she would replan after flick if that action didn’t have the effect of
turning on the light. A strong plausibility solution from this point would then
be flick; replace; flick; desc.

6.5 Related and Future Work

In this paper we have presented α-solutions to planning problems incorporating
ontic, epistemic and doxastic notions. The cases of α = sp/sw are, insofar as we
are aware, novel concepts not found elsewhere in the literature. Our previous
paper [Andersen et al., 2012] concerns the cases α = s/w, so that framework
deals only with epistemic planning problems without a doxastic component.
Whereas we characterise solutions as formulas, [Bolander and Andersen, 2011]
takes a semantic approach to strong solutions for epistemic planning problems.
In their work plans are sequences of actions, requiring conditional choice of
actions at different states to be encoded in the action structure itself. By using
the L(P,A) we represent this choice explicitly.

The meaningful plans of [de Lima, 2007, chap. 2] are reminiscent of the work in
this paper. Therein, plan verification is cast as validity of an EDL-consequence
in a given system description. Like us, they consider single-agent scenarios,
conditional plans, applicability and incomplete knowledge in the initial state.

9Covering even more mechanisms of agency is situated planning [Ghallab et al., 2004].
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Unlike us, they consider only deterministic epistemic actions (without plausi-
bility). In the multi-agent treatment [de Lima, 2007, chap. 4], action laws
are translated to a fragment of DEL with only public announcements and pub-
lic assignments, making actions singleton event models. This means foregoing
nondeterminism and therefore sensing actions.

Epistemic planning problems in [Löwe et al., 2011] are solved by producing a
sequence of pointed epistemic event models where an external variant of appli-
cability (called possible at) is used. Using such a formulation means outcomes of
actions are fully determined, making conditional plans and weak solutions super-
fluous. As noted by the authors, and unlike our framework, their approach does
not consider factual change. We stress that [Bolander and Andersen, 2011, Löwe
et al., 2011, de Lima, 2007] all consider the multi-agent setting which we have
not treated here.

In our work so far, we haven’t treated the problem of where domain formula-
tions come from, assuming just that they are given. Standardised description
languages are vital if modal logic-based planning is to gain wide acceptance in
the planning community. Recent work worth noting in this area includes [Baral
et al., 2012], which presents a specification language for the multi-agent belief
case.

As suggested by our construction of planning trees, there are several connec-
tions between our approach for α = s and two-player imperfect information
games. First, product updates imply perfect recall [van Benthem, 2001]. Sec-
ond, when the game is at a node belonging to an information set, the agent
knows a proposition only if it holds throughout the information set. Finally,
the strong solutions we synthesise are very similar to mixed strategies. A strong
solution caters to any information cell (contingency) it may bring about, by
selecting exactly one sub-plan for each [Aumann and Hart, 1992].

Our work relates to [Ghallab et al., 2004], where the notions of strong and
weak solutions are found, but without plausibilites. Their belief states are sets
of states which may be partioned by observation variables. The framework
in [Rintanen, 2004] describes strong conditional planning (prompted by non-
deterministic actions) with partial observability modelled using a fixed set of
observable state variables. Our partition of plausibility models into information
cells follows straight from the definition of product update. A clear advantage
in our approach is that actions readily encode both nondetermism and partial
observability. [Jensen, 2013a] shows that the strong plan existence problem for
the framework in [Andersen et al., 2012] is 2-EXP-complete.10 In our formula-
tion, Plan(s,P) answers the same question for P (it gives a strong solution if

10See Chapter 3
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one exists), though with a richer modal language.

We would like to do plan verification and synthesis in the multi-agent setting.
We believe that generalising the notions introduced in this paper to multi-
pointed plausibility and event models are key. Plan synthesis in the multi-agent
setting is undecidable [Bolander and Andersen, 2011], but considering restricted
classes of actions as is done in [Löwe et al., 2011] seems a viable route for achiev-
ing decidable multi-agent planning. Other ideas for future work include replan-
ning algorithms and learning algorithms where plausibilities of actions can be
updated when these turn out to have different outcomes than expected.
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Chapter 7

Conclusion and Discussion

We started this thesis by lifting the foundation of automated planning to single-
agent dynamic epistemic logic. Then we showed that this formalism is able
express planning with or without branching actions as well as with full observ-
ability or partial observability. Our complexity results prove that our formalism
is no worse in terms of complexity than that used elsewhere in the field of au-
tomated planning. Next we took at look at single-agent epistemic-plausibility
models, which are structures that allow us to reason about doxastic notions. We
presented a notion of bisimulation that corresponds to modal equivalence (in the
typical sense) for the doxastic language with both a conditional belief modality
as well as a degrees of belief modality. Surprisingly, it turns out that these two
doxastic notions are incomparable over an infinite set of propositional symbols.
Lastly, we formalized solution concepts that only require plans to cater for the
expected outcomes. For an extensive account of our results we refer the reader
to Section 1.6.

What we find to be an important result methodologically is that by lifting the
foundation of automated planning to dynamic epistemic logic, we were able to
directly utilize results from epistemic model theory. This allowed us to to limit
the size of information cells, as well as give an upper bound on the number
information cells that we must explore in order to find a solution. In itself this
result only allows us to show conditional epistemic planning is an appropri-
ate alternative formalism for automated planning. More interesting is that by
taking the first steps in this direction, we were able to develop a new formal-
ism for planning, this time by relying on a dynamic version of doxastic logic.
This demonstrates a general method for extending planning, based on research
conducted within the field of modal logic.
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We must concede to not having handled the highly interesting multi-agent set-
ting, which is arguably where planning founded on dynamic epistemic-doxastic
logics shines. There are a plethora of problems that must be addressed to facil-
iate multi-agent planning. We already mentioned the issue of undecidability in
Section 1.3, with the recent [Yu et al., 2013] giving some hope of finding more
decidable fragments. Another is finding an adaquate description language that
can play the same role as that of PDDL in automated planning (see Section 1.1).
Namely, a language that would allow for benchmarking and comparing different
approaches to multi-agent planning; one proposal for this is [Baral et al., 2012].
In any case, it seems likely that significant compromises must be made in terms
of expressive power, in order for multi-agent planning to ever become practical.
What we can at least take away from this fact is that it fully supports our initial
view that no single method is universally best for all tasks, and hope that even
more research will be conducted in the crossroads between planning and modal
logics.



Appendix A

Proofs

A.1 Proofs from Section 3.2

For Lemmas A.1 through A.5 we consider some k ∈ N, and let T be a planning
tree for Pk = (M0,A, pk+2) on P = {p1, . . . , pk+2} (cf. Definition 3.25).

Lemma A.1. For any or-node n of T , the label M(n) denotes a singleton
epistemic model satisfying exactly one propositional symbol in P .

Proof. By inspection of the initial state and action library. We have that
M(root(T )) =M0 is a singleton epistemic model satisfying exactly p1. There-
fore we have for 1 ≤ i ≤ k that when growi is applicable the tree expansion
rule results in two or-nodes being added to T , where one satisfies exactly pi+1

and the other satisfies exactly pi+2. Similarly when stopk+1 is applicable one
or-node results satisfying exactly pk+2.

Lemma A.2. For any or-node n of T , if M(n) |= pk+2 then no actions in A
are applicable in M(n), and otherwise exactly one action in A is applicable in
M(n).

Proof. By inspection of the action library we have that for 1 ≤ i ≤ k, growi
is applicable iff M(n) |= pi, and stopk+1 is applicable iff M(n) |= pk+1, which
covers all actions in A. From Lemma A.1 we have that M(n) satisfies exactly
one propositional symbol, hence the result follows.

Lemma A.3. For any or-node n of T , if n is solved then every descendant of
n is solved.
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Proof. By induction on the height of n. The base case is when the height of n is
0 (n is a leaf), meaning that n has no descendants so the result holds trivially.
For the induction step assume that n has height h+ 1. As n is not a leaf there
has to be an action in A which has been used for the expansion of n. By Lemma
A.2 only one such E exists in the action library, and consequently n has exactly
one child m of height h. By assumption we have that n is solved, and so as n is
an or-node we have by Definition 2.21 that its single child m must be solved.
As a result of m being a solved and-node it follows that every child n′ of m is
solved. As each n′ is an or-node whose height is < h, we can apply the induction
hypothesis to conclude that every descendant of n′ is solved. Consequently we
have that every descendant of n is solved, showing the induction step and thus
completing the proof.

Lemma A.4. For any two or-nodes n and n′ of T , if n is an ancestor of n′,
thenM(n) andM(n′) are not bisimilar.

Proof. Consider every or-node on the unique path from n to n′. Using Lemma
A.1 we have that each such node is labelled with a singleton epistemic model
satisfying exactly some pi. We can therefore identify this path with a sequence
of numbers, corresponding to the single propositional symbol satisfied at each
or-node. By inspection of the action library (as in the proof of Lemma A.1), it
follows that this is a strictly increasing sequence (by either 1 or 2). Therefore n
and n′ do not satisfy the same atoms, hence they are not bisimilar.

Lemma A.5 (Extended proof of Lemma 3.27). B2 does not prevent the tree
expansion rule from being applied to any or-node n of a planning tree T for Pk

Proof. For B2 to prevent n from being expanded, there has to be an action E in
A s.t. E is applicable inM(n) and E has not been used for the expansion of n.
Furthermore at least one subcondition of B2 must be true. We will show this
cannot be the case, by assuming in turn each subcondition of B2 and deriving
a contradiction. 1) Assume that n is solved. Since E is an applicable action it
follows from Lemma A.2 thatM(n) 6|= pk+2. Therefore as n is a solved or-node
not satisfying the goal formula, it must have a child that is solved. But from
Lemma A.2 we have that E is the only action applicable in M(n), hence as n
has not been expanded by E it has no children, contradicting that n is solved.
2) Assume that n has a solved ancestor. By Lemma A.3 this implies that n is
solved, hence we can derive a contradiction as in 1). 3) Assume that n has an
ancestor node n′ s.t. M(n) and M(n′) are bisimilar. By Lemma A.4 such an
ancestor cannot exist, hence we have an immediate contradiction.
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A.2 Proofs from Section 3.3

Lemma A.6 (Extended proof of Lemma 3.36). Let a planning problem P =
(M0,A, ϕg) be given. There exists a B2-saturated planning tree T for P whose
root is solved iff the saturated planning graph G for P is solved.

Proof. We show that if T is B2-saturated planning tree for P such that root(T )
is solved, then the saturated planning graph G = (N,M,E, n0) for P is solved.
We do so by constructing from T a graph G′, which can be mapped to a solved
subgraph of G. The mapping is simple but necessary, as G′ is a solved subgraph
of G up to bisimilarity. In constructing G′ we first prune T so that it contains
only solved nodes, and recall that in this pruned tree the outdegree of each or-
node is 1, except nodes satisfying ϕg whose outdegree is 0. We then iteratively
construct G′ = (N ′,M ′, E′, n′0), with n′0 = root(T ) being added at the very end.
Adding a node of T to G′ means we add it to the corresponding bipartition, that
is, or-nodes of T are added to N ′ and and-nodes of T are added toM ′. Further,
we assign nodes the same label as given in T .

Let hr be the height root(T ) (i.e. the height of T ), and Ni, resp. Mi, be the or-
nodes, resp. and-nodes, in T of height i. Starting from i = 0 and in increments
of 1, repeatedly apply the operation AddLayer(i) until i = hr/2 (note that the
height of an or-node is an even number and that the height of an and-node is
an odd number).

AddLayer(i)

1 for each n ∈ N2i � Only or-nodes have this height
2 if G′ contains no or-node totally bisimilar to n then
3 Add n to G′

4 if n has a child mc in T then
5 m ← and-node in G′ totally bisimilar to mc

6 Add (n,mc) with label E(n,mc) to G′

7 for each m ∈M2i+1 � Only and-nodes have this height
8 Add m to G′

9 for each child nc of m
10 n ← or-node in G′ totally bisimilar to nc

11 Add (m,n) to G′

The final call AddLayer(hr/2) adds exactly n′0 = root(T ) to G′, since B2-
saturation implies that no or-node in T is bisimilar to root(T ) and because
Mhr+1 = ∅. Because we do this in a bottom-up fashion based on the height
of a node in T , we can always find the totally bisimilar nodes in line 4 and
10 (or equivalently, G′ always contains nodes which are totally bisimilar to the
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children of nodes chosen in line 1 and 7). Upon completion of these operations
we remove every node in G′ not reachable from n′0.

We cannot assume that the labels of or-nodes in T are necessarily found in G,
meaning that G′ is not generally a solved subgraph of G for n0. However, we
can use G′ to show that a solved subgraph of G exists. To this end, we first
show that G′ satisfies C1 and C2. The criteria C1 is immediate as every node not
reachable from n0 is removed after the AddLayer operations have been carried
out, and so we turn to C2.

Claim 1. G′ is acyclic.

Proof of claim. Let G′j denote G′ after j AddLayer operations have been
carried out. We show that G′j is acyclic for any j ∈ N, and proceed by induction
on j. Since G′0 is an empty graph we can immediately proceed to the induction
step. From the induction hypothesis it follows that G′j is acyclic, and so we
must show that G′j+1 is acyclic. For G′j+1 to contain a cycle C, it follows from
acyclicity of G′j that C must visit a node not in G′j . Since the nodes added in
line 3 and 8 of AddLayer are not reachable from any node in G′j , we have the
stronger requirement that C only visit nodes added by AddLayer(j + 1). The
head of each edge added in line 6 is a node in G′j , meaning that C only visits
nodes added in line 8. These nodes have indegree 0, and consequently C cannot
exists, hence G′j+1 is acyclic. We can now conclude that G′hr/2

= G′ is acyclic.

The following claim shows that we can match any node and edge in Gb to a
node and edge in G modulo bisimilarity.

Claim 2. Let v′1 be a node in G′. There is a v1 in G s.t. M(v′1) - M(v1).
Further, if v′2 is a direct successor of v′1, then v1 has a direct successor s.t.
M(v′2) -M(v2).

Proof of claim. Proof is by induction on the length l of the shortest path
from n′0 to v′1. For the base case we have l = 0 and so v′1 = n′0. We have
that M(n′0) = M(root(T )) = M(n0), immediately showing that n0 is a node
of G that is bisimilar to n′0. As n′0 is an or-node, then if it has a direct
successor v′2 the label E(n′0, v

′
2) is an action that is applicable in M(n′0). By

Corollary 3.7 and M(n′0) - M(n0) it follows that E(n′0, v
′
2) is applicable in

M(n0). As G it saturated this means n0 has a direct successor v2 s.t. M(v2) =
M(n0)⊗ E(n′0, v

′
2), and so from Lemma 3.8 it follows thatM(v′2) -M(v2).

For the induction step, assume that the shortest path from n′0 to v′1 is of length
l + 1. We therefore have a direct predecessor v′p of v′1, and the length of the
shortest path from n′0 to v′p is l. Applying the induction hypothesis (v′1 is a direct
successor of v′p) this means G contains nodes vp, v1 s.t. v1 is a direct successor
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of vp,M(v′p) -M(vp) andM(v′1) -M(v1). It therefore remains to be shown
that if v′2 is a direct successor of v′1, then there is a direct successor v2 of v1

s.t. M(v′2) - M(v2). Assuming such a v′2 exists, this gives rise to two cases.
If v′1 is an or-node, it follows that E(v′1, v

′
2) is applicable in v′1. As in the base

this means there is a direct successor v2 of v1 s.t. M(v2) =M(v1)⊗ E(v′1, v
′
2),

and so we have M(v′2) - M(v2) as required. If v′1 is an and-node it follows
thatM(v′2) is an information cell ofM(v′1). Total bisimilarity betweenM(v′1)
andM(v1) means there exists an information cell ofM(v1) that is bisimilar to
M(v′2), hence there is a direct successor v2 of v1 s.t. M(v′2) -M(v2), thereby
completing the induction step.

Completing the proof we show that G′ can be mapped to a solved subgraph of
G for n0 withM(n0) =M(root(T )). We map each node in G′ to the node in
G′ for which it is bisimilar, which is possible by Claim 2. Furthermore, each
edge of G′ is mapped to an edge in G in the obvious manner, which is possible
as both planning trees and planning graphs are expanded based on the product
update operation. Let H be the subgraph of G induced by this mapping. As
G′ satisfies C1 and C2 so does H. To see that H satisfies C3, recall that T was
pruned to contain only solved nodes. Therefore any or-node added to G′ has
outdegree 0 if it satisfies ϕg and otherwise it has outdegree 1 due to line 4 and
5 of AddLayer, and furthermore no two or-nodes of G′ are totally bisimilar
due to line 2. We have that each child of an and-node in T corresponds to an
information cell. Therefore line 9 and 10 of AddLayer means that the direct
successors of an and-node m′ in G′ are exactly the information cells ofM(m′),
and so H satisfies C4. Consequently H is a solved subgraph of G for n0 as
required.

Recall that Gi denotes the graph produced i iterations of the loop in line 3 of
SolvedSubgraph, and that as SolvedSubgraph never removes nodes, Gi is
a subgraph of Gi+1.

Lemma A.7. Gi = (Ni,Mi, Ei) is a subgraph of G that satisfies C3 and C4.

Proof. As the procedure only ever adds nodes and edges that exist in G, it
follows that Gi is a subgraph of G. In each iteration starting at line 3, we have
from line 4 that if n ∈ Ni, then it is not contained in Nus. This means any goal
node has outdegree 0 due to the initialization in line 1. Moreover, when n is
added to Gi in line 7 it not belong to Nus in subsequent iterations. Therefore
any n added to Gi has exactly outdegree 1, and so we have that Gi satisfies C3.
Inspecting line 6 and 7, we have from Solved(m,G,N ′) that when some m is
added to Gi, each direct successor of m in G must already be contained in Gi.
Therefore the operation is well-defined, and as every outgoing edge from m in
G is added, it follows that Gi satisfies C4.
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Lemma A.8 (Extended proof Lemma 3.39). Given a saturated planning graph
G = (N,M,E, n0) for P = (M0,A, ϕg), and let Gi = (Ni,Mi, Ei). Further, let
n∗ ∈ (N \ Ni) s.t. n∗ has a direct successor m∗ in G with Solved(m∗, G,Ni),
and where n1, . . . , ny ∈ Ni denotes the direct successors of m∗. If for each x s.t.
1 ≤ x ≤ y there exists a solved subgraph of Gi for nx, then there exists a solved
subgraph of G for n∗.

Proof. For each x s.t. 1 ≤ x ≤ y we let Hx = (Nx,Mx, Ex, nx) denote the
solved subgraph of Gi for nx. Further, let N∗ = N1 ∪ · · ·Ny ∪ {n∗}, M∗ =
M1 ∪ · · ·My ∪ {m∗} and E∗ = E1 ∪ · · ·Ey ∪ {(n∗,m∗), (m∗, n1), . . . , (m∗, ny)}.
We show that G∗ = (N∗,M∗, E∗, n∗) is a solved subgraph of G. See also Figure
3.5 for a more accommodating illustration of this construction.

Each Hx is by Lemma A.7 a subgraph of G, so from n∗ ∈ N and m∗ being a
direct successor of n∗ in G, it follows that G∗ is a subgraph of G. There is a
path from n∗ to m∗, and from m∗ to each n1, . . . , ny. As each Hx satisfies C1
this implies that every node in G∗ is reachable from n∗. Since by construction
n∗ has indegree 0, it follows that G∗ satisfies C1. Furthermore, by Lemma A.7
we have that each Hx satisfy C3 and C4. As the outdegree of n∗ is 1, and m∗ has
exactly the same direct successors as in G, we therefore have that G∗ satisfies
C3 and C4.

For C2, assume towards a contradiction that G∗ contains a cycle C. Due to the
way we constructed G∗ it is clear that n∗ and m∗ cannot be part of C. We can
therefore assume that some node in C belongs to Hx for some x ∈ {1, . . . , y}.
By C2 we have that there is no cycle in Hx. Therefore C must visit another a
node in Gx′ for some x′ 6= x, and this node does not belong to Hx. This leads
to either of the following two cases.

• There is some (na,mb) ∈ E∗ s.t. na ∈ Nx and mb 6∈ Mx: As Hx satisfies
C3, we either have M(na) |= ϕg, or that there is some (na,ma) ∈ Ex
with ma 6= mb. Since G∗ satisfies C3 (shown above), the first case is
contradicted by (na,ma) ∈ E∗ because here na must be a sink; and the
second case is contradicted by the outdegree of na in G∗ being at least 2
since {(na,mb), (na,ma)} ⊆ E∗.

• There is some (ma, nb) ∈ E∗ s.t. ma ∈ Mx and nb 6∈ Nx: Because
(ma, nb) ∈ E∗ it must be that (ma, nb) ∈ Ei, as otherwise this edge could
not be in G∗. As Hx is, by our initial assumption, a solved subgraph of
Gi it follows from Hx satisfying C4 that (ma, nb) ∈ Ex, contradicting that
nb 6∈ Nx.

Having shown that G∗ satisfies the necessary criteria the result follows.
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A.3 Proofs from Section 3.4

Lemma A.9 (Extended proof of Lemma 3.48). Let c = σ1qσ2 be a configuration
of T with i = |σ1| + 1 ≤ p(n) being the position of T ’s head, and where c

yields c′ due to δ(q, s) = {(q′, s′, d)}. Then stepq
′,s′,d
i,q,s is applicable in Mc, and

Mc ⊗ stepq
′,s′,d
i,q,s is the information cell associated with c′.

Proof. This result is shown by considering the various cases of c and δ(q, s). Here
we show one case; the remaining are similarly forthcoming. Let x, y, z ∈ Σ and
consider now that σ2(1) = x. Further let z = σ2(2) and σ′2 = σ2(3) . . . σ2(|σ2|),
and assume that δ(q, x) = {(q′, y, R)}. This means c = σ1qxzσ

′
2 and c′ =

σ1yq
′zσ′2. In other words, T is in state q, reading x, and then changes state to

q′, writes y and moves right to read z.

By assumption Mc is the information cell associated with c, meaning that
its single world satisfies q, hi, xi, zi+1, the remaining letter-position symbols
indicated by σ1σ2, as well as blank symbols tj for j > |σ1| + |σ2|. There-
fore Mc |= hi ∧ q ∧ xi and so stepq

′,y,R
i,q,x is applicable in Mc. Consequently,

Mc ⊗ stepq
′,y,R
i,q,x is a singleton, and by inspecting the boolean postconditions we

see that this information cell satisfies q′ (and not q), yi (and not xi) and hi+1

(and not hi), with the remaining letter-position symbols (namely zi+1) having
the same truth value as inMc. ConsequentlyMc ⊗ stepq

′,y,R
i,q,x is isomorphic to

the information cell associated with c′.

Lemma A.10 (Extended proof of Lemma 3.65). Let c = σ1qσ2 be a config-
uration of T with |σ1| + 1 ≤ e(n), that yields c′ due to δ(q, s) = {(q′, s′, d)}.
Then estepq

′,s′,d
q,s is applicable in Mc, and Mc ⊗ estepq

′,s′,d
q,s is the information

cell associated with c′.

Proof. Let x, z ∈ Σ, and assume that σ2 = x and δ(q, x) = {(q′, z, R)}. We
therefore have that c = σ1qx and c′ = σ1zq

′t, and let m = |σ1|+ 1. This means
that T is reading x in state q, writes z and moves right to read t. LetMc be the
information cell associated with c with valuation V . By definitionMccontains
worlds wm and wm+1 s.t wm ∈ V (idi) if the mi bit is 1, and wm+1 ∈ V (idi) if
the (m+ 1)i bit is 1. Further we have wm, wm+1 ∈ V (hi) if the mi bit is 1 (the
head position is the same in every world). Because m > |σ1|, m ≤ |σ1|+ 2 and
σ2(m − |σ1|) = σ2(1) = x we have wm ∈ V (x); and since m + 1 > |σ1| + |σ2|,
m+ 1 ≤ e(n) + 1 we have wm+1 ∈ V (t).

We now have that Mc, wm |= (s ∧ (h = id)), hence Mc |= K̂(s ∧ (h = id)).
The remaining worlds ofMc are given so thatMc |= initb ∧ q ∧ (m ≤ e(n)) ∧
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K̂(s ∧ (h = id)) and therefore estepq
′,z,R
q,x is applicable inMc. Furthermore, as

estepq
′,z,R
q,x is a singleton we have thatMc⊗estepq

′,z,R
q,x contains the same number

of worlds as Mc. To show that the valuation of Mc ⊗ estepq2,z,Rq1,x is identical
to that of Mc′ , the cases for state and head symbols are immediate, and id is
unchanged. We have Mc, wm 6|= post(e)(x) and Mc, wm |= post(e)(z), and so
x does not hold in (wm, e) whereas z does. We have that Mc, wm+1 |= t, so
from post(e)(t) = t it follows that t holds in (wm+1, e) (note that we do not
in general have s 6= t, so indeed blanks can be erased, though never written
due to the definition of δ). Moreover, any letter symbol different from x and
z retains its truth value, and so does x and z in worlds satisfying h 6= id; i.e.
in every world distinct from wm. From this it follows that Mc ⊗ estepq

′,z,R
q,x is

isomorphic toMc′ . The remaining cases are similarly gruelling.

Lemma A.11. Let c = σ1qσ2 be a configuration of T with |σ1|+ 1 ≤ e(n), and
where c yields c′ due to δ(q, s) = {(q′, s′, d)}. Then Mc |=

r
estepq

′,s′,d
q,s

z

s
ϕ iff

Mc′ |= ϕ.

Proof. As in the proof of Lemma 3.49, except here using Lemma A.10 to show
thatMc |= 〈estepq

′,s′,d
q,s 〉> andMc ⊗ estepq

′,s′,d
q,s is isomorphic toMc′ .

Proposition A.12 (Extended proof of Proposition 3.66). If the DTM T accepts
σ without violating the space bound e(n), then there exists a solution to the non-
branching and partially observable planning problem P.

Proof. As the first order of business we show that if c = σ1qσ2 is an x-accepting
configuration with |σ1| + 1 ≤ e(n), then there is a π s.t. toMc |= JπKs ϕg. To
this end we proceed by induction on x. If c is 0-accepting then l(q) = acc and the
head position is at most e(n). It follows thatMc |= q∧(h ≤ e(n)) and therefore
Mc |= JskipKs ϕg thus completing the base case. Assume for the induction step
that c is (x + 1)-accepting. Then c yields c′ due to some δ(q, s) = {(q′, s′, d)}
and c′ is y-accepting for some y ≤ x. To see that the head position of c′ is at
most e(n), we have from T not violating the space bound that if |σ1|+ 1 = e(n)
then d = L. From this and c′ being y-accepting we can apply the induction
hypothesis and conclude thatMc′ |= JπKs ϕg for some π. Using Lemma A.11 it
follows thatMc |=

r
estepq

′,s′,d
q,s

z

s
(JπKs ϕg), henceMc |=

r
estepq

′,s′,d
q,s ;π

z

s
ϕg as

required.

Since c0 = qσ we can now conclude that there exists a plan π s.t. Mc0 |= JπKs ϕg.
Using Lemma 3.63 we have thatMs |= Jboot0; . . . ; bootb−1; finalizeKs (JπKs ϕg),
henceMs |= Jboot0; . . . ; bootb−1; finalize;πKs ϕg as required.

Lemma A.13. Let c = σ1qσ2 be a configuration of T with |σ1|+ 1 ≤ e(n) and
s = σ2(1). If there is an action E ∈ A s.t. such thatMc |= JEKs ϕ, then c yields
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some configuration c′, andMc′ |= ϕ.

Proof. From Mc being the information cell associated with c it follows that
Mc |= initb∧q∧(h = |σ1|+1)∧K̂(s∧(h = id)). This rules out E from being any
bootstrapping action. As E exists and is applicable it follows from construction
of the action library that there is some (q′, s′, d) ∈ δ(q, s). Therefore c has a
successor configuration c′. Further we must have that E = estepq

′,s′,d
q,s because

this is the only action in A that is applicable in Mc. By Lemma A.11 and
Mc |=

r
estepq

′,s′,d
q,s

z

s
ϕ it follows thatMc′ |= ϕ.

Proposition A.14 (Extended proof of Proposition 3.67). If there exists a so-
lution to the non-branching and partially observable planning problem P, then
the DTM T accepts σ without violating the space bound e(n).

Proof. In order to show this, we first argue that the bootstrapping procedure
always takes place. To this end consider some information cell M. We have
for 0 ≤ i ≤ b − 1, that if initi holds and no state symbol holds, the only
applicable action in M is booti, and when initb holds and no state symbol
holds, the only applicable action inM is finalize. Furthermore ϕg requires that
some (accepting) state symbol hold, and thus we must have finalize as part of
any solution. Therefore we can assume that any solution to P has the prefix
boot0; . . . ; bootb−1; finalize. From Lemma 3.63 we have that whenMc0 |= ϕ then
Ms |= Jboot0; . . . ; bootb−1; finalizeKs ϕ. Consequently we’re done after showing
that if there exists a π s.t. Mc0 |= JπKs ϕg, then c0 is an accepting configuration
and T does not violate its space bound.

Letting c = σ1qσ2 be a configuration of T s.t. |σ1| + 1 ≤ e(n), we will show
the stronger result that if Mc |= JπKs ϕg, then c is accepting and no further
computation violates the space bound. We proceed by induction on the length
of π (cf. Theorem 2.25), with the cases of π = skip and π = if ϕ then π1 else π2

being as in the proof of Proposition 3.52. For the second base case π = E for
some E ∈ A, assume thatMc |= JEKs ϕg. By Lemma A.13 we have that c yields
a configuration c′, and that Mc′ |= ϕg. Therefore c′ is 0-accepting and c is
1-accepting. For the space bound to be violated the head position in c′ must
be e(n) + 1, as by assumption the head position in c is at most e(n). But since
Mc′ |= (h ≤ e(n)) we derive the contradiction Mc′ |= (h = (e(n) + 1)) ∧ (h ≤
e(n)), thus concluding the base case.

For the induction step what remains is to consider π = π1;π2 with |π| = m+ 1,
where we assume π has the form E ;π′ with |π′| ≤ m (cf. Proposition 3.52).
Assuming thatMc |= JEKs (Jπ′Ks ϕg), it follows from Lemma A.13 that c yields
a configuration c′, and that Mc′ |= Jπ′Ks ϕg. By assuming the head position
in c′ is e(n) + 1, no actions are applicable in Mc′ and so we can derive the
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contradiction Mc′ |= (h = (e(n) + 1) ∧ (JskipKs (h ≤ e(n))). We can therefore
apply the induction hypothesis and conclude that c′ is x-accepting and no further
computation from c′ violates the space bound, hence c is (x+ 1)-accepting and
no further computation from c violates the space bound.

Lemma A.15. Let c = σ1qσ2 be a configuration of T with |σ1| + 1 ≤ e(n)
(the head position), and where c has successor configurations c′1, . . . , c′k due to
δ(q, s) = {(q1, s1, d1), . . . , (qk, sk, dk)}.

• If l(q) = ∃ then for each j ∈ {1, . . . , k} we have that estepq
j ,sj ,dj

q,s is appli-
cable inMc, andMc⊗ estepq

j ,sj ,dj

q,s is the information cell associated with
c′j, and

• If l(q) = ∀ then estep∀q,s is applicable in Mc, and Mc ⊗ estep∀i,q,s is the
disjoint union of the information cells associated with c′1, . . . , c′k.

Proof. Using Lemma A.10 this is as in the proof of Lemma 3.54.

Lemma A.16. Let c = σ1qσ2 be a configuration of T with |σ1| + 1 ≤ e(n),
l(q) = ∃, and where c has successor configurations c′1, . . . , c′k due to δ(q, s) =
{(q1, s1, d1), . . . , (qk, sk, dk)}. Then for each j ∈ {1, . . . , k} we have that Mc |=r
estepq

j ,sj ,dj

q,s

z

s
ϕ iffMc′j

|= ϕ.

Proof. As in the proof of Lemma A.11, here by using Lemma A.15 rather than
Lemma A.10.

Lemma A.17 (Extended proof of Lemma 3.69). For the definition of ψj, we
refer to the discussion above Lemma 3.69. Let c = σ1qσ2 be a configuration of T
with |σ1|+1 ≤ e(n), l(q) = ∀, and where c has successor configurations c′1, . . . , c′k
due to δ(q, s) = {(q1, s1, d1), . . . , (qk, sk, dk)}. If Mc′j

|= JπjKs ϕ for any j ∈
{1, . . . , k}, thenMc |=

q
estep∀i,q,s; if ψ1 then π1 else if · · · if ψk then πk

y
s
ϕ.

Proof. As in the proof of Lemma 3.56, we have for any j ∈ {1, . . . , k} that
Mc′j

|= ((ψ1 → Jπ1Ks ϕ) ∧ · · · ∧ (ψj → JπjKs ϕ)) ∧ (ψ1 ∨ · · · ∨ ψk). Again using
the derivation in the proof of Theorem 2.24 it follows that

Mc′j
|= K Jif ψ1 then π1 else if · · · if ψk then πkKs ϕ

Mc |=
[
estep∀q,s

]
(K Jif ψ1 then π1 else if · · · if ψk then πkKs ϕ)

becauseMc is the disjoint union of eachMc′1
, . . . ,Mc′k

by Lemma A.15Mc ⊗
estep∀q,s. As step∀q,s is applicable inMc we conclude as required:

Mc |=
q
estep∀q,s; if ψ1 then π1 else if · · · if ψk then πk

y
s
ϕ
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Proposition A.18 (Extended proof of Proposition 3.70). If the ATM T accepts
σ without violating the space bound e(n), then there exists a solution to the
branching and partially observable planning problem P.

Proof. We show that if T is in a configuration c = σ1qσ2 which is x-accepting
and |σ1|+ 1 ≤ e(n), then there is a plan π s.t. Mc |= JπKs ϕg, whereMc is the
information cell associated with c. The proof is by induction on x and is almost
exactly as the proof of Proposition 3.57, with two minor changes. First we
use Lemmas A.16 and A.17 for the induction step (instead of Lemmas 3.55 and
3.56). Second the space bound here is e(n) rather than p(n). As c0 = q0σ is such
a configuration it follows that there is a π s.t. Mc0 |= JπKs ϕ, and so applying
Lemma 3.63 we conclude thatMs |= Jboot0; . . . ; bootb−1; finalize;πKs ϕg.

Lemma A.19. Let c = σ1qσ2 be a configuration of T with |σ1| + 1 ≤ e(n),
s = σ2(1) and l(q) = ∃. If there is an action E ∈ A such that Mc |= JEKs ϕ,
then c has a successor configuration c′, andMc′ |= ϕ.

Proof. As in the proof of Lemma A.13 we have that E cannot be a bootstrap-
ping action, and moreover as E is applicable in Mc we have that δ(q, s) =
{(q1, s1, d1), . . . , (qk, sk, dk)}. Consequently we have for any j ∈ {1, . . . , k}
that there exists a successor configuration c′j . Further, we may assume E =

estepq
j ,sj ,j

q,s so using Lemma A.16 and Mc |=
r
estepq

j ,sj ,j

q,s

z

s
ϕ we conclude

Mc′j
|= ϕ.

Lemma A.20. Let c = σ1qσ2 be a configuration of T with |σ1|+ 1 ≤ e(n), s =
σ2(1) and l(q) = ∀. If there is an action E ∈ A s.t. such thatMc |= JEKs ϕ, then
c has successor configurations c′1, . . . , c′k, andMc′j

|= ϕ for each j ∈ {1, . . . , k}.

Proof. From our assumptions the only applicable action inMc is estep∀q,s. We
therefore have δ(q, s) = {(q1, s1, d1), . . . , (qk, sk, dk)}, hence c has successor con-
figurations c′1, . . . , c′k. By Lemma A.15 we have that Mc ⊗ estep∀q,s is the dis-
joint union of eachMc′1

, . . . ,Mc′k
, and so asMc ⊗ estep∀q,s |= ϕ it follows that

Mc′j
|= ϕ for each j ∈ {1, . . . , k}.

Proposition A.21 (Extended proof of Proposition 3.71). If there exists a so-
lution to the branching and partially observable planning problem P, then the
ATM T accepts σ without violating the space bound e(n).

Proof. As in the proof of Proposition A.14 we have that the bootstrapping
procedure always takes place. What must therefore be shown is that, if there
exists a π s.t. Mc0 |= JπKs ϕg, then c0 is an accepting configuration and T
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does not violate its space bound. Letting c = σ1qσ2 be a configuration of T s.t.
|σ1|+ 1 ≤ e(n), we can show the stronger result that ifMc |= JπKs ϕg, then c is
accepting and no further computation violates the space bound. When the prefix
of π is E we apply either Lemma A.19to show that an existential configuration
is accepting, or Lemma A.20 to show that a universal configuration is accepting.
That the space bound is not violated is shown by an indirect proof, which is
essentially that used in the proof of Proposition A.14. The case of π = skip
is immediate, and π = if ϕ then π1 else π2 follows straight from the induction
hypothesis.
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