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Abstract. In relation to the development of a Rolling Wheel Deflectem@®WD), which
is a non-destructive testing device for measuring pavemeitctions, a finite element model
for obtaining the soil/pavement response is developed.odbyy boundary conditions are
necessary in order to prevent reflections of the waves prapagérough the soil due to the
dynamic loading. The Perfectly Matched Layer (PML) has proto be highly efficient when
solving transient wave propagation problems in a fixed meslwé¥er, since the RWD is
operating at traffic speeds, the load is moving with high speetia formulation in a moving
mesh is therefore more convenient. In this paper, a formaraif the PML is developed in the
moving frame of reference. Numerical results are preserdea fsingle layer and a double
layer half space, respectively, subjected to a moving |datifferent velocities.
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1 INTRODUCTION

The Rolling Wheel Deflectometer (RWD) is a non-destructiveingstievice operating at
traffic speed for measuring pavement deflections. The RWDugpgd with a heavy load on
the rear-most axle under which the pavement deflections assuned. A 2D finite element
model is developed in order to obtain the soil/pavementaesp from a transient dynamic
load simulating the heavy load from the RWD. Absorbing boupd#@nditions are necessary
in order to prevent reflections of the waves propagatingutjinathe soils due to the dynamic
loading. As the load is moving at high speed, the use of a fixeshmwvill require a very large
computational domain in order to capture the response uhdanoving load before it leaves
the domain. This can be quite costly and limit the analysia tather short time interval. A
formulation in the moving frame of reference is thereforaenmonvenient.

A local transmitting boundary condition formulated in centive coordinates developed by
Krenk et al. [1,.2] has been used in transient vibration amalpf railway-ground system
under fast moving loads [3]. The formulation is simple andhpatationally fast, essentially
being equivalent to an oriented spring-damper configunadiothe boundary nodes, based on
planar waves with a single point of origin. In the moving adioate system, the directions
of propagation of P- and S-waves are modified to account ®itrlnslation of the frame of
reference.

The radiation formulation can be made more general and tdlyusxtending it to non-local
form by using an additional attenuation layer around the matational domain, in the form
of a Perfectly Matched Layer (PML) first proposed by Berendgtq electromagnetic waves.
Later PML was formulated for the elastic wave equation in %y [6,/7]. However, in this
approach the solution for the displacements is dependecdmputation of the strains in each
time step. A simpler procedure, depending only on the digpteents, using an artificially
anisotropic material description of the PML layer, was relyeproposed in([8]. Compared to
the spring-damper configuration, the additional layer amstmore information about propaga-
tion directions and has proven to be highly efficient whewisgl transient vibration problems
in a stationary frame of referende [8]. The PML has not yenbleemulated in the moving
frame of reference.

In this paper, a formulation of the PML is developed in tratisly coordinates based on the
PML formulation in [8]. Numerical results are presentedddralf-space subjected to a moving
load of different velocities and a half-space of multiphedes.

2 PERFECTLY MATCHED LAYER

The standard PML formulation of [8], valid for transient veapropagation in a stationary
mesh, is generalized to a moving mesh. The key concept of Miei® a coordinate trans-
formation in which the spatial variables are mapped ontopterspace by a so-called com-
plex stretching function. The mapping replaces propagatiaves with exponentially decaying
waves as the propagating waves passes the PML interfacegertezal equation of motion is
written as

Vo +p=pii (1)

c=Ce=CVu (2)
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whereu = [uy, us]” is the displacement vectags,= [p;, p»]” is the load vector, and ) denotes
temporal differentiationo is the stress tensor defined by

o — [ 011 012 ] (3)

021 022

In the absorbing layer the original coordinate variabigs(i = 1,2) are replaced with the
complex stretched coordinate variablgesdefined by

{LN‘Z‘ = / 1 Si<i’i,W)dffi, 7= ]_,2 (4)
0
wherew is the angular frequency angare the stretched coordinate functions proposed in [9]
0%, = si(x;,w) =1+ @(%)7 i=1,2 (5)
Oz, w

where:; denotes the imaginary unit afd> 0 is a real function which controls the attenuation
of the wave propagation.
Applying the stretched coordinates to the equation of nmof) in a frequency representa-
tion yields
V,o+p=—-w’pu (6)

whereu(t) = U(w)e ™, V, = (9/011,0/97,)", and % = L ;2-. Because the equations in
the complex stretched coordinates are on the same form a8 thahe non-stretched coordi-
nates, waves are passing through the PML interface withaiging any reflections [10].

The introduction of the stretched coordinates yields asaropic formulation of the equa-
tion of motion, expressed by .. To keep the expressions of the divergence and the gradient i
non-stretched coordinates, the anisotropy is moved to #tenml description by a modification
of the constitutive relation, allowing for the use of the sgkmematics in the computational do-
main and PML domain. Equationl(6) is multiplied with the puotls; s, and a new set of stress
variables is introduced, defined in tensor form as

1
O = 5159 [ 86 521 } o = s159A0 (7)

By substitution of equatiori{7) int@l(2) and modifying the sbtutive relation, the equation of
motion with the new stress variables can be written in nostched coordinates as

Vo+p = —pwisisou (8)
& = CVu (9)

where the constitutive relation is modified to

CNvijkl = s Cijkl ) Z.ajakal = 172 (10)

with no summation over indicesand k. This formulation leads to an artificial anisotropic
material description sinc€1111 # Ca29s.
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For a general FE-implementation, equatioh (9) is formual@tevoigt notation, and the con-
stitutive law then reads

- ~ )

011 Cn Cio dz1 0

- ~ B

To2 | Ca Oy 0 Dz t1 11
1/~ ~ - N 1 o] [o) ( )
? (Ga1 + 012) Ces  Ces dms Oz | LU2
1/~ = A A 0 9
7 (021 — 012 Ces  Cog ez Oz1

whereC}, = $9C11/ 81, Coy = 51C99/ 59, and the shear-related parameters are given by

X Ces 51 59

o= Z0 (2729 12
Chs 4(82+51+) (12)
X Ces [ 51 52

1 _ —o° -t T4

=~ Ces [ 51 52

" _ 5 - 4

Cos = 1 <32+31 2) (14)

Equation[[I]L) can be written in the compact fasm= C 8w where subscript indicates Voigt
notation and the strain-displacement operator is

0
Fr
0 9
_ 0.
o=\ o % (15)
%5 _%
(9:1?2 awl

The derived equations cover both the computational donradrtfee PML regions sincg; = 0
in the computational domain which leaves= 1, resulting in the general formulation of the
wave equation.

The frequency-dependent equation of motidn (8) is transéorinto the time domain using
the inverse Fourier transform [11], yielding

V&, +p=pDy(t)u (16)
&, = Cou (17)

where the operatdP,(t) is the inverse Fourier transform ef.?s,s,, given by

2
T ae
The modified constitutive relation is given by

Dy(t) + (B + 52)% + 3152 (18)

C =C + F(t)C, + Fa(t)Cs (19)

whereC is the non-stretched constitutive matrix a@tl, C, represent two stretched parts of
the constitutive matrix, see the appendix. The operato(s) and.F.(t) are the inverse Fourier
transform ofs; /s, ands, /s, respectively, given by

Fit) = (Bi—P)e ™, t>0 (20)
Fat) = (B—pe ™, t>0 (21)
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2.1 Convective coordinates

The formulation in a fixed coordinate systek), is transfered into a moving coordinate
systemz;, via the relation([1]
z=X; -Vt (22)

whereV is the velocity of the vehicle. The equilibrium equations expressed in the moving
coordinate system by introducing the partial differemiaoperators

0
0X

0

, Oz

9
ot

0 0

t
following from the relation[(22) between the two coordinaystems.
Substitution of the operators into Equatién](16) modifieseahuilibrium equations to

V&, +p = pDou (24)
&, = Cou (25)
with the convected operator
. d a\’ d d
Dy = <a — V@) + (B1 + Bo) (% - V%) + B1f2 (26)

The convolution equations related f017) are not direatlyahdent on time, hence they remain
unchanged. The transformation from fixed to moving coottémanly modifies the ordinary
equation of motion, making it simple to implement in the PMicrhulation.

2.2 Finite element implementation

The principle of virtual work is used to obtain the weak fotation of the equation of motion
(24), yielding

/Q ()" p Doud + /Q (050)" &, — /

(6u)T pdQ — /(6u)TTdF =0 (27)
Q

r

The spatial variation of the actual and the virtual disphaegt fields are represented by shape
functions as

u(x,t) = N(z)d(t) (28)
G(x,t) = N(z)d(1) (29)
with the shape function® on the form

N0 Ny O -+ N, O

N = 0O Ny O Ny -~ 0 N, (30)

and N in a similar form. Separating the convolution terms in theraporsF; () and F,(t) the
following set of ordinary differential equations is obtath

Md+ Zd+Kd+g=f (31)
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whered is the global displacement vectgf.is the global force vector determined by
fe= [ NTpdQ (32)
Qe

where only point loading on the free surface is assumed. Tément mass, damping and
stiffness matricedZ¢, Z¢ and K¢, are given by

M¢ = / e pNTNdQ (33)
A / (p(ﬁl 4 B)NTN + pV (J/\ZCTN . ﬁﬁv)) do (34)
K¢ — / e (ETCB + 0B MVTN) do (35)

+ / e (—;ﬂ/(@l 4 3,)NTN, + VQJ/\T\fo> do (36)

where B denotes the strain-displacement matrix @ddhe shape functions with-derivative
N, = ON/oxz. Assuming constant PML parameters inside each elementadieolution
vectorg is given by

g° = K3 (Fixu(t)) + K (Fa +u(t)) (37)

where the element matricds,; and K, are given by
K= —/BTCdeQ, p=12 (38)
Q

The convolution termd&,, « u(t) are defined on each element of the mesh and are discontinu-
ous from one element to another since the PML parameterssuengd element-wise constant.
The general appearance of the convolution term is

Fpxu(t) = /0 Fp(m)u(t —1)dr = /0 (Bp — Bﬁ)e_ﬁﬂu(t —7)dT (39)

with index p being the complement ¢f. When assuming(¢) piece-wise constant in the time
interval [t,,, t,.1], the solution can be reformulated to increment form viagraéon by parts,
and the convolution integrals then only require informaticom the last time step.

The finite element equation system is solved for the disph&ces using bilinear elements
with a Newmark-based time integration method, see glg. [8].

3 NUMERICAL EXAMPLES

Two numerical examples are presented to demonstrate tloebalg properties of the sug-
gested formulation in translating coordinates. The twongdas involve a moving transient
dynamic load traveling on the surface of a single layer hzdice and a double layer half-space,
respectively, see Figuté 1. The layers are indicated inrE[§as the ared’; and(2, and the
PML layer surrounds the computational domain indicated dashed line. The computational
domain is 156m wide, corresponding to approximately twasguee wave lengths, and 78m
deep. The material parameters of the two layers are list@dbie1l. The dynamic response is
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Lx o, [a

Figure 1: lllustration of numerical example. The obsempoints where the response is recorded is marked with
two crosses. The interface between PML and the computatimmaain is indicated by a dashed line.

Table 1: Material parameters of the layered soil in Fidure 1.

Material E[MPa] v plkg/m’] ¢, [m/s] cs[m/s] ¢, [m/s]

9 125 0.25 2000 273.9 158.1 1455
Qs 250 0.25 2000 387.3 223.6 205.7

obtained from two observation points A and B placed on ead sf the load at a distance of
39m corresponding to slightly more than one half pressurewength. The load is defined as

F(z,t) =T)d(x — z°) (40)
where/ is the Dirac delta function andc is the location of the point source with temporal
evolutionT'(t) defined by

Tt =71-7%)?% —-1<7<1 (41)

wherer = 2¢/T — 1. The total duration of the pulse s = 0.2s and the dominant frequency of
the pulse isf = 1/7 = 5Hz. In the numerical examples, the maximum load’is,, = IMN.
The spatial dependence of the PML paramgien the x; direction is chosen as in|[8]

P\ N1t+n2
mazx xi
gi= s (%) “2)

in which z¥ is measured from the interface to PML adidis the thickness of the PML layer.
The coefficient3"** is given by [8]

(1 +ni + TLQ)CplOglo(RU)
fori = 1,2. HereR, is the theoretical reflection coefficient at normal incideandc, is the
pressure wave velocity. In this example the following valémr the parameters are chosen to:
Ry = 1078, ny = 3, ny = 0 andd; = 84m corresponding to slightly more than two Rayleigh
wave lengths.

Bmam _
i =

(43)
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3.1 Examplel: Singlelayer

In the single layer experiment the material parametersefahers indicated in Figufé 1 are
equal, corresponding to materia) in Table 1. The element edge lengtiNg; = Az, = 3.9m
corresponding to 20 elements per pressure wave lengthharioirte step ig\¢t = 0.0071s such
that it meets the CFL condition defined by

At, = min[Awl, Amg} /¢y (44)

The simulations run for 1.0 s, requiring 140 time steps. Tdeallis traveling on the surface
of the single layer half-space with the three different egles M = V/¢, = 0,0.2,0.4. The
responses are obtained at the two observation points A antidtifie evolutions are visual-
ized in Figure 2 where the load signal is perfectly trangabthrough the observation points
without sending any reflections back from the boundariese filise arrives at arour19s
corresponding to the time of arrival for the Rayleigh wavejolhis 39 m/205.7m/s= 0.19s.
Since the load is traveling from left to right the pulse delagreases with increasing velocity
at point B while it decreases at point A. The response is seerctease with velocity in front
of the load, at point B, while it decreases behind the loadoatdtA.

u [m]

051

-051

-151

— \|ach=0
Mach=0.2
= = =Mach=0.4

0.2

0.4

t[s]

0.6

0.8

u, Im]

— |\|ach=0
Mach=0.2
= = =Mach=0.4

.
0.2

04 06 08 1
t[s]

Figure 2: Single layer half-space: Vertical displacemesponse at two observation points A (left) and B (right)
with velocity M = 0.0,0.2, 0.4.

3.2 Example2: Two layers

The material properties of the two layers are givefihyand(2, as indicated in Figurig 1. The
top layer indicated by?; has a thickness af.8m and it is half as stiff as the bottom layer. Both
the computational domain and the PML domain experience ageha material parameters at
the interface between the two layers. The same element edgthland time step is used as in
Example 1, where the time stép = 0.0071 is determined based on the thicker bottom layer to
ensure observance of the CFL condition in the entire doméie.tifme evolutions of the pulse
obtained from observation point A and B are illustrated igufe[3. The introduction of a softer
surface layer causes a general increase in the respondetfoea velocities. It also becomes
more clear that the response increases with velocity at @®iwhile it decreases at point A.
However, in spite of the sudden material change at the aterbetween the top and bottom
layers, the PML works very well for all three velocities. @ slight disturbance is observed
after the wave has passed. This may be avoided by adjustnggitametep or by increasing
the thickness of the PML layer.
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1L — \|ach=0
Mach=0.2
= = =Mach=0.4

— |\lach=0
Mach=0.2
= = =Mach=0.4

0 02 04 06 08 1 0 02 04 06 08 1
t[s] t[s]

Figure 3: Two-layer half-space: Vertical displacemenpogse at two observation points A (left) and B (right)
with velocity M = 0.0,0.2, 0.4.

4 CONCLUSION

The PML formulation for transient wave propagation has lggareralized to a moving frame
of reference. The transformation from fixed to moving cooaties only modifies the ordinary
differential equation of motion and is therefore simplertplement in the PML equations. The
applicability of the formulation was successfully testadte/o numerical examples; a single
layer and a double layer half-space, respectively.
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A CONSTITUTIVE MATRICES

The entries in the modified constitutive matfrelated tos, /s, ands, /s, are represented
in the two stretched constitutive matrio€s andC,, given by

0 0 0 0
0o A+2e 0 0
Cio= | o "0 s (A1)

0 0 p/M4 p/

A4+20 0 0 0
0 0 0 0
C, = 0 0 u/d —p/d (A.2)
|0 0 —p/4 p/d
The non-stretched constitutive matixis given by
X420 A 00
B A A+2u 0 0
C = 0 0 v (A.3)
0 0 pp

in which x, A are the Larg constants.
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