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Abstract

Background: Biological networks are constantly subjected to random perturbations, and efficient feedback and
compensatory mechanisms exist to maintain their stability. There is an increased interest in building gene
regulatory networks (GRNs) from temporal gene expression data because of their numerous applications in life
sciences. However, because of the limited number of time points at which gene expressions can be gathered in
practice, computational techniques of building GRN often lead to inaccuracies and instabilities. This paper
investigates the stability of sparse auto-regressive models of building GRN from gene expression data.

Results: Criteria for evaluating the stability of estimating GRN structure are proposed. Thereby, stability of
multivariate vector autoregressive (MVAR) methods - ridge, lasso, and elastic-net - of building GRN were studied by
simulating temporal gene expression datasets on scale-free topologies as well as on real data gathered over Hela
cell-cycle. Effects of the number of time points on the stability of constructing GRN are investigated. When the
number of time points are relatively low compared to the size of network, both accuracy and stability are adversely
affected. At least, the number of time points equal to the number of genes in the network are needed to achieve
decent accuracy and stability of the networks. Our results on synthetic data indicate that the stability of lasso and
elastic-net MVAR methods are comparable, and their accuracies are much higher than the ridge MVAR. As the size
of the network grows, the number of time points required to achieve acceptable accuracy and stability are much
less relative to the number of genes in the network. The effects of false negatives are easier to improve by
increasing the number time points than those due to false positives. Application to HeLa cell-cycle gene
expression dataset shows that biologically stable GRN can be obtained by introducing perturbations to the data.

Conclusions: Accuracy and stability of building GRN are crucial for investigation of gene regulations. Sparse MVAR
techniques such as lasso and elastic-net provide accurate and stable methods for building even GRN of small size.
The effect of false negatives is corrected much easier with the increased number of time points than those due to
false positives. With real data, we demonstrate how stable networks can be derived by introducing random
perturbation to data.

Background
Biological networks are constantly perturbed randomly
and there exist efficient and compensatory mechanisms
to withstand such instabilities. Constructing gene regula-
tory networks (GRN) from time-series gene expression

data plays a vital role in understanding complex biologi-
cal mechanisms and in the development of novel drugs.
Though microarrays allow measurement of thousands of
genes simultaneous, gene expressions in practice can be
gathered only over a few time points due to high cost
and time involved, and limitations of the experiments.
This makes building GRN inherently an ill-posed pro-
blem in practice, leading such networks unstable and
irreproducible. Moreover, variable and complex nature
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of biological sources, and measurement noise and arti-
facts, add to the challenges of constructing accurate and
stable GRN.
A wide range of techniques for inferring GRN from

microarray datasets have been proposed in the literature
[1-4], including Boolean networks [5], linear networks
[6,7] differential equation models [8], and stochastic
methods [9-12]. Despite the plethora of such techniques,
stability of building GRN from gene expression data has
not been addressed by the research community so far.
In this paper, we investigate the stability of building
GRN by using sparse linear models with simulations
and real data.
The linear multivariate vector autoregression

(MVAR) provides a simple and efficient technique to
estimate regulatory relationships among genes. How-
ever, due to less number of time points compared to
the number of genes whose expressions involved in
gene expression datasets, several penalized MVAR
techniques using regularization [3,7,13-16] and priors
[17] have been considered for building GRN. The
sparse MVAR techniques such as lasso and elastic-net
uses a penalty function to drive small regulatory coeffi-
cient to zero, thereby producing computationally stable
and sparse yet biologically plausible GRNs. Recently,
their efficacy in building GRN have been demonstrated
[6,7].
A good technique of building GRN should not only

be accurate but also be reproducible and stable; biolo-
gists will then be able to test complex hypothesis with
confidence on in silico networks. Stability means that
the network construction is robust to changes of net-
work topology and parameters, and biological and
instrumental noise. In this paper, we first introduce
novel criteria for evaluating stability of building GRN
at the level of connections and networks. MVAR mod-
els of ridge, lasso, and elastic-net penalty are evaluated
with respect to their accuracies and stabilities by using
synthetic gene expression datasets. In particular, we
investigate how many time points of gene expressions
are needed for a network of given topology and size.
Using a real data set gathered in HeLa cell cycle [18],
we demonstrate how random perturbations in the data
could be induced to determine stable genes in the
network.

Methods
Suppose dataset X = {xi(t)}I × T consists of time-series of
expressions of I genes, taken over equally spaced T time
points, where xi(t) denotes the expression of gene i at
time t. Let vector x t x ti i

I( ) ( ( ))= =1 represent expressions
of all genes at time t. Consider a network of I genes,
represented by an r-order multivariate vector autore-
gressive (MVAR) model:

x t x t t
r

( ) ( ) ( )= − +
=

∑ b t et

t 1

(1)

where b bt t= ×{ },i j I I denotes the matrix of regression
coefficients corresponding to a model of order τ, and
e e( ) ( ( ))t ti i

I= =1 denotes residuals that are assumed to
be i.i.d. and zero mean Gaussian. The regression coeffi-
cient b t

i j, represents the interaction between genes i
and j. In general, the model has I2r coefficients. This
scope of this work is restricted to first-order systems (i.
e., r = 1). Suppose a vector of gene expressions at time t
is denoted by row vector y x tt

i i
I= =( ( )) 1 and let zt = yt–1

denote the vector of gene expressions at the previous
time-point, b = [b1, b2, … bI]T a matrix of size I × I of
regression coefficients, and εt = [ε1(t), ε2(t),…εI(t)] the
corresponding innovations. The multivariate model can
be written in standard multivariate vector autoregressive
(MVAR) form:

y zt t t= +b e (2)

In vector form, (2) becomes:

Y Z E= +b (3)

where t-th row of Y, Z, and E, are yt, zt, and εt, respec-
tively, and there are T – 1 samples; Y is a (T – 1) × I
matrix, Z a (T – 1) × I matrix, b a I × I matrix, and E a
(T – 1) × I matrix. MVAR coefficients are estimated
using standard least squares as:

ˆ ( )b = −Z Z Z YT T1 (4)

The above matrix cannot be determined if the number
of genes are larger than number of samples (that is,
T <<I).
To handle such instances, penalized regression meth-

ods such as ridge regression, lasso, or elastic net regres-
sion penalties have been proposed [19]. The general
penalized regression loss function is given by:

L Y Z( , , ) || || | | ( ) || ||a l b b la b l a b= − + + −2
1 2

21
2

1 (5)

where l and a are regularization parameters. When a
= 0 the loss function represents ridge MVAR, a = 1
represents lasso, and a Î (0,1) represents an elastic-net
penalty. In other words, lasso uses L1-norm, ridge
regression uses L2-norm, and elastic-net uses both L1-
norm and L2-norm in its penalty term. The penalty
terms attempt to drive small regression coefficients to
zero, making networks sparse and computationally well-
posed. The lasso penalty is more capable of driving
regression coefficients to zero than the ridge penalty.
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Synthetic data
Most of the real world networks, such as biological net-
works, are scale-free. In this study, GRN of various sizes
and topology are built with scale-free networks using
Barabasi-Albert model [20]. First, assuming that large
GRNs adhere to the topology of scale-free networks,
synthetic structures of GRN were built by initiating a
small number of nodes. New nodes and edges were
added with preferential attachment as the probability of
addition of new nodes to the existing node is not uni-
form. A node with high number of edges attracts higher
number of new nodes compared to a node with no con-
nection. This phenonmena in fact leads to power-law
distribution: the probability pi of preferential attachment
of a new gene to existing gene i is given by:

p d bi i~ g + (6)

where di denotes the number of adjacent edges not
initiated by gene i itself (which approximates to the in-
degree of gene i). The parameters g denotes the power
of preferential attachment and b the attractiveness of
the gene with no adjacent edges.
Time-series datasets of gene expressions were gener-

ated for a specific network topology with the preferen-
tial attachment g = 1.2. For a given network topology,
the coefficients corresponding to no interactions among
genes were set to zero. For other connections, true
MVAR coefficients were obtained by drawing samples
from a uniform distribution on the interval [-1,-0.8] and
[0.8,1] such that the number of positive and negative
coefficients are approximately equal. The initial (t = 0)
gene expression values were drawn from a uniform dis-
tribution on the interval [10,15]. For successive time
points, expression were generated using MVAR model
with added i.i.d. Gaussian random noise Σ = I[7]. Para-
meters used for generating synthetic networks are given
in Table 1. For a given network and number of time
points, we generated 100 time-series datasets by ran-
domly initializing the gene expressions.

Real data
To investigate to the stability of real biological networks,
we use lasso and elastic-net methods on Human cancer
cell Line (HeLa) cell-cycle gene expression dataset [18].

The dataset used in this study is described as experiment
3 (http://genome-www.stanford.edu/Human-CellCycle/
Hela/) and contains 48 time points where gene expres-
sions were measured at the interval of one hour and syn-
chronized by double thymidine block. Based on relevance
to cell cycle and tumor development, 91 genes were
selected. This dataset was previously used to demonstrate
the efficacy of sparse lasso MVAR techniques in building
GRN [6]. In order to investigate stability random pertur-
bations, we added noise perturbations at each time point
by adding random samples from Gaussian noise N(0,

(s + δ)2); we define SNR =
+
s

s d

2

2( )
where s is the stan-

dard deviation of residuals of real data and δ is a pertur-
bation constant. For real dataset, the standard deviation
of residuals was, s = 0.225 and s = 0.23, respectively, for
models built with lasso and elastic-net MVAR models. By
generating 100 gene expression datasets for each of δ
such that SNR Î [0.01, 4], the stability of GRN built were
studied against noise perturbations.

Stability of structure
In this section, we present a Hamming distance based
criteria for evaluating the stability of building GRN. Let
{ }X b

b
B
=1 be a set of B sub-samples of original data and

sb be the GRN derived from b-th sample Xb. The struc-
ture of each network sb is represented by a connectivity
matrix c cb

ij
b

I I= ×{ } where cij
b = 1 represents the pre-

sence of a regulatory interaction between genes i and j,
and otherwise 0. Consider two GRNs sb and sb′ ; the
similarity of the two networks is obtained by the average
Hamming distance over all the regulatory connections:

r( , )
| | | |

( , )., ,s s
s s

d c cb b
b b i j

b
i j
b

ji

′
′

′= −
+ ∑∑1
1

(7)

where d denotes the Hamming distance and |sb|
denotes the number of connections in the network sb.
In (7), the stability r Î [0, 1], where higher values
denote high stability of the GRN inference algorithm.
Here, stability is measured with respect to the whole
network and the Hamming distance takes into account
both the presence and absence of a regulatory
connection.
Using the above measures, the stability of complete

GRNs is obtained by averaging over B number of struc-
tures obtained using a particular method. The average
of pair-wise stability, such as denoted in (7), is then
used as the overall stability performance of the given
method. This is given by:

r rstructure =
−

′

′= +=
∑∑2

1
11

B B
s sb b

b b

B

b

B

( )
( , ). (8)

Table 1 Parameters used for generation of synthetic
network

Parameter Values

Number of Bootstraps (B) 100

Number of Genes 10, 50, or 100

Number of time points 10, 30, 50, 70

Regression coefficient cut-off for edge detection (Î) 0.0001
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The stability of an independent edge is equally impor-
tant. With a small perturbation, an edge is either estab-
lished between two genes i and j, or is not detected.
Hence, based on the number of times a regulatory rela-
tionship occurs between the two specific genes, the sta-
bility of the edge can be computed. Such edge stability
is defined as:

r connection

i j
s

b

B

i j
c

B

b

( , )
,

= =∑ 1 (9)

Implementation
Scale-free network topologies were generated using
igraph R package [21]. The stability of networks are stu-
died with penalized regression methods. Each of these
MVAR method has regularization parameters. Although
computationally expensive, we used the leave-one-out
cross-validation to estimate the l for ridge MVAR and
a and/or l for sparse models. For ridge estimate, the l
was selected from the set of {0.001, 0.1, 1, 10, 100}. For
lasso and elastic net, the glmnet package [22] is used
which could generate the whole solution path for l for
a given a value (a = 1 for lasso). Hence, the a values
are selected from a set of {0.1, 0.2, …, 0.9} for elastic-net
model.
The presence of statistically significant edges were

determined using t- distribution over regression coeffi-
cients corrected for multiple comparisons using false
discovery rate (FDR) [23]. In this method, let P(1) ≤ P(2)
≤ … ≤ P(n) denotes sorted p-values where n is the num-
ber of hypotheses. If k* is the largest n* for which

P
n

n
qn( *)

*≤ then we reject all the hypotheses n* = 1, 2,
…, k*. Here, q is level of significance. For a given regres-
sion, the p-value for a regression coefficient b could be
approximated using:

b

s 2w
t d

k

~ ( ) (10)

Here, t(d) is t-distribution with d degree of freedom
(dof); s2 is an estimate of the error of variance
( ( ) ( ))s b b2 1

1= − ′ −−T Y Z Y Z ; and wk is the j-th diago-
nal element of ((Z′Z + lW–)–1Z′Z(Z′Z + lW–)–1) where
W– denotes generalized inverse of W, a diagonal matrix
with diagonal elements |bk|. To achieve closed form
solution, this matrix is estimated using ridge coefficients
using the tuned l for lasso penalty [24]. For lasso, the
number of nonzero coefficients is an unbiased estimate
for the degrees of freedom [25]. The dof for elastic-net
were also assumed to be the number of nonzero coeffi-
cients. Only the statistically significant edges were

evaluated for stability analysis of sparse MVAR on real
datasets.
In this paper, we use fast coordinate descent algorithm

for optimizing lasso and elastic net loss function. The
codes are provided with glmnet MATLAB package.
Ridge regression is performed using standard MATLAB
function.

Results on synthetic dataset
To study the effects of the number of time points on
the stability, GRN consisting of I Î {10, 50, 100} num-
ber of genes were simulated using scale-free networks
with topologies having power-law coefficient g Î [2.10,
2.30 ]. Thus, temporal gene expressions for T Î {10,
30, 50, 70} number of time points for a given network
topology were generated. For given I, g, and T, B =
100 number of bootstrapped datasets were generated
by randomly initiating gene expressions at the first
time point.
Table 2 shows accuracies and stabilities of sparse lin-

ear models at different numbers of genes and time
points. True positives (TP), false positives (FP), and F-
measure (which is equal to 2 × ×

+
Precision Recall
Precision Recall , where Pre-

cision = TP/(TP+FP) and Recall = TP/(TP + FN) were
used to indicate the accuracy. The performances mea-
sures reported are the averages over 100 bootstrap data-
sets. As seen, the accuracies of elastic-net and lasso
were good and they need only a number of time points
approximately equaling the number of genes to achieve
good accuracy in small networks (for example, 10
genes). But as the network size grows, the number of
time points required were relatively less compared to
the size of the network. Ridge shows relatively poor
accuracy, so is not considered further for evaluation. If
the number of time points are small, false negatives
were easier to correct by increasing the number of time
points than false positives.
Figure 1 shows the stability of lasso and elastic-net

MVAR methods of building GRN of different sizes with
different number of time points. The accuracy and stabi-
lity were similar for the two methods. To achieve decent
accuracy, the number of time points needed were at
least about the size of the network. But to achieve good
stability, much more time points are needed. At the
individual edge level, figure 2 and 3 represent distribu-
tion of stability of edges with increasing number of
genes and time points. Increase in number of time sam-
ples reduces the number of edges of low stability.

Results on real dataset
Figures 4a and 5a show statistically significant connections
of GRN obtained using elastic-net and lasso MVAR,
respectively, for Hela cell-cycle dataset. Figures 4b and 5b
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show the stable networks whose edges that have stability
values greater than 0.5 after perturbations at SNR=4.0. As
seen, the network derived using elastic-net penalty has
higher number of edges compared to GRNs derived using

lasso. This is because lasso can only select a very few num-
ber of edges in the presence of correlated gene expres-
sions. As seen, after perturbation, the number of in-degree
or out-degree of many critical hubs are reduced while few

Table 2 Performances of lasso, elastic-net (EN), and ridge MVAR models on synthetic datasets with varying numbers
of genes and time points

Number of genes Number of time points Method True positives False positives Precision Recall F-measure Stability

EN 5.86 7.94 0.47 0.65 0.53 0.41

10 Lasso 5.19 4.88 0.57 0.58 0.55 0.46

Ridge 8.99 90.70 0.09 1.00 0.16 0.99

EN 8.66 8.02 0.56 0.96 0.69 0.64

30 Lasso 8.54 5.79 0.63 0.95 0.75 0.65

Ridge 8.99 90.55 0.09 1.00 0.16 0.99

EN 8.99 5.91 0.64 1.00 0.77 0.71

10 50 Lasso 8.99 4.12 0.71 1.00 0.82 0.75

Ridge 8.98 90.53 0.09 1.00 0.16 0.99

EN 9.00 5.12 0.67 1.00 0.79 0.72

70 Lasso 8.99 3.92 0.72 1.00 0.83 0.76

Ridge 8.99 90.35 0.09 1.00 0.16 0.99

EN 17.29 131.50 0.12 0.35 0.18 0.15

10 Lasso 13.53 42.81 0.25 0.28 0.26 0.15

Ridge 48.90 2429.90 0.02 1.00 0.04 0.99

EN 32.73 95.75 0.26 0.67 0.37 0.27

30 Lasso 32.37 72.41 0.31 0.66 0.42 0.31

Ridge 48.90 2431.70 0.02 1.00 0.04 0.99

EN 39.39 77.88 0.34 0.80 0.48 0.35

50 50 Lasso 39.15 0.39 0.80 0.82 0.52 0.38

Ridge 48.9 2436.20 0.02 1.00 0.04 0.99

EN 48.82 98.11 0.34 1.00 0.50 0.41

70 Lasso 48.82 78.38 0.39 1.00 0.56 0.45

Ridge 49.00 2432.90 0.02 1.00 0.04 0.99

EN 22.33 259.46 0.08 0.23 0.12 0.08

10 Lasso 14.91 69.95 0.18 0.15 0.16 0.08

Ridge 98.31 9759.90 0.01 1.00 0.02 0.98

EN 58.67 214.17 0.22 0.59 0.32 0.20

30 Lasso 56.37 153.76 0.27 0.57 0.37 0.22

Ridge 98.71 9777.50 0.01 1.00 0.02 0.99

EN 79.10 190.56 0.30 0.80 0.43 0.29

100 50 Lasso 78.60 164.55 0.33 0.79 0.46 0.32

Ridge 98.80 9792.20 0.01 1.00 0.02 0.99

EN 87.62 160.01 0.36 0.89 0.51 0.36

70 Lasso 87.54 144.63 0.38 0.88 0.53 0.38

Ridge 98.81 9805 0.01 1.00 0.02 0.99
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new edges are also detected. Elastic-net produced a more
stable network than the lasso.
Both the networks were able to detect many important

biological hubs, such as Noxa, IL-6, c-myc, IAP, TSP1

etc. The biological importance of these hubs in cell
cycle regulation and tumor developments are well docu-
mented in various studies. Briefly, Noxa mediates cell
cycle control of homeostasis of B cells and by repressing
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Figure 1 Stability of networks. Illustration of the effects of the number of time points on accuracy (F-measure) and stability of sparse MVAR
models of building networks of varying number of genes. Figures (a) and (b) denote accuracy and stability of elastic-net penalty respectively
while Figure (c) and (d) show accuracy and stability with Lasso penalty respectively.
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Figure 2 Distribution of stability of edges. Distributions of stability of edges with increase in time points on a 50 gene network. Figure (a),
(b), (c), and (d) show distribution with 10, 30, 50, and 70 time points respectively.
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Figure 3 Distribution of stability of edges. Distribution of stability of edges with increase in number of genes with 30 time points. Figure (a)
and (b) show distribution with 10 and 100 genes respectively.
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Figure 4 Gene networks obtained using elastic-net penalty.
GRNs obtained using elastic-net penalty: networks showing (a) all
the edges that are statistically significant, and (b) all the edges that
have stability greater than 0.5 for SNR = 4.
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Figure 5 Gene networks obtained using lasso penalty. GRNs
obtained using lasso penalty:networks showing (a) all the edges
that are statistically significant, and (b) all the edges that have
stability greater than 0.5 for SNR = 4.
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Noxa, induction of G1 arrest by p18 bypasses a homeo-
static cell-cycle checkpoint in intermediate Plasma cells
for their differentiation [26]. IL-6 plays importance role
in induction of apoptosis and cell cycle regulation [27].
This is also shown by large number of out-degree edges.
Thrombospondin-1 (TSP1) curtails tumor growth and
acts as an inhibitor of angiogenesis [28]. Inhibitors of
apoptosis (IAPs) have important role in cell division and
regulates apoptosis [29]. c-Myc oncoprotein prevents cell
cycle arrest in response to growth-inhibitory signals, dif-
ferentiation stimuli, or mitogen withdrawal [30]. Hubs
such as P53, NFkB, FGFR3, etc. were not detected in
GRN obtained using Lasso penalty, but were detected
with elastic-net penalty. However, many edges and hubs
are not recognized when perturbations were induced (for
example, at SNR = 4.0) and edge stability is set to a thre-
sold of 0.5. Genes like Noxa, NFkB, P53 etc. are severely
affected in GRNs obtained using both sparse MVAR
methods. Biologically, this could mean that these genes
are less important for the biological processes underlying
the network, compared to more stable genes. The results
indicate that random perturbation of data indirectly
helps the process of building accurate and stable GRNs.
Figure 6 shows stability of individual connections pro-
duced by lasso and elastic-net methods. As seen, lasso
produces less number of unstable edges than elastic-net.
Figure 7 shows the effect of SNR on stability and F-mea-
sure. With increase in SNR level, both the stability and F-
measures improves. Generally, the GRNs obtained using
elastic-net penalty have higher stability and F-measure
compared to GRNs derived using lasso. To compute the
F-measure, it is assumed that the GRN derived on real
data using lasso (or elastic-net) MVAR is true.

Discussion
Novel measures of evaluating stability of building GRN
were introduced. Thereby, stability and accuracy of sparse
MVAR models in building GRN structure were studied
using synthetic datasets. The results suggest that to achieve
decent accuracy and stability with sparse MVAR methods,
at least a number of time points equal to the number of
genes are required. But as the network size grows, the
number of time points required is less compared to the
number of genes in the network. It is easier to ameliorate
the effects of false negatives than the false positives by
increasing the number of time samples of gene expressions.
The results indicates that lasso MVAR and elastic-net per-
form equally on datasets in general, though lasso handles
false positives better. However, elastic-net performed better
than lasso on real dataset. This is because elastic-net pen-
alty has an ability to predict regulatory relationship
between highly correlated genes while lasso will only pre-
dict one of them [31]. As genes are highly correlated, elas-
tic-net or their improved versions proves better making
inferences on large scale GRNs [7]. In simulated datasets,
correlations among gene expression were not simulated.
To the best of our knowledge, this is the first study

introducing stability criteria or studying methods build-
ing GRN. Our investigations here were focused on the
stability of sparse MVAR models. Our work could be
extended for other approaches as well. For small net-
works, sparse linear models to build networks were
stable and accurate. Furthermore, effects of the number
of time points on the stability were studied by experi-
menting on scale-free networks of different topologies.
As the network size grows, the number of time points
required for building GRN is less than the number of
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genes in the GRN. Stability is inherent problem in prac-
tice as real datasets consist of a large number of genes
and short time-series. With an application of real data-
set, we demonstrate how stable GRN can be derived by
introducing perturbations to the gene expression data-
sets. Only a few statistically significant edges and asso-
ciated gene hubs are stable and can withstand small
amount of perturbation. Biologically, more stable genes
have preserve more significant roles of the biological
process of the network. This research emphasizes the
need for building GRN that are accurate, stable, and
reproducible, so that the structures derived are robust
against noise and perturbation of data. In addition by
perturbing gene expressions, more accurate and stable
core genes and subnetworks can be inferred from tem-
poral gene expression data.
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