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Abstract

Background: With the progress of modern sequencing technologies a large number of complete genomes are now
available. Traditionally the comparison of two related genomes is carried out by sequence alignment. There are cases
where these techniques cannot be applied, for example if two genomes do not share the same set of genes, or if they
are not alignable to each other due to low sequence similarity, rearrangements and inversions, or more specifically to
their lengths when the organisms belong to different species. For these cases the comparison of complete genomes
can be carried out only with ad hoc methods that are usually called alignment-free methods.

Methods: In this paper we propose a distance function based on subword compositions called Underlying
Approach (UA). We prove that the matching statistics, a popular concept in the field of string algorithms able to
capture the statistics of common words between two sequences, can be derived from a small set of “independent”
subwords, namely the irredundant common subwords. We define a distance-like measure based on these subwords,
such that each region of genomes contributes only once, thus avoiding to count shared subwords a multiple number
of times. In a nutshell, this filter discards subwords occurring in regions covered by other more significant subwords.

Results: The Underlying Approach (UA) builds a scoring function based on this set of patterns, called underlying. We
prove that this set is by construction linear in the size of input, without overlaps, and can be efficiently constructed.
Results show the validity of our method in the reconstruction of phylogenetic trees, where the Underlying Approach
outperforms the current state of the art methods. Moreover, we show that the accuracy of UA is achieved with a very
small number of subwords, which in some cases carry meaningful biological information.

Availability: http://www.dei.unipd.it/∼ciompin/main/underlying.html
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Background
The global spread of low-cost high-throughput sequenc-
ing technologies has made a large number of complete
genomes publicly available, and this number is still grow-
ing rapidly. In contrast, only few computational methods
can really handle as input entire chromosomes, or entire
genomes.
Traditionally the comparison of related genomes is car-

ried out by sequence alignment. Popular methods extract
gene-specific sequences from all species under exam-
ination and build a multiple sequence alignment for
each gene [1]. Then all multiple sequence alignments
are merged to form the final phylogeny. Other methods
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[2] use genes as a dictionary, counting the presence or
absence of a gene. This gene profile is then used to derive
a similarity score. However, if the genomes in question do
not share a common set of genes, or if they cannot be
aligned to each other, e.g., due to substantially different
lengths, these traditional techniques cannot be applied. As
a general example, in a pairwise comparison of genomes
popular alignment tools rely on a specific order of ele-
ments for each genome sequence, and on a set of sparse
shared seeds that should then be extended to obtain a
global alignment. Therefore low sequence similarity, rear-
rangements, and inversions can cause major problems
in identifying a possible alignment and thus the actual
sequence similarity.
Furthermore, when considering whole genomes, the

global alignment of large sequences has become a
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prohibitive task even for supercomputers, hence sim-
ply infeasible. To overcome these obstacles, in the last
ten years a variety of alignment-free methods have been
proposed. In principle they are all based on counting
procedures that characterize a sequence based on its con-
stituents, e.g., k-mers [3,4].
An important aspect in phylogeny reconstruction is the

fact that gene-based methods strictly focus on compar-
ing the coding regions of genomes, which can account
for as little as 1% of the genomic sequence in humans
[5]. Whereas it is known that the use of whole genomes
may provide more robust information when comparing
different organisms [6]. Also most alignment-free meth-
ods in the literature use only a portion of complete
genomes [7]. For instance, there are approaches that use
only genic regions [3] or mitochondria; other methods
filter out regions that are highly repetitive or with low
complexity [4]. Recently, it has been shown that the evo-
lutionary information is also carried by non-genic regions
[8]. For certain viruses, we are not even able to esti-
mate a complete phylogeny by analyzing their genes,
since these organisms may share a very limited genetic
material [7].
Sims et al. recently applied the Feature Frequency Pro-

files method (FFP) presented in [4] to compute a whole-
genome phylogeny of mammals [8]—i.e., large eukaryotic
genomes including the human genome — and of bacteria.
This method needs to estimate the parameter k in order
to compute a feature vector for each sequence, where the
vector represents the frequency of each possible k-mer.
Each feature vector is then normalized by the total num-
ber of k-mers found (i.e., by the sequence length minus
k-1), obtaining a probability distribution vector, or feature
frequency profile, for each genome. FFP finally computes
the distancematrix between all pairs of genomes by apply-
ing the Jensen-Shannon [9] divergence to their frequency
profiles.
This general characterization of strings based on their

subsequence composition closely resembles some of the
information theory problems, and is tightly related with
the compression of strings. In fact, compositional meth-
ods can be viewed as the reinterpretation of data com-
pression methods, well known in the literature [10,11].
For a comprehensive survey on the importance and impli-
cations of data compression methods in computational
biology, we refer the reader to [12].
When comparing entire genomes we want to avoid that

large non-coding regions, which by nature tend to be
highly repetitive, may contribute to our scoring function
a multiple number of times, thus misleading the final sim-
ilarity score. In fact, while analyzing massive genomes,
the number of repeated patterns is very high, particularly
in the non-genic regions. Furthermore if we allow mis-
matches the number of patterns can grows exponentially

[13-15]. In this paper we will address this problem by con-
trolling the distribution of subwords over the sequences
under consideration, so that their contribution will not be
overcounted.
Moreover, when comparing genomes it is well known

that different evolutionary mechanisms can take place. In
this framework, two closely related species are expected
to share larger portions of DNA than two distant ones,
whereby also other large complements and reverse-
complements, or inversions, may occur [16]. In this work
we will take into account all these symmetries, in order to
define a measure of similarity between whole genomes.

Matching statistics
Among the many distance measures proposed in the lit-
erature, which in most cases are dealing with k-mers,
an effective and particularly elegant method is the Aver-
age Common Subword approach (ACS), introduced by
Ulitsky et al. [7]. They use a popular concept in the field
of string algorithms, known as matching statistics [17]. In
short, given two sequences s1 and s2, where s1 is the refer-
ence sequence, thematching statistic is a vector l such that
l[i] is the length of the longest subword starting at posi-
tion i of s1 that is also a subword of s2, for every possible
position i of s1 (see Table 1).
A popular measure of similarity between strings is the

average of this vector. In fact the general form of ACS is:

ACS(s1, s2) =
∑|s1|

i=1 l[ i]
|s1| .

We can notice the similarity with the cross entropy of
two probability distributions P and Q:

H(P,Q) = −
∑

x
p(x) log q(x),

where p(x) log q(x)measures the number of bits needed to
code an event x from P if a different coding scheme based
on Q is used, averaged over all possible events x.
From the theoretical prospective it can be shown [7] that

the ACS approach mimics the cross entropy estimated
between two large sequences generated by a finite-state
Markov process. In practice, this is closely related to the
Kullback-Leibler information divergence, and represents
the minimum number of bits needed to describe one
string, given the other: DKL(P ‖ Q) = H(P,Q) − H(P).

Table 1 Example of matching statistics l1[ i] and l2[ j] for
the strings s1 = ACACGTAC and s2 = TACGTGTA

s1[ i] A C A C G T A C

l1[ i] 2 1 4 3 3 3 2 1

s2[ j] T A C G T G T A

l2[ j] 3 4 3 2 1 3 2 1
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This is perhaps the most frequently used information-
theoretic similarity measure.
The advantage of using the matching statistics is that it

is not based on fixed-length subwords, but it can capture
also variable length matches, in contrast to most meth-
ods that are based on fixed sets of k-mers. In fact, with
the latter the choice of the parameter k is critical, and
every method needs to estimate k from the data under
examination, typically using empirical measurements [4].
For this reason ACS proved to be useful for reconstruct-

ing whole-genome phylogenies of viruses, bacteria, and
eukaryotes, outperforming in most cases the state-of-the-
art methods [7].

Methods
In this section we propose a distance measure between
entire genomes based on the notion of underlying sub-
words. In order to build a sound similarity measure
between genomes, we need first to study the properties
of the matching statistics. Our first contribution is the
characterization of the subwords that are needed to com-
pute the matching statistics. A second contribution is the
selection of these subwords so that the resulting simi-
larity measure does not contain overcounts. Our main
idea is to avoid overlaps between selected subwords, more
precisely by discarding common subwords occurring in
regions covered by other more significant subwords.

Irredundant common subwords
In the literature, the values l[i] used by the ACS approach
are called thematching statistics, as described in detail by
Gusfield [17]. Our first contribution is to characterize the
matching statistics in order to identify which subwords are
essentials.
It is well known that the total number of distinct sub-

words of any length found in a sequence of length n can be
at most �(n2). Remarkably a notable family of fewer than
2n subwords exist that is maximal in the host sequence,
in the sense that it is impossible to extend a word in this
class by appending one or more characters to it without
losing some of its occurrences [18]. It has been shown
that the matching statistics can be derived from this set of
maximal subwords [19]. Here we will further tighten this
bound by showing that to compute the matching statistics
it is enough to consider a subset of the maximal subwords,
called irredundant common subwords.
The notion of irredundancy was introduced in [20]

and later modified for the problem of protein com-
parison [21,22]. It proved useful in different contexts
from data compression [23] to the identification of tran-
scription factors [24]. In this paper we introduce the
concept of irredundant common subwords (i.e., without
mismatches/wildcards). This ensures that there exists a

close correspondence between the irredundant common
subwords and the matching statistics.

Definition 1. (Irredundant/Redundant common sub-
word) A common subword w is irredundant if and only
if at least an occurrence of w in s1 or s2 is not covered
by other common subwords. A common subword that does
not satisfy this condition is called a redundant common
subword.

We observe that the number of irredundant common
subwords Is1,s2 is bounded by m + n, where |s1| = n and
|s2| = m, since it is a subset of the set ofmaximal common
subwords (see [19,25] for a more complete treatment of
this topic).

Proposition 1. The matching statistics ls1(i) can be
computed by combining together all and only the irredun-
dant common subwords of s1 and s2.

Proof. To show that the vector ls1(i) can be derived from
the irredundant common subwords, we define a new vec-
tor of scores lw for each subword w, where lw[ j]= |w| −
j + 1 represents the length of each suffix j of w, with
j = 1, . . . , |w|. Then, for each subwordw in Is1,s2 we super-
impose the vector lw on all the occurrences of w in s1.
For each position i, in s1, ls1(i) is the maximum value of
the scores maxw(lw[ j] ), such that k + j = i and k is an
occurrence of w.
To complete the proof we have to show that every occur-

rence of a common subword of s1 and s2 is covered by
some occurrence of a subword in Is1,s2 . By definition of
irredundant common subword, any occurrence of a sub-
word corresponds to an irredundant common subwords
or is covered by some subword in Is1,s2 . Moreover every
irredundant common subword w has at least an occur-
rence i that is not covered by other subwords. Thus, ls1(i)
corresponds exactly to |w| and the subword w is necessary
to compute thematching statistics. In conclusion, by using
the method described above for ls1(i), we can compute for
each position the length of the maximum common sub-
word starting in that location, which corresponds to the
matching statistics.

In summary, the notion of irredundant common sub-
words is useful to decompose the information provided
by the matching statistics into several patterns. Unfortu-
nately these subwords can still overlap in some position.
This might lead to an overcount in the matching statis-
tics, in which the same region of the string contributes
more than once. Our aim is to remove the possibility of
overcount by filtering the most representative common
subwords for each region of the sequences s1 and s2, which
will also remove all overlaps.
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Underlying subwords
When comparing entire genomes we want to avoid that
large non-coding regions, which by nature tend to be
highly repetitive, may contribute to the similarity score a
multiple number of times, thus misleading the final score.
In fact, while analyzing massive genomes, the number of
repeated patterns is very high, particularly in the non-
genic regions. Therefore we need to filter out part of this
information, and select the “best” common subword, by
some measure, for each region of the sequences.
In this regard, we must recall the definition of pattern

priority and of underlying pattern, adapted from [26] to
the case of pairwise sequence comparison. We will take as
input the irredundant common subwords and the under-
lying quorum u = 2, i.e. they must appears at least twice.
Let now w and w′ be two distinct subwords. We say that
w has priority over w′, or w → w′, if and only if either
|w| ≥ |w′|, or |w| = |w′| and the first occurrence of
w appears before the first occurrence of w′. In this case,
every subword can be defined just by its length and one of
its starting positions in the sequences, meaning that any
set of subwords is totally ordered with respect to the pri-
ority rule. We say that an occurrence l of w is tied to an
occurrence l′ of a subwordw′, if the two occurrences over-
lap, i.e. ([ l, l + |w| − 1]∩[ l′, l′ + |w′| − 1] ) �= ∅, and w′ →
w. Otherwise, we say that l is untied from l′.

Definition 2. (Underlying subword) A set of subwords
Us1,s2 ⊆ Is1,s2 is said to be underlying if and only if:

(i) every subword w in Us1,s2 , called an underlying
subword, has at least two occurrences, one in s1 and
the other in s2, that are untied from all the untied
occurrences of other subwords in Us1,s2 \ w, and

(ii) there does not exist a subword w ∈ Is1,s2 \ Us1,s2 such
that w has at least two untied occurrences, one per
sequence, from all the untied occurrences of
subwords in Us1,s2 .

This subset of Is1,s2 is composed only by those sub-
words that rank higher with our priority rule with respect
to s1. In fact, if there are overlaps between subwords that
are in Is1,s2 , we will select only the subwords with the
highest priority. Similarly to the score ACS(s1, s2), the set
Us1,s2 is asymmetric and depends on the order of the two
sequences; we will address this issue in Section “A dis-
tance-like measure based on underlying subwords”. As for
the underlying patterns [26], one can show that the set of
underlying subwords exists, and is unique. As a corollary
we know that the untied occurrences of the underlying
subwords can be mapped into the sequences s1 and s2
without overlaps. Moreover, by definition, the total length
of the untied occurrences cannot exceed the length of the

sequences. These two properties are crucial when build-
ing a similarity measure, because any similarity that is
based on these subwords will count the contribution of a
region of the sequence only once.

Efficient computation of underlying subwords
To summarize we select the irredundant common sub-
words that best fit each region of s1 and s2, employing a
technique that we call Underlying Approach or, in short,
UA. This technique is based on a simple pipeline. We
first select the irredundant common subwords and sub-
sequently filter out the subwords that are not underlying.
From a different perspective, we start from the smallest
set of subwords that captures the matching statistics and
remove the overlaps by applying our priority rule. In the
following we show how to compute the irredundant com-
mon subwords and the matching statistics, and then we
present an approach for the selection of the underlying
subwords among these subwords. The general structure of
the Underlying Approach (UA) is the following:

• 1) Compute the set of the irredundant common
subwords Is1,s2• 2) Rank all subwords in Is1,s2 according to the
priority and initialize U to an empty set.

• 3) Iteratively select a subwords p from Is1,s2 following
the ranking.

• 4a) If p has at least two untied occurrences: add p to
U and update the corresponding regions of � (see
next) in which p occurs;

• 4b) otherwise, discard p and return to (3).

Discovery of the irredundant common subwords
In step (1) we construct the generalized suffix tree Ts1,s2
of s1 and s2. We recall that an occurrence of a subword
is (left)right-maximal if it cannot be covered from the
(left)right by some other common subword. The first step
consists in making a depth-first traversal of all nodes of
Ts1,s2 , and coloring each internal node with the colors of
its leaves (each color corresponds to an input sequence).
In this traversal, for each leaf i of Ts1,s2 , we capture the
lowest ancestor of i having both the colors c1 and c2, say
the node w. Then, w is a common subword, and i is one of
its right-maximal occurrences (in s1 or in s2); we select all
subwords having at least one right-maximal occurrence.
The resulting set will be linear in the size of the sequences,
that is O(m + n). This is only a superset of the irredun-
dant common subwords, since the occurrences of these
subwords could be not left-maximal.
In a second phase, we map the length of each right-

maximal occurrence i into ls1(i), and, using Proposition 1,
we check which occurrences i have length greater than or
equal to the length stored in the location i − 1 (for loca-
tions i ≥ 2). These occurrences are also left-maximal,
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since they cannot be covered by a subword appearing at
position i− 1. Finally we can retain all subwords that have
at least an occurrence that is both right- and left-maximal,
i.e, the set of irredundant common subwords Is1,s2 . Note
that, by employing the above technique, we are able to
directly discover the irredundant common subwords and
the matching statistics ls1(i).
The construction of the generalized suffix tree Ts1,s2 and

the subsequent extraction of the irredundant common
subwords Is1,s2 can be completed in time and space linear
in the size of sequences.

Selection of the underlying subwords
In this section we describe, given the set of the irre-
dundant common subwords Is1,s2 , how to filter out the
subwords that are not underlying, obtaining the set of
underlying subwords Us1,s2 .
The extraction of underlying subwords takes as input

the set Is1,s2 and the tree Ts1,s2 from the previous section.
First we need to sort all subwords in Is1,s2 according to
the priority rule (step 2). Then, starting from the top
subword, we analyze iteratively all subwords by checking
their untied occurrences (step 3). If the subword passes
a validity test we select it as underlying (step 4a), oth-
erwise we move on with the next subword (step 4b).
The two key steps of this algorithm are: sorting the sub-
words (step 2) and checking for their untied occurrences
(step 4a).
Step 2 is implemented as follows. For all subwords we

retrieve their lengths and first occurrences in s1 from
the tree Ts1,s2 . Then each subword is characterized by its
length and the first occurrence. Since these are integers in
the range [ 0, n] we can apply radix sort [27], first by length
and then by occurrence. This step can be done in linear
time.
In order to implement step 4a we need to define the

vector � of n booleans, representing the locations of s1.
If �[ i] is TRUE, then the location i is covered by some
untied occurrence. We also preprocess the input tree and
add a link for all nodes v to the closest irredundant ances-
tor, say prec(v). This can be done by traversing the tree
in preorder. During the visit of a the node v if it is not
irredundant we transmit to the children prec(v) otherwise
if v is irredundant we transmit v. This preprocess can be
implemented is linear time and space.
For each subword w in Is1,s2 we consider the list Lw of

occurrences to be checked. All Lw are initialized in the
following way. Every leaf v, that represent a position i,
send its value i to the location list of the closest irredun-
dant ancestor using the link prec(v). Again this preprocess
takes linear time and space since all positions appear in
exactly one location list. We will updated these lists Lw
only with the occurrences to be checked, i.e. that are not
covered by some underlying subword already discovered.

We start analyzing the top subword w and for this caseLw
is composed by all the occurrences of w.
For each occurrence i ofwwe need to check only its first

and last location in the vector �; i.e., we need to check
the locations �[ i] and �[ i + |w| − 1]. If one of these two
values is set to TRUE, then i is tied by some subword w′.
Otherwise, if both the values are set to FALSE, then imust
be untied from all other subwords. Since all subwords
already evaluated are not shorter than w, then they can-
not cover some locations in �[ i, i + |w| − 1] without also
covering �[ i] or �[ i + |w| − 1]. Thus, if �[ i] and �[ i +
|w| − 1] are both set to FALSE, we mark this occurrence
i as untied for the subword w and update the vector �

accordingly.
If �[ i] is TRUE we can completely discard the occur-

rence i, for the subword w and also for all its prefixes, that
are represented by the ancestors of w in the tree Ts1,s2 .
Thus the occurrence i will no longer be evaluated for any
other subword.
If �[ i] is FALSE and �[ i + |w| − 1] is TRUE, we need

to further evaluate this occurrence for some ancestors of
w. In this case, one can compute the longest prefix, w′, of
w such that �[ i + |w′| − 1] is set to FALSE and w′ is an
irredundant common subword. Then the occurrence i is
inserted into the list Lw′ .
This step is performed by first computing the length

d < |w| such that �[ i + d − 1] is FALSE and �[ i + d]
is TRUE, and then retrieving the corresponding prefix w′
of w in the tree that spells an irredundant common sub-
word with length equal to or shorter than d. We can
compute d by means of a length table χ in support (or
in place) of the boolean vector �. For each untied occur-
rence i of w, χ stores the values [ 1, 2, . . . , |w|] in the
locations [ i, i + 1, . . . , i + |w| − 1], similarly to the proof
of Proposition 1. Using this auxiliary table we can com-
pute the value of d for the location under study i as
d = |w| − χ [ i + |w| − 1].
Now, to select w′, the longest prefix of w with |w′| ≤

d, we employ an algorithm proposed by Kopelowitz and
Lewenstein [28] for solving theweighted ancestor problem,
where weights correspond to the length of words spelled
in the path from the root to each node, in case of a suffix
tree. In the weighted ancestor problem one preprocesses
a weighted tree to support fast predecessor queries on the
path from a query node to the root. That is, with a lin-
ear preprocessing on a tree of height n, using the above
algorithm it is possible to locate any ancestor node w′
that has a weight less than d in time O(log log n). In our
case, the maximum length for an irredundant subword is
min{m, n}, thus we can find a suitable ancestor w′ of w in
timeO(log logmin{m, n}), withO(m+n) preprocessing of
the tree Ts1,s2 .
At the end of the process, if the subword w has at least

one untied occurrence per sequence, then we mark w as
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underlying subword. Otherwise, all the occurrences of w
that are not covered are sent to its ancestors, using the
previous procedure.
To analyze the overall complexity we need to compute

howmany times the same location i is evaluated. Suppose,
for example, that i belongs to Lw of the subword w. The
location i is evaluated again for some w̄, and inserted into
the list Lw̄, only if �[ i] is FALSE and �[ i + |w| − 1] is
TRUE. Note that the locations not already covered are in
the range [ i, i+|w|−d−1], with d > 0. Then, the subword
w̄ is the longest prefix of w that is an irredundant common
subword and that lives completely in the locations [ i, i +
|w| − d − 1]; however w̄may not cover the entire interval.
Now, the occurrence i will be evaluated again only if there
exists another subword w′ that overlaps with w̄, and that
has a higher priority with respect to w̄. The worst case is
whenw′ ends exactly at position i+|w|−d−1 and overlaps
with w̄ by only one location. Since w′ must be evaluated
before w̄, then |w′| ≥ |w̄|. Thus the worst case is when the
two subwords have about the same length. In this settings
the length of the subword w̄ can be at most (|w|−d)/2.We
can iterate this argument at most O(log |w|) times for the
same position i. Therefore any location can be evaluated at
mostO(logmin{m, n}) times. In conclusion, our approach
requires O((m + n) logmin{m, n} log logmin{m, n}) time
and O(m + n) space to discover the set of all underlying
subwords Us1,s2 .

Extension to inversions and complements
In this section we discuss the extension of the algorithmic
structure discussed above to accommodate also inversion
and complement matches.
A simple idea is to concatenate each sequence with

its inverse and its complement, while keeping separate
the occurrences coming from direct matches, inversions,
and complements. In brief, we first define x̂ as the con-
catenation of a string x with its inverse, followed by its
complement, in this exact order. Then, we compute the
irredundant common subwords, Is1,ŝ2 , on the sequences
s1 and ŝ2. We subsequently select the underlying sub-
words by ranking all the irredundant common subwords
in the set Is1,ŝ2 . Using the same algorithm described above
we compute the set Us1,ŝ2 , and then we map each sub-
word occurrence to the reference sequences s1. This will
include also inversions and complements of s2 that are
shared by s1. In this way, we can store all the untied occur-
rences and consider all possible matches for each region
of s1.
In this framework, we choose to take into account all

these symmetries, and thus the experiments presented
will use this extended approach. We will also measure
the contribution of inversions and complements to our
similarity measure.

A distance-like measure based on underlying subwords
In the following we report the basic steps of our distance-
like measure. Let us assume that we have computed
Us1,s2 , and the other specular set Us2,s1 . For every subword
w ∈ Us1,s2 we sum up the score hs1w

∑|w|
i=1 i = hs1w |w|(|w| +

1)/2 in UA(s1, s2), where hs1w is the number of its untied
occurrences in s1, similarly to ACS [7]. Then, we average
UA(s1, s2) over the length of the first sequence, s1, yielding

UA(s1, s2) =
∑

w∈Us1,s2
hs1w |w|(|w| + 1)
2n

.

This is a similarity score that is large when two sequences
are similar, therefore we take its inverse.
Moreover, for a fixed sequence s1 this score can also

grow with the length of s2, since the probability of having
a match in s1 increases with the length of s2. For this rea-
son, we consider the measure log4(|s2|)/UA(s1, s2); we use
a base-4 logarithm since DNA sequences have four bases.
Another issue with the above formula is the fact that it is
not equal to zero for s1 = s2; thus we subtract the cor-
rection term log4(|s1|)/UA(s1, s1), which ensures that this
condition is always satisfied. Since Us1,s1 contains only one
subword, the sequence s1 itself, which trivially has only
one untied occurrence in s1, this yields to UA(s1, s1) =
|s1|(|s1|+1)/(2|s1|) = (|s1|+1)/2. The following formulas
accommodate all of these observations in a symmetrical
distance-like measure dUA(s1, s2) between the sequences
s1 and s2:

UA(s1, s2) = log4(|s2|)
UA(s1, s2)

− 2log4(|s1|)
(|s1| + 1)

,

dUA(s1, s2) = UA(s1, s2) + UA(s2, s1)
2

.

We can easily see that the correction term rapidly con-
verges to zero as |s1| increases. Moreover, we notice that
dUA(s1, s2) grows as the two sequences s1 and s2 diverge.
From now we will simply refer to the measure dUA(s1, s2)
as the Underlying Approach measure, or UA.

Results
Genome datasets and reference taxonomies
We assess the effectiveness of the Underlying Approach
on the estimation of whole-genome phylogenies of differ-
ent organisms. We tested our distance function on three
types of datasets: viruses, prokaryotes, and unicellular
eukaryotes.
In the first dataset we selected 54 virus isolates of the

2009 human pandemic Influenza A – subtype H1N1, also
called the “Swine Flu.” The Influenza A virion has eight
segments of viral RNA with different functions. These
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Table 2 Benchmark for prokaryotes – Archaea& Bacteria
domains

Accession No. Domain Organism Size

BA000002 archaea aeropyrum pernix str. K1 1.7 Mbp

AE000782 archaea archaeoglobus fulgidus
str. DSM 4304

2.2 Mbp

AE009439 archaea methanopyrus kandleri
str. AV19

1.7 Mbp

AE010299 archaea methanosarcina
acetivorans str. C2A

5.8 Mbp

AE009441 archaea pyrobaculum
aerophilum str. IM2

2.3 Mbp

AL096836 archaea pyrococcus abyssi 1.8 Mbp

AE009950 archaea pyrococcus furiosus str.
DSM 3638

1.9 Mbp

AE000520 archaea treponema pallidum sp.
pall. str. Nichols

1.2 Mbp

AE017225 bacteria bacillus anthracis str.
Sterne

5.3 Mbp

AL009126 bacteria bacillus subtilis subsp.
subtilis str. 168

4.3 Mbp

AE013218 bacteria buchnera aphidicola str.
Sg

651 kbp

AL111168 bacteria campylobacter jejuni sp.
jej. str. NCTC 11168

1.7 Mbp

AE002160 bacteria chlamydia muridarum
str. MoPn/Wiess-Nigg

1.1 Mbp

AM884176 bacteria chlamydia trachomatis
str. L2/434/Bu

1.1 Mbp

AE016828 bacteria coxiella burnetii str. RSA
493

2.0 Mbp

AE017285 bacteria desulfovibrio vulgaris sp.
vulg. str. Hildenb.

3.6 Mbp

L42023 bacteria haemophilus influenzae
str. Rd KW20

1.9 Mbp

CP001037 bacteria nostoc punctiforme str.
PCC 73102

8.4 Mbp

Prokaryotic taxa used in our experiments, divided by domain. For each entity,
we list the accession number in the NCBI genome database, the complete name
and strain, and the genome size.

RNAs are directly extracted from infected host cells, and
synthesized into complementary DNA by reverse tran-
scription reaction, where a specific gene amplification is
performed for each segment [29]. We concatenate these
segments according to their conventional order given by
the literature [30]; this step, in general, does not affect the
final phylogeny computed by our algorithm, and is used
to sort subwords by location. The resulting sequences
are very similar to each other, and have lengths in the
order of 13,200 nucleotides each, accounting for a total of
714,402 b. To compute a reference taxonomic tree, we per-
form multiple sequence alignment using the ClustalW2
[31] toola as suggested by many scientific articles on the
2009 Swine Flu [29,30]. Then, we compute the tree using

Table 3 Plasmodium are parasites known as causative
agents ofmalaria in different hosts andgeographic regions

Parasite Host Region Size

P. berghei rodent Africa 18.5 Mbp

P. chabaudi rodent Africa 18.8 Mbp

P. falciparum human Africa, Asia & S./C. America 23.3 Mbp

P. knowlesi macaque Southeast Asia 23.7 Mbp

P. vivax human Africa, Asia & S./C. America 22.6 Mbp

The right-most column lists the size of each complete DNA genome.

the Dnaml tool from the PHYLIP [32] software package,b
which implements the maximum likelihood method for
aligned DNA sequences. In Dnaml we used the param-
eters suggested in [29,30], which consider empirical base
frequencies, constant rate variation among sites (with no
weights), a transition ratio of 2.0, and best tree search
based on proper searching heuristics.
In the second dataset we selected 18 prokaryotic organ-

isms among the species used in [7] for a DNA phyloge-
nomic inference. We chose the species whose phyloge-
nomic tree can be inferred by well-established methods
in the literature (see Table 2). The organisms come from
both the major prokaryotic domains: Archaea, 8 organ-
isms in total, and Bacteria, 10 organisms in total. The
sequences in question have lengths ranging from 0.6 Mbp
to 8 Mbp, accounting for a total 48 Mbp. We compute
their tree-of-life by using genes that code for the 16S
RNA, the main RNA molecule inside the small riboso-
mal subunit characterizing prokaryotes and widely used
to reconstruct their phylogeny; the considered sequences
are called 16S rDNA. We can extract a multiple align-
ment of 16S rDNA sequences of the selected organisms
from the Ribosomal Database Project [33];c our exper-
iments are based on the release 8.1. Next, we perform
a maximum likelihood estimation on the aligned set of
sequences, employingDnaml from PHYLIP with standard
parameters, in order to compute a reference tree based on
the resulting estimation.
In the third dataset we selected five eukaryotic organ-

isms of the protozoan genus Plasmodium whose genomes

Table 4 Comparison of whole-genome phylogeny
reconstructions

Species Group UA ACS FFP FFPRY

Influenza A Viruses 80/102 84/102 100/102 96/102

Archaea Prokaryotes 4/10 4/10 6/10 6/10

Bacteria Prokaryotes 6/14 10/14 6/14 10/14

Arch. & Bact. Prokaryotes 20/30 22/30 20/30 22/30

Plasmodium Eukaryotes 0/4 0/4 4/4 0/4

Normalized Robinson-Foulds scores with the corresponding reference tree. For
each dataset the best results are in bold.
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have been completely sequenced (Table 3). Plasmod-
ium are unicellular eukaryotic parasites best known as
the etiological agents of malaria infectious disease. The
sequences have lengths ranging from 18 Mbp to 24 Mbp,
accounting for a total 106 Mbp. We used as reference
tree the taxonomy computed by Martinsen et al. [34], as
suggested by the Tree of Life Project.

Whole-genome phylogeny reconstruction
We exploited the above datasets to compare our method,
the Underlying Approach (UA), with other efficient state-
of-the-art approaches in the whole-genome phylogeny
reconstruction challenge: ACS [7], FFP [4]d and FFPRY .
The FFPRY method, in contrast to FFP, employs the
Purine-Pyrimidine reduced alphabet (RY) which is com-
posed by two character classes: [A,G] (both purine

bases, denoted by R) [C,T] (both pyrimidines, denoted
by Y). We implemented the ACS method by ourselves,
while for FFP and FFPRY we used the FFP package release
3.14 available online.
We reconstruct the phylogenomic trees from the dis-

tance matrices using the Neighbor-joining method as
implemented in the PHYLIP package. We compare the
resulting topologies with the respective reference trees
using the symmetric difference of Robinson and Foulds
(R-F) and the triplet distance. For two unrooted binary
trees with n ≥ 3 leaves, the R-F score is in the range
[0, 2n− 6]. A score equal to 0 means that the two trees are
isomorphic, while 2n − 6 means that all non-trivial bipar-
titions are different. The R-F difference between two or
more trees can be computed using the TreeDist tool from
the PHYLIP package.

A/MexicoCity/WR1312N/2009H1N1-2009/09/10

A/ I ta ly /05 /2009H1N1-2009/05/03

A/Fukuoka-C/1/2009H1N1-2009/06/07

A/Par is /2592/2009H1N1-2009/05/01

A/Thailand/CU-B5/2009H1N1-2009/06/13

A/Mexico/InDRE13495/2009H1N1-2009/04/29

A/Hiroshima/200/2009H1N1-2009/06/13

A/SantoDomingo/WR1068N/2009H1N1-2009/06/25

A/Moscow/I IV05/2009H1N1-2009/06/20

A/Taiwan/T0724/2009H1N1-2009/05/19

A/NewYork/06/2009H1N1-2009/04/25

A/SanSalvador/0169T/2009H1N1-2009/06/12

A/Bei j ing/01/2009H1N1-2009/05/15

A/NewYork/4197/2009H1N1-2009/06/17

A/Korea/01/2009H1N1-2009/05/02

A/Utah/05 /2009H1N1-2009/06 /14

A/Toronto/T5308/2009H1N1-2009/06/03

A/ I ta ly /85 /2009H1N1-2009/06/14

A/Canada-NS/RV1565/2009H1N1-2009/04/30

A/Texas/08/2009H1N1-2009/04/24

A/Cal i fornia/07/2009H1N1-2009/04/09

A/England/195/2009H1N1-2009/04/28

A/Mexico/4108/2009H1N1-2009/04/02

A/Shanghai/71T/2009H1N1-2009/05/31

A/ I ta ly /127/2009H1N1-2009/06/17

A/Denmark/528/2009H1N1-2009/06/09

A/NewYork/3166/2009H1N1-2009/04/26

A/Thai land/CU-H9/2009H1N1-2009/06/17

A/Canada-ON/RV1527/2009H1N1-2009/04/24

A/Hiroshima/216/2009H1N1-2009/06/30

A/Texas/09/2009H1N1-2009/04/25

A/NewYork/4870/2009H1N1-2009/09/10

A/SantoDomingo/572N/2009H1N1-2009/05/24

A/Fukushima/1/2009H1N1-2009/06/23

A/Par is /2590/2009H1N1-2009/04/30

A/Texas/04/2009H1N1-2009/04/14

A/Shanghai /1/2009H1N1-2009/05/23

A/Taiwan/T0826/2009H1N1-2009/07/10

A/Guangdong/02/2009H1N1-2009/05/27

A/Toronto/0462/2009H1N1-2009/05/26

A/NewYork/3354/2009H1N1-2009/05/08

A/Moscow/03/2009H1N1-2009/05/26

A/Bei j ing/3/2009H1N1-2009/05/23

A/Yokohama/1/2009H1N1-2009/06/09

A/Japan/PR1070/2009H1N1-2009/07/10

A/Par is /2580/2009H1N1-2009/04/30

A/Bogota/0466N/2009H1N1-2009/06/25

A/Cal i fornia/14/2009H1N1-2009/04/25

A/ I ta ly /49 /2009H1N1-2009/05/27

A/NewYork/4777/2009H1N1-2009/08/14

A/Cal i fornia/06/2009H1N1-2009/04/16

A/Cal i fornia/04/2009H1N1-2009/04/01

A/Canada-QC/RV1954/2009H1N1-2009/05/17

A/Denmark/524/2009H1N1-2009/06/04

Figure 1Whole-genome phylogeny of the 2009 world pandemic Influenza A (H1N1) generated by UA. In green and red are represent the
two main clades, where the green Mexico/4108 is probably the closest isolate to the origin of the influenza. In blue and orange are two of the
possible early evolutions of the viral disease. The organisms which do not fall into one of the two main clades according to the literature are in black.
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We ran FFP and FFPRY for different values of k (the
fixed subword length) as suggested by [4], retaining the
best results in agreement with the reference trees. Table 4
compares our method with the other state-of-the-art
approaches, by showing the R-F difference with respect to
the reference taxonomy tree.
Our method, UA, achieves good performance in every

test considering the R-F difference with the reference tax-
onomy tree, and very good performance if we further
analyze the resulting phylogenies, as in Figures 1, 2, and
3. For every dataset the best results are shown in bold.
We can observe that UA is constantly the best performing
method, and that this advantage becomes more evident
for large dataset, where sequences share large parts, such
as the Influenza A (H1N1) viruses.

The Robinson and Foulds distance is a standard method
to evaluate topological discordance between trees. How-
ever when dealing with large trees it is known that small
variations can generate very large R-F scores (typically,
already for n ∼ 10). For this reason we conducted a
second series of experiments using the triplet distance
[35]. The triplet distance is a more refined measure that
does not suffer this problem. Moreover, to better compare
all taxonomies, we report the triplet distance between
all trees. Tables 5, 6 and 7 show the triplet distance
between all trees for all datasets. This more refined mea-
sure confirms the applicability of UA with respect to FFP
and ACS.
In more detail, Figure 1 shows that our approach can

distinguish the two main clades of the 2009 Influenza

Aeropyrum pernix – archaea

Bacillus subtilis subsp. subtilis – bacteria

Chlamydia muridarum – bacteria

Coxiella burnetii – bacteria

Treponema pallidum subsp. pallidum – archaea

Archaeoglobus fulgidus – archaea

Buchnera aphidicola – bacteria

Nostoc punctiforme – bacteria

Chlamydia trachomatis – bacteria

Haemophilus influenzae – bacteria

Campylobacter jejuni subsp. jejuni – bacteria

Bacillus anthracis – bacteria

Pyrobaculum aerophilum – archaea

Pyrococcus furiosus – archaea

Desulfovibrio vulgaris subsp. vulgaris – bacteria

Methanosarcina acetivorans – archaea

Pyrococcus abyssi – archaea

Methanopyrus kandleri – archaea

Figure 2Whole-genome phylogeny of prokaryotes by UA. In red are the branches of the Archaea domain, while in green are those of the
Bacteria domain. Clusters of other organisms are highlighted with different colors. Only two organisms do not fall into the correct clade:
Methanosarcina acetivorans – archaea (in cyan) and Desulfovibrio vulgaris subspecies vulgaris – bacteria (in black).
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P. chabaudi

P. vivax

P. berghei

P. knowlesi

P. falciparum

0.3902

0.5755

0.3848

0.1723

0.4895

0.2266

0.1182

0.2266

Figure 3Whole-genome phylogeny of the genus Plasmodium by UA, with our whole-genome distance highlighted on the branches.

A-H1N1 (in green and red), which have been outlined in
[30]. The origin of the flu could reside in the Mexican iso-
late (Mexico/4108, in green), from which all other green
isolates may have ensued. Two sub-clades for the U.S.
states of California and Texas are highlighted within the
red clade, most probably corresponding to the first major
evolutions of the viral disease.
Similar results are obtained for the second dataset, as

shown in Figure 2. UA can easily distinguish the Archaea
domain, in red, from the Bacteria domain, in green, and
also other sub-clades with respect to the reference tree
(these sub-clades are highlighted in the figure with differ-
ent colors). The organisms in black do not form a clade

Table 5 Comparison of whole-genome phylogeny of
influenza virus

Viruses Reference UA ACS FFP FFPRY

Reference 0.0 0.60 0.63 0.86 0.88

UA 0.60 0.0 0.30 0.81 0.74

ACS 0.63 0.30 0.0 0.83 0.81

FFP 0.86 0.81 0.83 0.0 0.73

FFPRY 0.88 0.74 0.81 0.73 0.0

Normalized triplet distance between all trees. The best results are in bold.

with other organisms in the reference tree. For the third
dataset (Figure 3), the whole-genome phylogeny of the
genus Plasmodium generated by UA corresponds exactly
to the taxonomy found in the literature.
The accuracy results are promising, but we believe that

of equal interest are the patterns used for the classifi-
cation. Our approach, by construction, uses only a very
small number of patterns. For this reason we report
in Table 8 some statistics for the underlying subwords
selected, averaged over all experiments. We can notice
that the number of irredundant patterns is in general
smaller than the length of the genomes, and this is a first

Table 6 Comparison of whole-genome phylogeny of
prokaryotes

Prokaryotes Reference UA ACS FFP FFPRY

Reference 0.0 0.24 0.37 0.62 0.39

UA 0.24 0.0 0.37 0.55 0.47

ACS 0.37 0.37 0.0 0.59 0.48

FFP 0.62 0.55 0.59 0.0 0.57

FFPRY 0.39 0.47 0.48 0.57 0.0

Comparison of Whole-Genome Phylogeny of Prokaryotes. Normalized triplet
distance between all trees. The best results are in bold.
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Table 7 Comparison of whole-genome phylogeny of
Plasmodium

Plasmodium Reference UA ACS FFP FFPRY

Reference 0.0 0.0 0.0 0.4 0.0

UA 0.0 0.0 0.0 0.3 0.0

ACS 0.0 0.0 0.0 0.3 0.0

FFP 0.4 0.3 0.0 0.0 0.3

FFPRY 0.0 0.0 0.0 0.3 0.0

Normalized triplet distance between all trees. The best results are in bold.

form of information filtering. Moreover we can observe
that only a few underlying subwords are selected on
average among the irredundant common subwords. This
number is always very small when compared with all pos-
sible irredundant subwords, and much smaller than the
length of the sequences.
Similar considerations can be drawn for the underlying

subwords length. On average they can be very long, espe-
cially with respect to FFP that uses only k-mers with k
in the range [ 5, 10]. Furthermore, each underlying sub-
word occurs only a few times per sequence, and in general
about one occurrence per sequence. Removing the high-
frequency subwords, we can notice that the underlying
subwords typically have length ≥ log4 min{m, n}, and in
the case of viruses they can be very large, capturing more
information than FFP. The longest underlying subwords
appear in the virus dataset, and they are on the order
of a thousand bases. We checked if these subwords may
have some biological meaning and we found that in some
cases they correspond to whole viral segments that are
shared between two genomes. This confirms that, in some
cases, the underlying subwords used for classification can
capture some biological insight.
Another interesting aspect is the contribution of inver-

sions and complements in our similarity measure, with
respect to the classical notion of match. We compute
the average number of occurrences used in our scoring
function that is due to inversions and complements. The
contribution of inversions and complements is about 28-
33% and 19-20%, respectively. This fact may be due to the
nature of the sequences considered, but we believe that
this topic deserves more attention.

Conclusion
In conclusion, we have shown that the underlying sub-
words can be used for the reconstruction of phyloge-
netic trees. Preliminary experiments have shown very
good performance in the identification of major clus-
ters for viruses, prokaryotes, and unicellular eukaryotes.
An important observation that distinguishes our meth-
ods from the others is that only a small number of

Table 8 Main statistics for the underlying approach
averaged over all experiments

Counting Influenza A Arch. & Bact. Plasmodium

Min genome size 12,976 b 650 kbp 18,524 kbp

Max genome size 13,611 b 8,350 kbp 23,730 kbp

Average genome size 13,230 b 2,700 kbp 21,380 kbp

Irredundants |Is1,s2 | 3,722 3,167 k 16,354 k

Underlying subwords 60 112 k 706 k

|Us1,s2 |
Min |w| inUs1,s2 6 10 12

Max |w| inUs1,s2 1,615 25 266

Average |w| inUs1,s2 264 14 20

Untied inversions 28% 31% 33%

Untied complements 22% 20% 19%

underlying subwords is used in our distance, nevertheless
the results are promising. From this fact we can spec-
ulate that only a very limited number of subwords is
needed to establish the phylogeny of genomic sequences.
Thus, an interesting problem that can be addressed using
the underlying subwords is the selection of probes for
DNA chips.
In the future, we plan to extend this method for the

comparison of whole genomes based on short reads com-
ing from next-generation sequencing, instead of using
assembled genomes.

Endnotes
aClustalW2 is available at http://www.ebi.ac.uk/Tools/
msa/clustalw2.
bPHYLIP (phylogenetic inference package) is a free com-
putational phylogenetics software package available at
http://evolution.genetics.washington.edu/phylip.
cThe Ribosomal Database Project is available at http://
rdp.cme.msu.edu.
dThe FFP software package release 3.14 is available at
http://ffp-phylogeny.sourceforge.net.
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